

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

u U.S. Sungeon Geveral's Otpre
 The
 MEDICAL DEPARTMENT of THE UNiTED STATES ARMY IN THE WORLD WAR

VOLUME XV

STATISTICS

PART ONE

ARMY ANTHROPOLOGY
BASED ON OBSERVATIONS MADE ON DRAFT RECRUITS, 1917-1918, AND ON VETERANS AT DEMOBILIZATION, 1919

PREPARED UNDER THE DIRECTION OF

M. W. IRELAND
Surgcon General of the Army

By

CHARLES B. DAVENPORT
Carnegie Institution of Washington
(Formerly Major S.C., U. S. A.)
AND
ALBERT G. LOVE
Major, M. C., U. S. A.

LETTER OF TRANSMISSION.

I have the honor to submit herewith a portion of the history of the MEDICAL DEPARTMENT OF THE UNITED STATES ARMY IN THE WORLD WAR. The portion submitted is entitled, "Army Anthropology," and is Part One of Volume XV, on the subject of Statistics.

The various parts of this history, irrespective of sequence in volume numbers, will be published from time to time in such order as material becomes available.

The Secretary of War.

Merritte W. Ireland, Surgeon General, United States Army.

EDITORIAL BOARD.*

Colonel Cinarles Lyncii, M. C., Editor-in-Chief. Dr. Loy McAfee, C. S., Assistant Editor-in-Chief. members.

Colonel Batey K. Ashforis, M. C., Colonel Frank Billingis, M. C., Colonel Thomas R. Boggs, M. C., Colonel George E. Brewer, M. C., Colonel Roger Brooke, M. C., Colonel W. P. Chamberlain, M. C., Colonel C. F. Craig, M. C., Colonel Haven Emerson, M. C., Brigadier General John M. 'T'. Finney, M. D., Colonel J. H. Ford, M. C., Lieutenant-Colonel Fielding H. Garrison, M. C., Colonel H. L. Gilchrist, M. C., Brigadier General Jefferson Kean, M. D., Licutenant-Colonel A. G. Love, M. C., Colonel James F. McKernon, M. C., Colonel C. F. Morse, M. C.,
Colonel R. T. Oliver, D. C.,
Colonel Charles R. Reynolds, M. C., Colonel Thomas W. Salmon, M. C., Lieutenant-Colonel G. E. de Schweinitz, M. C., Colonel J. F. Siler, M. C., Brigadier General W. S. Thayer, M. D., Colonel A. D. Tuttle, M. C., Colonel William H. Welch, M. C., Colonel E. P. Wolfe, M. C.,
Lieutenant-Colonel Casey A. Wood, M. C., Colonel Hans Zinsser, M. C.

[^0]
PREFACE.

The anthropological data contained in this study were collected at the time of the selective service draft of 1917 and 1918 and at the demobilization during the late summer and fall of 1919. The principal data concerning stature, weight, and chest circumference were taken from physical examination schedules (Form 1010 P. M. G. O.) ${ }^{a}$ for the first million selective service recruits, and, with special reference to men found with selected diseases or defects, also for the second million.

The preliminary study of the result of the physical examinations of approximately the first million drafted men sent to mobilization camps was published in Bulletin No. 11, Surgeon General's Office, March, 1919. The complete study of approximately $2,000,000$ drafted men who were sent to the mobilization camps, and of the 549,099 who were rejected by the local boards as totally and permanently unfit, mentally or physcially, for the military service, was published in Defects Found in Drafted Men, War Department, Surgeon General's Office, 1920.

The anthropological data contained in this work relative to the draft recruits were taken from the same source (Form 1010 P. M. G. O.). A preliminary study of the physical dimensions of the men with the selected diseases for the first million draft recruits was made in 1919. Such diseases and defects were selected as, it was anticipated, might show some deviation from the normal of the physical dimensions. Subsequently, similar data were collected for the second million. Accordingly, the results of the men with the special diseases or defects among the first and second million draft recruits were tabulated and the constants were calculated separately as well as combined. Such a procedure has certain advantages, especially in enabling one to make a comparison between the first and the second million, ${ }^{b}$ and to secure a criterion as to the constancy and significance of the findings. In the second million recruits there were found more cases of pulmonary tuberculosis, goiter of both types, errors of refraction, tachycardia, varicose veins, hernia, underweight, and congenital defects, and less, or about the same, of various cardiac disorders, varicocele, hemorrhoids, flat-foot, and "defective physical development."

Unfortunately, no provision was made on the physical examination forms for recording color, nativity, age, or occupation.

Acknowledgment is made of the very kind and hearty cooperation of the entire office of the Provost Marshal General, and thanks are especially due to Colonel James Easby-Smith, Colonel Frank H. Wigmore, and Colonel Frank R. Keefer, of that office. An excellent study containing material for the Civil War

[^1]draft recruits, draft substitutes, and late volunteers, similar to that published in Defects Found in Drafted Men, 1920, and in this work, was prepared after the close of the Civil War by Colonel J. H. Baxter, Medical Corps, Chief Medical Officer, Provost Marshal General's Bureau, in the office of the Provost Marshal General, and published in a two-volume work in 1875, under the title of "Statistics, Medical and Anthropological."

The part of this work that is based on the measurements of approximately 100,000 troops at demobilization has also an interesting history. Having in mind the study made by Dr. B. A. Gould, of the United States Sanitary Commission, on the physique of the Civil War volunteer recruits and troops at demobilization in 1865, and recognizing the importance of special anthropometry to the Army, to science, and to the Nation at large, an effort was made by the National Academy of Science from the summer of 1917 to secure authorization for special measurements, but in the stress of the preparation for warfare and during the war itself, authorization was not deemed advisable by the military authorities. However, an order to measure returning soldiers, to secure data for the fashioning of uniforms, was obtained from the Secretary of War during the latter half of 1919.

Thanks are due to Dr. Charles D. Walcott, Secretary of the Smithsonian Institution, to Colonel William H. Welch, M. C., of Johns Hopkins University Medical School, to Brigadier General Edward L. Munson, Morale Branch of the General Staff, for their continued efforts to secure the necessary authorization for the measurements, and to Colonel A. J. Dougherty, of the Equipment Branch of the General Staff, who finally secured the authorization for the work.

Thanks are also due to The Adjutant General for the permission granted to remove records of physical examinations to the Medical Record Section of the Surgeon General's Office for use in collecting statistical data; to the chief clerk of that office, Mr. Thomas A. O'Brien, for his advice and assistance in arranging the details for the use of the records, and to Mr. John N. Manning, principal clerk, Medical Record Section, Adjutant General's Office, for his very kind assistance in expediting the transfer of the records to and from the Surgeon General's Office.

Acknowledgement is made of the services of Mr. Louis R. Sullivan, anthropologist (formerly second lieutenant, Sanitary Corps), for his careful and painstaking work in the preparation of Tables 17, 18, 19, and 20 (sections of the United States, with the "groups" of them).

Especial mention must be made of the services of the civilian anthropologists and anatomists who supervised the work of taking the measurements of soldiers at the camps during the heat of the summer and early autumn of 1919, frequently at considerable self-sacrifice in other ways.c The good quality of the results are evidence of the effectiveness of the service they rendered.

Acknowledgement is also made of the assistance rendered by the clerical personnel of the Medical Record Section, Surgeon General's Office; to Mr. John W. Beath for his care in the supervision of the preparation of most of the large statistical tables; to Miss Anna T. Buckley and Mrs. Lillian K. Taylor for their

[^2]exceptionally excellent and accurate work in calculating the constants of the large tables in the text and appendix; to Dr. Thomas J. Griffith, Miss Martha E. Burton and Miss Viola M. Rose for their careful and painstaking work in supervising the coding of the data on the statistical cards; to Second Lieutenant Glendon H. Armstrong, S. C., for his conscientious and painstaking work in supervising the tabulation of the material for the draft recruits; to Miss Helen R. Markley for her equally excellent work in supervising the tabulation of the data for special measurements of the 100,000 demobilized men; to Mrs. Blanche E. Moore for the preparation of the majority of the graphs; and, indeed, to the entire clerical force of the Medical Record Section, Surgeon General's Office, who cooperated efficiently and intelligently, both during the last year of the war and afterward, in making this report as accurate and valuable as possible.

Acknowledgement is also due to Miss Miriam Kortright, of the Carnegie Institution's Station for Experimental Evolution, Cold Spring Harbor, Long Island, N. Y., who assisted in the calculation of many of the smaller text tables.

TABLE OF CONTENTS.

Page.
Preface 3
Introduction 34

1. Importance of anthropology in the Army 34
2. Stature. 34
3. Weight 36
4. Chest circumference 37
5. Build 37
6. Other dimensions. 38
7. The general comparative picture of white and Negro troops. 39
8. Correlations 42
9. Distribution of eye color. 42
10. Distribution of hair color 43
11. Physical dimensions in relation to disease 43
Section 1.-Piysical Meanurements.
A. The importance of anthropometry in the Army 45
12. History of the anthropological work in connection with the Army, 1917-1919. 49
I. Anthropometric work in connection with the draft recruits. 49
II. Anthropometric work in connection with demobilization. 52
13. Orders issued relative to special unitorm measurements. 53
14. Supervising personnel and camps where measurements were taken 56
15. Apparatus used 57
16. Directions for taking and recording measurements 57
17. Directions for use of record on "descriptive" face of form. 59
18. Specifications for arrangements required at camp and for taking meas- urements there. 59
19. Statistical treatment of data. 60
C. Results of the standard Army physical measurements 64
20. Age of recruits. 64
II. Stature. 66
21. General discussion 66
22. Mean stature 67
23. Comparison of mean stature with Civil War records. 67
24. Comparison of mean stature in various countries. 68
25. Frequency distribution 71
26. Standard deviation. 73
27. Mean stature from different States. 74
a. Recruits. 74
b. Demobilized men 75
28. Comparison of stature of recruits and veterans, by States 77
29. Comparison of stature of recruits from various States, 1863-64 and 1918-19. 78
30. A verage stature of recruits from different sections. 100
31. High and low standard deviations in the different sections. 105
32. Mean stature, by groups, of similar sections 105
33. The frequency distribution of statures in the groups of sections. 111
34. Comparison of stature in eight European races, of men at demobiliza- tion. 113
35. Comparison of color races. 117
C. Results of the standard Army physical measurements-Contiuued. Page.
III. Weight 117
36. General discussion 117
37. Method 118
38. Mean weight 119
39. The frequency distribution of weight 120
a. Recruits, 1917-18 120
b. At demobilization 120
40. The standard deviation of the weight series 121
41. Mean weight for the different States. 121
42. Increase in weight at demobilization over mobilization 122
43. Mean weight of recruits from the different sections 124
44. Mean weight for the different groups. 127
45. ('omparison of weight in eight European races of men at demobilization. 135
46. Comparison of weight of the color races 136
IV. ('hest circumference 136
47. General discussion 136
48. Methods of measurement 137
49. Mean chest circumference at expiration 138
50. Comparison with Civil War data 138
51. Comparison with other countries 139
52. Distribution of frequencies of various classes of chest circumference 140
53. The frequency distribution of chest circumference by States 140
54. Mean chest circumference by sections 144
55. Standard deviations of chest circumference by sections 147
56. Mean chest circumference by groups of sections 149
57. Mean chest circumference of the eight European races of men at demo- bilization 152
58. Chest circumference of men of the color races 156
V. Build 162
59. Importance of the index of build 162
60. Method of determining 163
61. Index of build for mean stature and weight 164
62. The index of build of Civil and World War veterans for each inch of stature 164
63. Distribution of index of build by States 165
64. Comparison of index of build in recruits, 1917-1918, and in veterans of 1919 and 1864-1865 168
65. Index of build by sections. 170
66. Index of build by groups of sections. 173
67. The mean index of build of eight European races of men at demo- bilization 173
68. The mean index of build of color races 174
69. Explanation of Plates XIV-XIX 174
VI. Pignet's index of robustness 186
D. Special anthropological measurements. 190
70. Sitting height 190
(a) General discussion 190
(b) Mean sitting height 190
(c) Standard deviation 191
(d) Comparison of eight European races 191
(e) Comparison of color races. 193
71. Span 193
(a) General discussion 193
(b) Mean span 193
(c) The comparison of eight European races 193
(d) Comparison of the color races 196
D. Special anthropological measurements-Continued. rage.
72. Height of sternal notch. 196
(a) General discussion 196
(b) Mean height of sternal notch 197
(c) Comparison of eight European races 197
(d) Comparison of color races 199
73. Height of pubic arch 199
(a) General discussion 199
(b) Mean pubic height 200
(c) Standard deviation of height of pubic arch 200
(d) Comparison of eight European races 200
(e) Comparison of color races 202
74. Neck circumference 202
(a) General discussion 202
(b) Mean neck circumference 202
(c) Standard deviation of neck circumference 203
(d) Comparison of eight European races 203
(e) Comparison of color races. 203
75. Breadth of shoulder 203
(a) General discussion 203
(b) Mean shoulder breadth 204
(c) Standard deviation of shoulder breadth 204
(d) Comparison of eight European races 205
(e) Comparison of color races. 207
76. Transverse diameter of the chest. 207
(a) General discussion 207
(b) Mean transverse chest diameter 208
(c) Standard deviation of transverse chest diameter 208
(d) Comparison of eight European races 208
77. Antero-posterior diameter of the chest, and thoracic index 208
(a) General discussion 208
(b) Mean antero-posterior chest diameter 209
(c) Standard deviation of antero-posterior chest diameter 209
(d) Comparison of eight European races 209
78. Waist circumference 213
(a) General discussion 213
(b) Mean waist circumference 213
(c) standard deviation of waist circumference 213
(d) Comparison of eight European races 213
(e) Comparison of white and colored races. 214
79. Transverse diameter of the pelvis 215
(a) General discussion 215
(b) Mean transverse diameter of the pelvis 216
(c) Standard deviation of transverse diameter of the pelvis 216
(d) Comparison of eight European races 216
(e) Comparison of color races. 219
80. Arm length 219
(a) General discussion 219
(b) Mean arm length 219
(c) Standard deviation of arm length 220
81. Forearm length 220
82. Leg length 220
(a) General discussion 220
(b) Mean leg length 221
(c) Standard deviation of leg length 221
(d) Comparison of eight European races 221
(e) Comparison of color races. 224
1). Special anthropological measurements-Continued. Page.
1f. Knee height 224
(a) General discussion 224
(b) Mean knee height 224
(c) Standard deviation of knee height 225
83. Thigh circumference. 227
(a) General discussion 227
(b) Mean thigh circumference 227
(c) Standard deviation of thigh circumference 227
(d) Comparison of eight European races 227
84. ('alf circumierence 230
(a) General discussion. 230
(b) Mean calf circumference. 23 C
(c) Standard deviation of calf circumference 230
(d) Comparison of eight European races. 230
85. Suprapatella circumference. 232
(a) General discussion. 232
(b) Mean suprapatella circumference 232
(c) Standard deviation of suprapatella circumference 232
86. Knee patella circumference. 232
(a) General discussion. 232
(b) Mean knee patella circumierence. 232
(c) Standard deviation of knee patella circumference 232
87. Comparison of dimensions of white and Negro troops 232
(a) Comparison of means of whites and negroes 232
(b) Span 232
(c) Leg length 233
(d) Arm length 233
(e) Pubic height 233
(f) Knee height. 233
(g) Forearm. 233
(h) Sternal notch 233
(i) Sitting height 233
88. General comparison of other color races 236
89. Comparison of the somatic proportions in the eight European races. 242
(a) General discussion. 242
(b) Stature 243
(c) Weight 243
(d) Index of build 244
(f) Summary 244
E. Correlations between measurements 253
90. Correlations between measurements for white troops and Negro troops 253
(a) General description of tables. 253
(b) Correlation between stature and weight 254
(c) Correlation between stature and chest circumference. 256
(d) Correlation between weight and chest circumference. 258
(e) Correlation between stature and waist circumference. 258
91. Correlation between measurements for white troops 258
(a) Correlation between chest circumference and transverse diameter of pelvis between cristax 258
(b) Correlation between stature and sitting height 259
(c) Correlation between stature and height of sternal notch 259
(d) Correlation between stature and height of pubic arch 259
(e) Correlation beween stature and span 260
(f) Correlation between chest circumference and weight. 260
(g) Correlation between chest circumference and neck circumference. 260
E. Correlations between measurements-Continued.
92. Correlation between ineasurements for white troops-Continued. I'age.
(h) Correlation between transverse and antero-posterior diameters of the chest 261
(i) Correlation between chest circumference and transverse pelvic diameter. 261
(j) Correlation between waist circumference and transverse pelvic diameter. 262
(k) Correlation between arm length and forearm 262
(l) Correlation between leg length and knee height 263
(m) Correlation between leg length and waist circumference 264
93. Correlation between measurements for Negro troops 264
(a) Correlation between stature and sitting height 264
(b) Correlation between stature and height of sternal notch 265
(c) Correlation between stature and height of pubic arch 265
(d) Correlation between stature and knee height 265
(e) Correlation between stature and span. 265
(f) Correlation between chest circumference and weight $\because 65$
(g) Correlation between chest circumference and sitting lieight 266
(h) Correlation between chest circumference and neck circumference 266
(i) Correlation between transverse and antero-posterior diameters of the chest 266
(j) Correlation between chest circumference and transverse diameter of pelvis. 267
(k) Correlation letween waist circumference and transverse diameter of pelvis. 267
(l) Correlation between arm length and forearm 267
(m) Correlation between leg length and knee height 268
94. Comparison of correlation between whites and negroes 265
F. Patterns for uniforms 271
95. Measurements for blouses. 271
(a) General discussion 271
(b) Chest circumference 271
(c) Weight 272
96. Measurements for breeches. 274
97. Dimensions of manikins 276
98. Sizes and proportions of men in the distribution zones, Quartermaster Corps 276
G. Distribution of eye color 280
(a) Clear blue eyes 280
(b) Blue eyes with brown spots. 282
(c) Brown eyes. 282
(d) Eye color in eight European races 284
(e) Comparison with Civil War data 285
H. Distribution of hair color 288
(a) General discussion 288
(b) Flaxen hair 258
(c) Dark brown hair 289
(d) Red hair 259
(e) Comparison with Civil War data 291
(f) By Quartermaster Corps distribution zones 293
(g) Hair color in eight European races 293
Section II.
Height, weight, and chest circumference of recruits in relation to various diseases and defects. 296
I. Introductory 296
II. Standard of measurements of drafted men. 296
(a) Stature 296
(b) Weight 296

Height, weight, and chest circumference of recruits in relation to various diseases and
defects-Continued.
III. Physical examiuation standards... 297
(a) Stature and weight... 297
(b) Chest circumference... 238
IV. The dimensions of men with specifie defects and diseases........................ 299

1. Pulmouary tuherculosis... 299
(i) Stature... 299
(b) Weight.. 300
(c) Chest circumierence... 301
(d) Rohnstness... 301
2. Simple goiter... . . . 304
(a) Stature. 304

(c) Chest circumierence... 305

3. Exophthalmic goiter... 308
(il) Stature . 308
(b) Weight.. 308
(c) Chest circumference.. 309

4. Муоріа... 314
(a) Stature. 314
(b) Weight.. 314
(c) Chest circuinference... 315

(a) Stature. 315
(b) Weight... 318
(c) Chest circumference.. 318

5. Astigmatism. 319
(a) Stature. 319

(c) Chest circumference... 322
(d) Robustness... 322
6. Hypertrophic tonsillitis . 323
(a) Stature.. . . . 323
(b) Weight... 323
(c) Chest circumference... 326

7. Tachycardia, simple.. 327
(a) Stature. 327
(b) Weight.,.. 330
(c) Chest circumference.. 330
(d) Robustness.. 331

(a) Stature. 331
(b) Weight.. . . . 331
(c) Chest circumference... 334
(d) Robustness.... 334
8. Mitral insufficiency. 335
(a) Stature . 335
(b) Weight. 335
(c) Chest circumference.. 338
(d) Robustness.. 338

TABLE OF CONTENTS.

I. Height, weight, and chest circumference of recruits in relation to various diseases and defecte-Continued.

1age.

IV. The dimensions of men with apecific defocts and disoasen-Continned.
 11. Mitral stenosis
 3.38

(a) Stature... 338
(b) Weight... 339
(c) Chest circumference. 339

12. Valvular diseases of the heart (unclassified)................................. 342
(a) Stature.. . . . 342
(b) Weight. 342
(c) Chest circumference. 342
(d) Robustıess........................ 345
13. Varicose veins and varicocele... 345
(a) Stature.. 345
(b) Weight. 346
(r) Chest circumferenre.. 347
(d) Robustness......................... 348

(b) Weight. 353

(d) Robustness... 356
15. Asthma.. 356

(b) Weight. 356
(c) Chest circumference.. 357

16. Defective and deficieut teetlı... 360

(b) Weight. 360

17. Hernia.. 363

(b) Weight... 364
(c) Chest circumference.. 364

(a) Stature... 369
(b) Weight. 369
(c) Chest circumference. 369
(d) Robustness... 369

(a) Stature... 370

(c) Chest circumference... . . . 370
(d) Robustness... . . . 370
20. Defective physical development. 372
(a) Stature... . . . 372

(c) Chest circumference. 375
(d) Robustness. 375

(a) Stature.. 375
(b) Weight.. 376
(c) Chest circumference. 376
(d) Robustness... 376

Height, weight, and chest circumference of recruits in relation to various diseases and
defects-Continued.
IV. The dimensions of men with specific defects and diseases-Continued. Page.
22. Overweight and obesity.. 379
(a) Stature.. 379
(b) Weight.. 379
(c) Chest circumference... 379
(d) Robustness... . . 379
23. Cryptorchidism, hypospadia. anorchisu, and monorchism 379
(a) Stature... 379
(b) Weight.. 382
(c) Chest circumference.. 382
(d) Robustness.. 382
V. Summary: Bodily dimensions in relation to diseases......................... 382

References... 413

LIST OF 'TABLES IN TEX'T.

2. Ages of soldiers (officers and men) serving in the Civil and World War................. 64
3. Average stature of European males of various countries. 68
4. Stature, its mean standard deviation and coeflicient of variation for men (and in part
for women also) for certain especially studied groups................................. 69

7. Stature of Army conscripts and recruits, in inches, as determined by Laplace-Charlier
frequency curves...
8. (alculated frequency distribution of statures of men of the United States (Civil War
period), France, Belgium, and Italy.. 71

10. Mean stature at each age, 18 to 25 years, United States Army recruits, 1906-1915. 73
11. Distribution of stature and weight, draft recruits, 1917-1918........................... 74
12. Distribution of stature and weight in 6,359 American-born Civil War draft recruits... 74
13. Mean height by States, first million draft recruits; States arranged in order of standing,
with proportional weight and chest circumference (expiration) for each inch of
height..
14. Mean stature by States, of soldiers at demobilization, 1919............................ 76
15. Increase in stature of soldiers at demobilization, 1919, over stature of recruits, 1917-1918. 76
16. Comparison of stature, in inches, of native and foreign-born white and colored draft
recruits, United States, 1917-1918, and white recruits of the Civil War............. 79

18. List of counties comprised in each "section".. 88
19. Consolidation of similar sections; the series and their constituent groups............... 98
20. Consolidation of similar sections; the groups and their composition out of sections..... 98
21. Mean height by sections; sections arranged in order of standing, with proportional
weight and chest circumference (expiration) for each inch of height; also the standard
deviation for each height; first million draft recruits.................................... 101
22. Mean height by groups of sections; groups arranged in order of standing, with propor-
tional weight and chest circumference (expiration) for each inch of height; also the
standard deviation for each height; first million draft recruits........................ 108
Table. I'age.
23. Height distribution shown by groups of sections, first million draft recruits 109
Section A: Absolute numbers 109
Section 13: Ratios per 1,000 109
24. The mean stature and standard deviation in each of eight European races 113
25. Comparative frequency distribution of height in each of eight European races, demo- bilization, 1919 116
Section A: Absolute numbers. 116
Section B: Proportional ration per 1,000 116
26 . The mean stature in five color races, demobilization, 1919 117
27. Weights associated with statures, with the standard deviations and the coefficient of variation for each, in various classes of American males. 118
28. Average weight of adult males of various nationalities. 120
29. Frequency distribution of various classes of weight (per mille) at molilization, 1917-1918, and demobilization, 1919 121
30. Average weight, by States, at mobilization, 1917-1918, and demobilization, 1919 (in pounds); States arranged in order of standing, with proportional weight for each inch of height, and chest circumference (expiration) for each pound of weight for the first million draft recruits. 122
31. States arranged in order of difference of weight at mobilization, 1917-1918, and demobili- zation, 1919 123
32. Comparative view of mean height and mean weight of men from different States: (a) first million draft recruits (white and colored), 1917-1918; (b) 100,000 demobilized troops (white and colored), 1919; and (c) mean height for Civil War volunteer recruits 124
33. Mean weight by section; sections arranged in order of standing, with proportional weight for each inch of height and chest circumference (expiration) for each pound of weight; also the standard deviation for each weight; first million draft recruits. 125
34. Mean weight by groups of sections; groups arranged in order of standing, with propor- tional weight for each inch of height and chest circumference (expiration) for each pound of weight; also the standard deviation for each weight; first million draft recruits 132
35. Weight distribution shown by groups of sections, first million draft recruits. 133
Section A: Absolute numbers 133
Section 13: Ratios per 1,000 134
36. Mean weight and standard deviation in each of eight European races. 135
37. Comparative frequency distribution of weight in each of eight European races, demo- bilization, 1919 135
Section A: Absolute numbers. 135
Section B: Proportional ratios per 1,000 135
38. Mean weight in five color races, with the standard deviation for the white and Negro troops, demobilization, 1919 136
39. Frequency and proportional distribution of chest circumference (expiration) at mobili- zation, 1917-1918, and of chest circumference (at rest) at demobilization, 1919. 139
40. Mean chest circumference (expiration), by States; States arranged in order of standing, with proportional chest circumference (at expiration) in inches for each inch of height and each pound of weight; also the proportional weight in pounds for each inch of chest circumference; first million draft recruits. 142
41. Chest circumference (expiration) native American white draft recruits of the Civil War. 142
42. Relative chest circumference (mean chest circumference divided by mean stature), by States, arranged in order of standing; first million draft recruits. 144
43. Mean chest circumference (expiration) by sections; sections arranged in order of standing, with proportional chest circumference (expiration) in inches for each inch of height and each pound of weight; also the standard deviation for each chest cir- cumference; first million draft recruits. 14.5
Table. Page.
44. The standard deviation of chest circumference (expiration) by sections, arranged in order of standing; first million draft recruits. 148
45. Mean chest circumference (expiration) by groups of sections; groups arranged in order of standing, with proportional chest circumference (expiration) in inches for each inch of height and each pound of weight; also the standard deviation for each chest circumference; first million draft recruits 150
46. Relative chest circumference, by groups of sections (chest circumference divided by stature), first million draft recruits 150
47. Distribution of chest circumference (expiration) shown by groups of sections, first million draft recruits 151
Section A: Absolute numbers. 151
Section B: Ratios per 1,000 152
48. Absolute and relative chest circumference (at rest) of eight European races, with standard deviation and the coefficient of variation for each, demobilization, 1919, (cms.) 154
49. Comparative frequency distribution of chest circumference (rest) in each of eight European races, demobilization, 1919 155
Section A: Absolute numbers 155
Section B: Proportional ratios per 1,000 155
50. Mean and relative chest circumference (rest), white and Negro troops, demobilization, 1919 (cms.). 156
51. Various heights, weights, and chest circumference (expiration), shown for the United States, with rates per 1,000 of each first million draft recruits. 157
52. Height and weight classes; mean weight and standard deviation for each height; also the mean height and standard deviation for each weight; derived from summation of sections (Table I), first million draft recruits; height in inches and weight in pounds. 158
53. Height and chest circumference (expiration) classes; mean chest circumference (ex- piration) and the standard deviation for each height; also the mean height and the standard deviation for each chest circumference; derived from summation of sections (Table II), first million draft recruits; chest circumference and height in inches.. 158
54. Weight and chest circumference (expiration) classes; mean chest circumference (expi- ration) and the standard deviation, for each weight; also the mean weight and the standard deviation for each chest circumference; derived from summation of sec- tions (Table III), first million draft recruits; weight in pounds and chest circum- ference in inches. 162
55. Index of build calculated by three methods (based on Table I, first million draft re- cruits); modal weight used 164
56. Index of build calculated by three methods (based on Table I, first million draft recruits); average weight used 164
57. Index of build, Civil War veterans (white troops) and World War veterans (white and Negro troops) 165
58. Index of build at mobilization by States, 1917-1918. 166
59. Index of build at demobilization, by States, 1919. 167
60. Increase in index of build at demobilization, 1919, over mobilization, 1917-1918... 168
61. Comparison of index of build of men at demobilization in 1865 and 1919 (weight divided by the first power of height) 170
62. Comparison of index of build of men at demobilization, 1865 and 1919 (weight multi- plied by 1,000 divided by the square of height). 170
63. Index of build of recruits by sections, 1917-1918 172
64. Index of build by groups of sections, 1917-1918. 173
65. Index of build of eight races (weight multiplied by 1,000 divided by the square of the height) 173
Table. Page.
66. Index of build of color races (weight multiplied by 1,000 divided by the aquare of the height) 174
67. Comparison of Pignet's index for men of various heights, with average chest and weight for certain percentages of the men of each height 188
68. Absolute and relative sitting heights, with standard deviations and the crefficient of variations in eight races, demobilization, 1919 191
69. Comparative frequency distribution of sitting height in each of eight European races. 192
Section A: Absolute numbers. 192
Section B: Ratios per 1,000 192
70. Absolute and relative sitting height in five color races, demobilization, 1919. 193
71. Absolute and relative span, with the standard deviation in eight European races, demobilization, 1919 194
72. Comparative frequency distribution of span in each of eight European races, demohi- lization, 1919 195
Section A: Absolute numbers. 195
Section B: Ratio per 1,000. 195
73. Absolute and relative span in five color races, demobilization, 1919. 196
74. Absolute and relative height of sternal notch in eight European races, demobilization, 1919 197
75. Comparative frequency distribution of height of sternal notch in earh of eight European races, demobilization, 1919. 198
Section A: Absolute numbers. 198
Section B: Ratios per 1,000 198
76. Absolute and relative height of sternal notch in five color races, demobilization, 1919. 199
77. Absolute and relative height of pubic arch in eight European races, demobilization, 1919 200
78. Comparative frequency distribution of height of pubic arch in each of eight races, demobilization, 1919 201
Section A: Absolute numbers 201
Section B: Proportional ratios per 1,000 201
79. Absolute and relative height of pubic arch in five color races, demobilization, 1919. 202
80. Absolute and relative neck circumference of white and Negro troops, demobilization, 1919. 203
81. Absolute and relative shoulder breadth with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919. 206
82. Comparative frequency distribution of shoulder breadth in earh of eight European races, demobilization, 1919. 206
Section A: Absolute numbers. 206
Section B: Proportional ratios per 1,000 206
83. Absolute and relative shoulder breadth in five color races, demohilization, 1919 207
84. Thoracic index of various races (from Martin, 1914, p. 277) 209
85. Absolute and relative transverse diameter of the chest with the standard deviation; also antero-posterior diameter of the chest; with the thoracic index multiplied by 1,000 (transverse diameter divided by the antero-posterior diameter) in eight European races; demobilization, 1919 210
86. Comparative frequency distribution of the transverse diameter of the chest in each of eight European races. 211
Section A: Absolute numbers 211
Section B: Proportional ratios per 1,000 211
87. Comparative frequency distribution of antero-posterior diameter of the chest in each of eight Eurupean races, demohilization, 1919 212
Section A. Alsolute numbers. 212
Section B. Propmrtional ratios per 1,000 212
Table. l'age.
88. Absolute and relative waist circumference, with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919 214
89. Comparative frequency distribution of waist circumference in each of eight European races, demobilization, 1919 214
Section A: Absolute numbers. 214
Section B: Proportional ratios per 1,000 214
90. Absolute transverse diameter of the pelvis by sections, demobilization, 1865 216
91. Absolute and relative transverse pelvic diameter, with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919. 217
92. Comparative frequency distribution of transverse pelvic diameter in each of eight Euro- pean races, demobilization, 1919 218
Section A: Absolute numbers. 218
Section B: Proportional ratios per 1,000 218
93. Absolute and relative transverse diameter of the pelvis in five color races, demobilization, 1919 219
94. Absolute and relative leg length with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919 222
95. Comparative frequency distribution of leg length in each of eight European races, demobilization, 1919 223
Section A: Absolute numbers. 223
Section B: Proportional ratios per 1,000 223
96. Absolute and relative leg length in five color races, demobilization, 1919 224
97. Absolute and relative knee height with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919 225
98. Comparative frequency distribution of knee height in each of eight European races, demobilization, 1919 226
Section A: Absolute numbers. 226
Section B: Proportional ratios per 1,000 226
99. Absolute and relative thigh circumference with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919 228
100. Comparative frequency distribution of thigh circumference in each of eight European races, demobilization, 1919 229
Section A: Absolute numbers. 229
Section B: Proportional ratios per 1,000 229
101. Absolute and relative calf circumference with the standard deviation, and the coefficient of variation in eight European races, demobilization, 1919 231
102. Comparative frequency distribution of calf circumference in each of eight European races, demobilization, 1919 231
Section A: Absolute numbers. 231
Section B: Proportional ratios per 1,000 231
103. Summary of dimensions of approximately 100,000 white troops, demobilization, 1919 234
104. Summary of dimensions of approximately 6,000 colored troops, demobilization, $1919 \ldots$ 234
105. Average dimension in color races, demobilization, 1919 235
106. Relative dimensions in color races, demobilization, 1919. Percentage rates. 235
107. Comparative frequency distribution of measurements in color races at demobilization, 1919. 236
Section A: Stature 236
Section B: Weight 236
Section C: Span. 237
Section D: Height of sternal notch 237
Section E: Sitting height 238
Section F: Height of pubic arch 238
Section G: Leg length 239
Section H: Knee height 239
Section I: Shoulder breadth 240
Section J: Transverse pelvic diameter. 240
Table. J'age.
105. Approximate number of men measured in eight races, demobilization, 1919 242
105. Comparative measurements at demobilization, Civil and World War, white and colored troops. 24.3
110. Absolute dimensions in eight races, demobilization, 1919 24.3
111. Index of build in eight European races, obtained by dividing the weight by the stature, and also by the square of the stature, demobilization, 1919 244
112. Relative dimensions in eight races, demobilization, 1919 245
113. Comparative weight (in pounds) of men of different statures, among white soldiers of 1865, at demobilization, and white and colored soldiers at demobilization, 1919. 254
114. Correlation between stature and chest circumference, Civil War recruits (Baxter II, p. 166). 256
115. Correlation between stature and chest circumference, recruits, 1917-1918 256
116. Correlations, summary for white and colored troops, demobilization, 1919 269
117. Dimensions associated with the "blouse" groups-white troops, demobilization, 1919. 273
118. Dinensions associated with the "blouse" groups-colored troops, demobilization, 1919. 273
119. Dimensions associated with the "brecches" groups-white troops, demobilization, 1919.. 274
120. Dimensions associated with the "brecches" groups-colored troops, clemobilization, 1919. 275
121. "Blouse" and "brecches" groups, white and Negro troops; designation of each group; basic measurements adopted; and proportional number of each group of the total number of men measured at demobilization. 275
122. Dimensions of 21 manikins, in centimeters-white troops. 276
123. Absolute and relative number of veterans with clear blue eyes, by States of nativity, in order of incidence, demobilization, 1919 281
124. Absolute and relative number of veterans with blue eyes with brown spots, by States of nativity, in order of incidence, demobilization, 1919 282
125. Absolute and relative number of veterans with light brown eyes, by States of nativity, in order of incidence, demobilization, 1919 283
126. Absolute and relative number of veterans with dark broun eyes, by States of nativity, in order of incidence, demobilization, 1919 253
127. Comparative frequency distribution of cye color in each of eight European races, demo- bilization, 1919 284
Section A: Absolute numbers. 284
Section B: Race distribution per 1,000 of each eye color 284
Section C: Eye color distribution per 1,000 of each race. 284
128. Color of eyes-proportional number for different States in 1865 285
129. Color of eyes-proportional number for different nativities in the United States, 1865. 285
130. Comparative frequency distribution of eye color by Quartermaster Corps distribution zones, based on nativity of demobilized troops, 1919 287
Section A: Absolute numbers 287
Section B: Eye color distribution per 1,000 of each zone 287
131. Absolute and relative number of veterans with flaxen hair, by States of nativity, in order of incidence, demobilization, 1919. 288
132. Absolute and relative number of veterans with red hair, by States of nativity, in order of incidence, demobilization, 1919 289
133. Absolute and relative number of veterans with light broun hair, by States of nativity, in order of incidence, demobilization, 1919 290
134. Absolute and relative number of veterans with medium broun hair, by States of nativity, in order of incidence, demobilization, 1919 290
135. Absolute and relative number of veterans with dark broun hair, by States of nativity, in order of incidence, demobilization, 1919 291
136. Comparative frequency distribution of hair color in each of eight races, demobilization, 1919 292
Section A: Absolute numbers 292
Section 13: Hair color, distribution per 1,000 of each race. 292
Table. Page.
137. Comparative frequency distribution of hair color by Quartermaster Corps distribution zones, based on nativity of demobilized troops. 294
Section A: Absolute numbers. 294
Section B: Hair color, distribution per 1,000 of eacl zone 294
138. Standards, height, weight, chest circumference and mobility of chest, adopted for draft recruits, United States Army, 1917 297
139. Correlation between height and weight in recruits with tuberculosis, pulmonary, first and second million draft recruits. 302
140. Correlation between height and chest circumference (expiration) in recruits with tuberculosis, pulmonary, first and second million draft recriits. 303
141. Correlation between height and weight in recruits with goiter, simple, first and second million draft recruits. 306
142. Correlation between height and chest circumference (expiration) in recruits with goiter, simple, first and second million draft recruits. 307
143. Correlation between height and weight in recruits with exophthalmic goiter, first and second million draft recruits. 310
144. Correlation between height and chest circumference (expiration) in recruits with exophthalmic goiter, first and second million draft recruits. 311
145. Correlation between height and weight in recruits with myopia, first and second million draft recruits. 312
146. Correlation between height and chest circumference (expiration) in recruits with myopia, first and second million draft recruits. 313
147. Correlation between height and weight in recruits with hyperopia, first and second million draft recruits. 316
148. Correlation between height and chest circumference (expiration) in recruits with hyperopia, first and second million draft recruits 317
149. Correlation between height and weight in recruits with astigmatism, first and second million draft recruits. 321
150. Correlation between height and chest circumference (expiration) in recruits with astigmatism, first and second million draft recruits. 322
151. Correlation between height and weight in recruits with tonsillitis, hypertrophic, first and second million draft recruits. 324
152. Correlation between height and chest circumference (expiration) in recruits with tonsillitis, hypertrophic, first and second million draft recruits 325
153. Correlation between height and weight in recruits with tachycardia, first and second million draft recruits. 328
154. Correlation between height and chest circumference (expiration) in recruits with tachycardia, first and second million draft recruits. 329
155. Correlation between height and weight in recruits with cardiac hypertrophy, first and second million draft recruits. 332
156. Correlation between height and chest circumference (expiration) in recruits with cardiac hypertrophy, first and second million draft recruits. 333
157. Correlation between height and weight in recruits with mitral insufficiency, first and second million draft recruits. 336
158. Correlation between height and chest circumference (expiration) in recruits with mitral insufficiency, first and second million draft recruits 337
159. Correlation between height and weight in recruits with mitral stenosis, first and second million draft recruits 340
160. Correlation between height and chest circumference (expiration) in recruits with mitial $3 n$. sis, first and second million draft recruits. 341
161. Correla or etween height and weight in recruits with valvular diseases of the heart (unclasizud), first and second million draft recruits. 343
162. Correlation between height and chest circumference (expiration) in recruits with valvular diseases of the heart (unclassified), first and second million draft recruits. 344
Table. 「age.
163. Correlation between height and weight in recruits with varicose veins, first and second million draft recruits. 349
164. Correlation between height and chest circumference (expiration) in recruits with varicose veins, first and second million draft recruits. 350
165. Correlation between height and weight in recruits with varicocele, first and second million draft recruits. 351
166. Correlation between height and chest circumference (expiration) in recruits with varicocele, first and second million draft recruits. 352
167. Correlation between height and weight in recruits with hemorrhoids, first and second million draft recruits 354
168. Correlation between height and chest circumference (expiration) in recruits with hemorrhoids, first and second million draft recruits. 355
169. Correlation between height and weight in recruits with asthma, first and second million draft recruits 358
170. Correlation between height and chest circumference (expiration) in recruits with asthma, first and second million draft recruits. 359
171. Correlation between height and weight in recruits with defective and deficient teeth, first and second million draft recruits. 361
172. Correlation between height and chest circumference (expiration) in recruits with defective and deficient teeth, first and second million draft recruits. 362
173. Correlation between height and weight in recruits with hernia, first and second million draft recruits. 365
174. Correlation between height and chest circumference (expiration) in recruits with hernia, first and second million draft recruits. 366
175. Correlation between height and weight in recruits with enlarged inguinal rings, first and second million draft recruits. 367
176. Correlation between height and chest circumference (expiration) in recruits with enlarged inguinal rings, first and second million draft recruits. 368
177. Correlation between height and weight in recruits with flat-foot, first and second million draft recruits. 371
178. Correlation between height and weight in recruits with defective physical development, first and second million draft recruits. 373
179. Correlation between height and chest circumference (expiration) in recruits with defective physical development, first and second million draft recruits 374
180. Correlation between height and weight in recruits with underveight, first and second million draft recruits. 377
181. Correlation between height and chest circumference (expiration) in recruits with underveight, first and second million draft recruits. 378
182. Correlation between height and weight in recruits with cryplorchidism, hypospadia, anorchism, and monorchism, first and second million draft recruits. 380
183. Correlation between height and chest circumference (expiration) in recruits with cryplorchidism, hypospadia, anorchism, and monorchism, first and second million draft recruits. 381
184. Height distribution by special diseases or defects for first and second million draft recruits. 398
Section A: Absolute numbers. 398
Section B: Ratios per 1,000 399
185. Weight distribution by special diseases or defects for first and second million draft recruits. 400
Section A: Absolute numbers 400
Section B: Ratios per 1,000 401
186. Thest circumference (expiration) distribution by special diseases or defects for first and second million draft recruits 402
Section A: Absolute numbers. 402
Section 13: Ratios per 1,000 403

Table.
187. Summary of mean dimensions, height, weight, and chest circumference (expiration), for men found with certain diseases or defects shown for the first and second million draft recruits separately, as well as for the combination of the two; standard deviation with the probable error for each; the coefficient of variation and the probable error for each; also the correlation between height and weight, and height and chest with the probable error for each.

188. The mean stature and weight of recruits found with the specific diseases and defects
among the first and second million draft recruits, arranged in the descending order
of the means.
189. The index of build (weight multiplied by 1,000 , divided by the stature squared) and Pignet's index of recruits found with the specific diseases and defects, arranged in order of standing, first and second million draft recruits 408
190. Variability (standard deviation and coefficient of variability) of stature associated with various defects and diseases, first and second million draft recruits. 409
191. Variability (standard deviation and coefficient of variability) of weight associated with various diseases and defects among the first and second million draft recruits, arranged in descending order of size 409
192. Relative weight (weight divided by the height) and relative chest circumference (chest circumference at expiration divided by the height and also by the weight) for men found with special defects and diseases in the first and second million draft recruits, 1917-1918. 410
193. Table for converting centimeters into inches 410
194. Table for converting inches into centimeters. 411
LIST OF TABLES IN APPENDIX.
Table.I. Correlation between height and weight for first million draft recruits.417
Section A: Absolute numbers derived from summation of sections (weight in pounds and height in inches) 417
Section B: Ratios per 1,000 of the separate weights shown for each height (weight in pounds and height in inches). 418
Section C: Ratios per 1,000 of the separate heights shown for each weight (height in inches and weight in pounds) 419
II. Correlation between height and chest circumference (expiration), first million draft recruits. 420
Section A: Absolute numbers derived from summation of sections (chest in inches and height in inches) 420
Section I3: Ratios per 1,000 of the separate chest measurements to each height (chest in inches and height in inches) 421
Section C: Ratios per 1,000 of the separate heights to each chest measure- ment (height in inches and chest in inches) 421
III. Correlation between weight and chest circumference (expiration), first million draft recruits. 422
Section A: Absolute numbers derived from summation of sections (weight. in pounds and chest in inches) 422
Section B: Ratios per 1,000 of the separate weights to each chest measure- ment (weight in pounds and chest in inches). 422
Section C: Ratios per 1,000 of the separate chest measurements to earh weight (chest in inches and weight in pounds) 423
IV. Mean height loy groups and component sections, arranged in order of standing, with proportional weight and chest circumference (expiration) for each inch of height; also standard deviation for each height, first million draft recruits (height and chest in inches and weight in pounds). 424
Table. I'age.
V. Mean weight by groups and component sections, arranged in order of standing. with proportional weight for each inch of height, and chest circmmference (expiration) for each pound of weight; also standard deviation for each weight, first million draft recruits (height and chest in inches and wright in pounds) 430
VI. Mean chest by groups and component sections, arranged in order of standing, with proportional chest circumference (expiration) for each inch of height

- and each pound of weight; also standard deviation for each chest measure- ment, first million draft recruits (height and chest in inches and weight in pounds) 436
VII. Correlation between height and weight, group 1, agrimultural-North, native white $7.3 \%+$ first million draft recruits (weight in pounds and height in inches). 442
VIII. Correlation between height and chest circumference (expiration), group 1, agricultural-North, native white $73 \%+$ first million draft recruits (chest in inches and height in inches). 443
IX. Correlation between weight and chest circumference (expiration), group 1, agricultural-North, native white $73 \%+$, first million draft recruits (weight in pounds) 444
X. Correlation between height and weight, group 2, agricultural-mixed foreign and native white, North, first million draft recruits (weight in pounds and height in inches) 445
XI. Correlation between height and chest circumference (expiration), group $\stackrel{2}{ }$, agricultural, mixed foreign and native uhite, North, first million draft recruits (chest in inches and height in inches). 446
zil. Correlation between weight and chest circumference (expiration), group 2. agricultural, mixed foreign and native uhite, North, first million draft recruits (weight in pounds and chest circumference in inches). 447
XIII. Correlation between height and weight, group 3, agricultural, native uhite, South, first million draft recruits (weight in pounds and height in inches). 448
XIV. Correlation between height and chest circumference (expiration), group 8 , agricultural, native white, South, first million draft recruits (chest in inches) 449
XV. Correlation between weight and chest circumference (expiration), group S, agricultural, native white, South, first million draft recruits (weight in pounds and chest circumference in inches). 450
XVI. Correlation between height and weight, group 4, agricultural, Negro, $45 \%+$ first million draft recruits (weight in pounds and height in inches). 451
XVII. Correlation between height and chest circumference (expiration), group 4. agricultural, Negro, 45% +, first million draft recruits (chest in inches) 453
XVIII. Correlation between weight and clest circumference (expiration), group 4, agricultural, Negro, $45 \%+$, first million draft recruits (weight in pounds). 453
NIS. Correlation between height and weight, group 5, castern manufacturing, first million draft recruits (weight in pounds and height in inches) 454
XX. Correlation between height and chest circumference (expiration), group 5. casterir manufacturing, first million draft recruits (chest in inches and height in inches) 455
NXI. 'orrelation between weight and chest circumference (expiration), group is. eastern manufacturing, first million draft recruits (weight in pounds and chest circumference in inches) 456
XXII. Correlation between height and weight, group 6 , commuter, first millinn draft recruits (weight in pounds and height in inches) 457
XXIII. Correlation between height and chest circumference (expiration), group 6, commuter, first million draft recruits (chest in inches and height in inches).. 458
XXIV. Correlation between weight and chest circumference (expiration), group 6. commuter, first million draft recruits (weight in pounds and chest circumfer- ence in inches) 459
Table. Page.
XXV. Correlation between height and weight, group 7, mining, first million draft recruits (weight in pounds and height in inches) 460
XXVI. Correlation between height and chest circumference (expiration), group 7, mining, first million draft recruits (chest in inches and height in inches). 461
XXVII. Correlation between weight and chest circumference (expiration), group 7, mining, first million draft recruits (weight in pounds and chest circum- ference in inches). 462
XXVIII. Correlation between height and weight, group 8 , sparsely settled, not more than 3 per square mile, first million draft recruits (weight in pounds and height in inches) 463
XXIX. Correlation between height and chest circumference (expiration), group 8, sparsely settled, not more than 3 per square mile, first million draft recruits (chest in inches and height in inches) 464
XXX. Correlation between weight and chest circumference (expiration), group 8 , sparsely settled, not more than i per square mile, first million draft recruits (weight in pounds and chest circumference in inches) 465
XXXI. Correlation between height and weight, group 9, desert, first million draft recruits (weight in pounds and height in inches) 466
XXXII. Correlation between height and chest circumference (expiration), group 9, desert, first million draft recruits (chest in inches and height in inches). 467
XXXIII. Correlation between weight and chest circumference (expiration), group 9, desert, first million draft recruits (weight in pounds and chest circumference in inches) 468
XXXIV. Correlation between height and weight, group 10 , maritime, first million draft recruits (weight in pounds and height in inches). 469
XXXV. Correlation between height and chest circumference (expiration), group 10, maritime, first million draft recruits (chest in inches and height in inches). 470
XXXVI. Correlation between weight and chest circumference (expiration), group 10, maritime, first million draft recruits (weight in pounds and chest circum- ferenceininches) 471
XXXVII. Correlation between height and weight, group 11, mountain, first million draft recruits (weight in pounds and height in inches) 472
XXXVIII. Correlation between height and chest circumference (expiration), group 11, mountain, first million draft recruits (chest in inches and height in inches). 473
XXXIX. Correlation between weight and chest circumference (expiration), group 11, mountain, first million draft recruits (weight in pounds and chest circum- ference in inches). 474
XL. Correlation between height and weight, group 12 , mountain whites, first mil- lion draft recruits (weight in pounds and height in inches) 475
XLI. Correlation between height and chest circumference (expiration), group 12, mountain whites, first million draft recruits (chest in inches and height in inches). 476
XLII. Correlation between weight and chest circumference (expiration), group 12, mountain whites, first million draft recruits (weight in pounds and chest in inches) 477
XLIII. Correlation between height and weight, group 13, Indian, sparsely settled, first million draft recruits (weight in pounds and height in inches) 478
XLIV. Correlation between height and chest circumference (expiration), group 13, Indian, sparsely settled, first million draft recruits (chest in inches and height in inches). 479
XLV. Correlation between weight and chest circumference (expiration), group 1s, Indian, sparsely settled, first million draft recruits (weight in pounds and chest circumference in inches) 480
XLVI. Correlation between height and weight, group 14, Mexican, sparsely settled, first million draft recruits (weight in pounds and height in inches) 481
Table.Page.
XINII. Correlation between height and chest circumference (expiration), group 1f, Mexican, sparsely settled, first million draft recruits (chest in inches and height in inches) 482
XIVIII. Correlation between weight and chest circumference (expiration) group 14, Mexican, sparsely settled, first million draft recruits (weight in pounds and chest circumference in inches) 483
XIII. Correlation between height and weight, group 15, native whites of Scotch origin, first million draft recruits (weight in pounds and height in inches) 484
L. Correlation between height and chest circumference (expiration), group 15, native whites of Scotch origin, first million draft recruits (chest in inches and height in inches) 485
L.I. Correlation between weight and chest circumference (expiration), group 15, native whites of Scotch origin, first million draft recruits (weight in pounds and chest circumference in inches) 486
III. Correlation between height and weight, group 16, Russian $10 \%+$, first million draft recruits (weight in pounds and height in inches) 487
LIII. Correlation between height and chest circumference (expiration), group 16, Russian $10 \%+$, first million draft recruits (chest in inches and height in inches) 488
I.IV. (orrelation between weight and chest circumference (expiration), group 16, Russian $10 \%+$, first million draft recruits (weight in pounds and chest cir- cumference in inches) 489
IS. Correlation between height and weight, group 17, Scandinavian, 10%, first million draft recruits (weight in pounds and height in inches) 490
IVI. Correlation between height and chest circumference (expiration), group 1%, Scandinavian, 10%, first million draft recruits (chest in inches and height in inches) 491
LVII. Correlation between weight and chest circumference (expiration), group 17, Scandinarian, 10%, first million draft recruits (weight in pounds and chest circumference in inches) 492
I.VIII. Correlation between height and weight, group 18, Finn, 10%, first million draft recruits (weight in pounds and height in inches) 493
IMIX. Correlation between height and chest circumference (expiration), group 18 , Finn, 10%, first million draft recruits (chest in inches and height in inches) 494
I,X. Correlation between weight and chest circumference (expiration), group 18, Finn, 10%, first million draft recruits (weight in pounds and chest circum- ference in inches) 495
LXI. Correlation between height and weight, group 19, French Canadian, 10%, first million draft recruits (weight in pounds and height in inches) 496
IXXII. Correlation between height and chest circumference (expiration), group 19, French Canadian, 10%, first million draft recruits (chest in inches and height in inches) 497
LXIII. Correlation between weight and chest circumference (expiration), group 19, French Canadian, 10%, first million draft recruits (weight in pounds and chest circumference in inches) 498
T.XIV. Correlation between height and weight, group 20, German and Scandinaviam, $10 \%+$, first million draft recruits (weight in pounds and height in inches). 499
IXV. Correlation between height and chest circumference (expiration), group 20, German and Scandinavian, $10 \%+$, first million draft recruits (chest in inches and height in inches) 500
IXVI. Correlation between weight and chest circumference (expiration), group 20, German and Scandinavian, $10 \%+$, first million draft recruits (weight in pounds and chest circumference in inches) 501
LXVII. Correlation between height and weight, group 21, German and Austriun, $20 \%+$, first million draft recruits (weight in pounds and height in inches). 502
Table. Page.
I,XVIII. Correlation between height and chest circumference (expiration), group 21, German and Austrian, $20 \%+$, first million draft recruits (chest in inches and height in inches) 503
I,XIX. Correlation between weight and chest circumference (expiration), group 21, German and Austrian, 20%, first million draft recruits (weight in pounds and chest circumference in inches) 504
LXX. Correlation between height and weight, group 22, German and Austrian, $15 \%+$, first million draft recruits (weight in pounds and height in inches). 505
LXXI. Correlation between height and chest circumference (expiration), group 22, German and Austrian, $15 \%+$, first million draft recruits (chest in inches and height in inches) 506
LXXXII. Correlation between weight and chest circumference (expiration), group 22, German and Austrizn, $15 \%+$, first million draft recruits (weight in pounds and chest circumference in inches) 507
LXXIII. Comparative frequency distribution of color races by Quartermaster Corps dis- tribution zones, demobilization. 507
1.NXIV. Correlation between height and weight in white and colored troops, demobiliza- tion (weight in pounds and height in centimeters) 508
I.XXV. Correlation between height and waist circumference, white and colored troops, demobilization (height in centimeters and waist in centimeters) 509
IXXVI. Correlation between leg length and knee height, white troops, demobilization (leg length in centimeters and knee height in centimeters) 510
LXXVII. Correlation between chest circumference (rest) and weight, white troops, demobi- lization (chest circumference in centimeters and weight in pounds). 511
LXXVIII. Correlation between chest circumference (rest) and neck circumference, white troops, demobilization (chest circumference (rest) in centimeters and neck circumference in centimeters) 512
LXXIX. Correlation between chest circumference (rest) and transverse pelvic diameter, white troops, demobilization (chest circumference (rest) in centimeters and transverse pelvic diameter in centimeters). 513
LXXX. Correlation between chest transverse and chest antero-posterior, white troops, demobilization (chest transverse in centimeters and chest antero-posterior in centimeters) 514
IXXXI. ('orrelation between waist circumference and transverse pelvis, white troops, demobilization (waist circumference in centimeters and transverse pelvis in centimeters) 515
1,XXXII. Correlation between length of arm and forearm, white troops, demobilization (arm length in centimeters and forearm in centimeters). 516
I,XXXIII. Correlation between height and sitting height, white troops, demobilization (height in centimeters and sitting height in centimeters) 517
LXXXXIV. Correlation between height and span, white troops, demobilization (height in centimeters and span in centimeters) 518
LXXXV. Correlation between height and sternal notch, white troops, demobilization (height in centimeters and sternal notch in centimeters) 518
IXXXVI. Correlation between height and height of pubic arch, white troops, demobilization (height in centimeters and pubic arch in centimeters) 520
LXXXVII. Correlation between height and sitting height, colored troops, demobilization (height in centimeters and sitting height in centimeters) 521
I/XXXVIII. Correlation between height and span, colored troops, demobilization (height in centimeters and span in centimeters) 522
LXXXIX. Correlation between height and sternal notch, colored troops, demobilization (height in centimeters and sternal notch in centimeters). 523
XC. Correlation between height and height of pubic arch, colored troops, demobiliza- tion (height in centimeters and pubic height in centimeters). 524
Pable. rage.
XCI. Correlation between height and knee height, colored troops, demobilization (height in centimeters and knee height in centimeters) 525
XCII. Correlation between leg length and knee height, colored troops, demobilization (leg length in centimeters and knee height in centimeters) 526
XCIII. Correlation between chest circumference (rest) and weight, colored troops, demobilization (chest circumference (rest) in centimeters and weight in pounds) 526
XCIV. Correlation between chest circumference (rest) and neck circumference, colored troops, demobilization (chest circumference (rest) in centimeters and neck circumference in centimeters) 227
XCV. Sorrelation between chest circumference (rest) and transverse pelvis, colored troops, demobilization (chest circumference in centimeters and transverse pelvisin centimeters) 528
XCVI. Correlation between chest transverse and chest antero-posterior, colored troops, demobilization (chest transverse in centimeters and chest antero-posterior in centimeters) 529
XCVII. Correlation between waist circumference and transverse diameter of pelvis, col- ored troops, demobilization (waist circumference in centimeters and trans- verse pelvis in centimeters) 530
XCVIII. (Jorrelation between arm length and forearm, colored troops, demobilization (arm length in centimeters and forearm in centimeters). 531
XCLX. Correlation between chest circumference and sitting height, white troops, demohil- ization (bases of construction of blouse groups shown by double lines) (sitting height in centimeters and chest circumference in centimeters) 532
C. Association between blouse groups and weight, white troops, demobilization (chest circumference (rest) in centimeters and weight in pounds) 533
CI. Association between blouse groups and shoulder width, white troops, demobili- zation (chest circumference (rest) in centimeters and shoulder width in centimeters) 534
(:II. Association between blouse groups and chest transverse diameter, white troops, demobilization (chest circumference (rest) in centimeters and chest trans- verse in centimeters) 535
CIIl. Association between blouse groups and chest diameter, antero-posterior, white troops, demobilization (chest circumference (rest) in centimeters and chest antero-posterior in centimeters) 536
CIV. Association between blouse groups and transverse pelvic diameter, white troops, demobilization (chest circumference (rest) in centimeters and transverse pelvic diameter in centimeters) 537
CV. Association between blouse groups and neck circumference, white troops, demobilization (chest circumference (rest) in centimeters and neck cir- cumference in centimeters) 538
CVI. Association between blouse groupsand total arm lengit, white troops, demobili- zation (chest circumference .(rest) in centimeters and arm length in centimeters) 539
CVII. Correlation between chest circumference (rest) and sitting height, colored troops, demobilization (sitting height in centimeters and chest circumference in centimeters) 540
CVIII. Association between blouse groups and weight, colored troops, demobilization (chest circumference (rest) in centimeters and weight in pounds) 541
CLX. Associätion between blouse groups and shoulder width, colored troops, demobili- zation (chest circumference (rest) in centimeters and shoulder width in centimeters) 542
C.. Association between blouse groups and transverse diameter of chest, colored troops, denobilization (chest circumference (rest) in centimeters and trans- verse chest in centimeters) 543
Table. 1’age.
CXI. Association between blouse groups and antero-posterior diameter of chest, col- ored troops, demobilization (chest circumference (rest) in centimeters and antero-posterior in centimeters) 544
CXII. Associàtion between blouse groups and transverse pelvic diameter, colored troops, demobilization (chest circumference (rest) in centimeters and trans- verse pelvis in centimeters). 545
CXIII. Association between blouse groups and neck circumference, colored troops, demobilization (chest circumference (rest) in centimeters and neck circum- ference in centimeters) 546
CXIV. Association between blouse groups and total arm length, colored troops, demo- bilization (chest circumference (rest) in centimeters and arm length in centimeters) 547
CXV. Correlation between waist circumference and leg length, white troops, demobili- zation (waist circumference (rest) in centimeters and leg length in centi- meters). 548
CXVI. Association between breeches groups and transverse pelvic diameter, white troops, demobilization (waist circumference in centimeters and transverse pelvis in centimeters) 549
CXVII. Association between breeches groups and knee height, white troops, demobiliza- tion (waist circumference in centimeters and knee height in centimeters).. 550
CXVIII. Association between breeches groups and thigh circumference, white troops, demobilization (waist circumference in centimeters and thigh circumfer- ence in centimeters) 551
CXIX. Association between breeches groups and suprapatella circumference, white troops, demobilization (waist circumference in centimeters and suprapatella circumference in centimeters) 552
CXX. Association between breeches groups and patella circumference, white troops, demobilization (waist circumference in centimeters and patella circumfer- ence in centimeters). 553
CXXI. Association between breeches groups and calf circumference, white troops, demobilization (waist circumference in centimeters and calf circumference in centimeters) 554
CXXII. Correlation between waist circumference and leg length, colored troops, demo- bilization (waist circumference in centimeters and leg length in centimeters)CXXIII. Association between breeches groups and transverse diameter of pelvis, coloredtroops, demobilization (waist circumference in centimeters and transversepelvis in centimeters)556
CXXIV. Association between breeches groups and knee height, colored troops, demobili- zation (waist circumference in centimeters and knee height in centimeters). 557
CXXV. Association between breeches groups and circumference of thigh, colored troops, demobilization (waist circumference in centimeters and thigh circumfer- ence in centimeters) 558
CXXVI. Association between blouse groups.and suprapatella circumference, colored troops, demobilization (waist circumference in centimeters and supra- patella circumference in centimeters) 559
CXXVII. Association between breechesgroupsand circumferenceat patella, colored troops, demobilization (waist circumference in centimeters and patella circumfer- ence in centimeters) 360
CXXVIII. Association between breeches groups and circumference of calf, colored troops, demobilization, (waist circumference in centimeters and calf circumfer- ence in centimeters) 561
CXXIX. Comparative frequency distribution of blouse groups by States of nativity, white troops, absolute numbers (chest circumference (rest) in centimeters, sitting height in centimeters) 562
Table. Page.
CXXX. Comparative frequency distribution of blouse groups by States of nativity, colored troops, absolute numbers (chest circumference (rest) in centimeters, sitting height in centimeters) 563
CXXXI. Comparative frequency distribution of breches groups by States of nativity, white troops, absolute numbers (waist circumference in centimeters, leg length in centimeters) 564
CXXXII. Comparative frequency distribution of breches groups by States of nativity, colored troops, absolute numbers (waist circumference in centimeters, leg length in centimeters) 565
CXXXIII. Comparative frequency distribution of height by States, white and colored troops, at demobilization (height in centimeters) 566
CXXXIV. Comparative frequency distribution of height by Q. M. C. distribution zones, demobilization 568
Section A: Absolute numbers. 568
Section B: Proportional number of the various heights in each 1,000 for a zone. 568
Section C: Proportional number of each 1,000 heights in the various dis- tribution zones. 569
CXXXV. Comparative frequency distribution of weight by States, white and colored troops, at demobilization (weight in pounds) 570
CXXXVI. Comparative frequency distribution of chest circumference (rest) by Q. M. C. distribution zones, white and colored troops, at demobilization 571
Section A: Absolute numbers. 571
Section B: Proportional number of the various chest circumferences (rest) to each 1,000 for a zone. 571
Section C: Proportional number of each 1,000 chest circumferences (rest) in the various distribution zones. 571
CXXXVII. Comparative frequency distribution of uaist circumference by Q. M. C. distribu- tion zones, white and colored troops, at demobilization 572
Section A: Absolute numbers. 572
Section B: Comparative number of the various circumferences to each 1,000 for a zone. 572
Section C: Proportional number of each 1,000 waist circumferences in the various distribution zones 572
CXXXVIII. Comparative frequency of eye color in the various States, nativity of demobi- lized men 573
CXXXIX. Comparative frequency of hair color in various States, nativity of demobilized men. 574
LIS'T OF PLATES.
Plate. Yage.
I. Comparative stature and measurements, white $(93,185)$ and colored $(6,264)$ soldiers, demobilization (measurements in inches) 41
II. Measurement card for clothing patterus, demobilization, 1919 61
11I. Statistical perforated cards, medical and anthropological data 63

2. Second million draft recruits, 1918.
3. Demobilized troops, 1919.
IV. Age distribution, Civil War volunteens, and World War troops, officers and en- listed men, ratios per 1,000 ; also average age, Civil and World War. 65
V. Map showing the distribution of the various States intu sections. 97
Plate. l’age.
VI. Height distribution by groups of sections (P_{1}), ratios per 1,000 114
4. United States average.
5. Agricultural, native white, North, $73 \%+$.
6. Agricultural, native white, South.
7. Agricultural, Negroes, $45 \% \neq$.
\%. Indian.
8. Mexican.
VIl. Height distribution by groups of sertions $\left(\mathrm{P}_{1}\right)$, ratios per 1,000115
9. Native white, Scotch origin.
\because. Russian, $10 \%+$
10. Scandinavian, 10%.
11. Fiun, 10%.
12. French-Canadian, 10%.
13. German and Austrian, $15 \%+$.
VIII. Weight distribution by groups of sections (P_{1}), ratios per 1,000130
14. United States average.
15. Agricultural, native white, $73 \%+$.
16. Agricultural, native white, South.
17. Agricultural, Negroes, $45 \%+$.
5 . Indian.
18. Mexican.
1X. Weight distribution by groups of sections $\left(P_{1}\right)$, ratios per 1,000 131
19. Native white, Scotch origin.
20. Russian, $10 \%+$.
21. Scandinavian, 10%.
22. Finn, 10%.
23. French-Canadian, 10%.
24. German and Austrian, $15 \%+$.
X. Chest (expiration) distribution by groups of sections (\mathbf{P}_{1}), ratios per 1,000 153
25. United States average.
26. Agricultural, native white, $73 \%+$.
27. Agricultural, native white, South.
28. Agricultural, Negroes, $45 \%+$.
29. Indian.
30. Mexican.
31. Native, white, Scotch origin.
32. Russian, $10 \%+$.
33. Scandinavian, 10%.
34. Finn, 10%.
35. French-Canadian, 10%.
36. German and Austrian, $15 \%+$.
XI. Weight distribution by height (P_{1}), ratios per 1,000 159
37. Height, 62 inches.2. Height, 63 inches.3. Height, 64 inches.4. Height, 65 inches.5. Height, 66 inches.6. Height, 67 inches.
XII. Weight distribution by height $\left(\mathbf{P}_{1}\right)$, ratios per $1,000 \ldots$ 160
38. Height, 68 inches.2. Height, 69 inches.3. Height, 70 inches.4. Height, 71 inches.5. Height, 72 inches.
39. Height, 73 inches.
Plate. I'age.
XIII. Chest (expiration) distribution by height (l_{1}), ratios per 1,000 1611. Height, 62 inches.2. Height, 63 inches.3. Height, 64 inches.4. Height, 65 inches5. Height, 66 inches.
40. Height, 67 inches
41. Height, 68 inches.
42. Height, 69 inches.
43. Height, 70 inches
44. Height, 71 inches.
45. Height, 72 inches.
46. Height, 73 inches.
XIV. Height, weight, and chest (expiration) measurements showing the proportinate measurement of two of them to the total of the third $\left(\mathbf{P}_{1}\right)$ 177
47. Height with relative weight and chest (expiration).
48. Weight with relative height and chest (expiration).
49. Chest (expiration) with relative height and weight.
XV. Total and proportionate measurements by States $\left(\mathrm{P}_{1}\right)$; height with relative weight and chest (expiration) 178
XVI. Total and proportionate measurements by States $\left(\mathrm{P}_{1}\right)$; weight with relative height and chest (expiration) 179
XVII. Total and proportionate measurement by States $\left(\mathrm{P}_{1}\right)$; chest (expiration), with relative height and weight 180
XVIII. Total and proportionate measurement, groups of sections (P_{1}) 181
50. Height with relative weight and chest (expiration).2. Weight with relative height and chest (expiration).
51. Chest (expiration) with relative height and weight.
NIX. Total and proportionate measurement by each section (P_{1}) ; height with relative weight and chest (expiration) 182
NX. Distribution, height, weight, and chest (expiration) measurement; States of nativity, draft recruits, 1917-1918, and demobilized troops, 1919 184
52. Mean height.
53. Mean weight divided by mean height.
54. Mean weight.
55. Mean weight divided by chest (expiration), in pronnts.
56. Mean chest (expiration).
57. Mean chest (expiration) divided by mean weight (inches).
58. Lines of equal index of chest circumference.
59. Lines of equal height (inches).
XXI. Pignet's index, men of various heights $\left(\mathrm{P}_{1}\right)$, percentage distribution of eachheight189
XXII. Average dimensions, eight races, demohilization, 1919. Measurements in centimeters; weight in pounds 246
60. Span.
61. Stature.
62. Weight.
f. Sternal notch.
XXIII. Average dimensions, eight races, demobilization, 1919 (measurements in centi-meters)247
63. Sitting height.
64. Chest circumference.
65. Pubic arch.4. Waist circumference.
$3566^{\circ}-\because 1 — 3$
Plate. Page.XXIV. Average dimensions, eight races, demohilization, 1919 (measurements in centi-meters)2481. Leg length.2. Thigh circumference.3. Knee height.4. Calf circumference.
XXV. Average dimensions, eight races, demobilization, 1919 (measurements in centi- meters) 249
66. Shoulder width.
67. Pelvic diameter, transverse.
68. Chest diameter, transverse.
69. Chest circumference, antero-posterior.
XXVI. Relative dimensions, eight races, demobilization. 1919 (percentage rates based on measurements in centimeters) 2501. Span.2. Sternal notch.
70. Sitting height.
71. Pubic height.
XXVII. Relative dimensions, eight races, demobilization. 1919 (percentage rates hased on measurements in centimeters) 2.5
72. Waist circumference.
73. Leg length.
74. Thigh circumference.
75. Knee height.
XXVIII. Relative dimensions, eight races, demobilization. 1919 (percentage rates based on measurements in centimeters) 252
76. Shoulder width.2. Calf circumference.3. Pelvic diameter, transverse.4. Chest antero-posterior transverse.
XXIX. Correlations, white and negro troops, demobilization, 1919 270
XXX. Distribution, hair and eye color, demobilization, 1919, States of nativity 2951. Flaxen and red hair.2. Clear blue eyes and blue eyes with brown spots.
77. Light and medium brown hair.
78. Light brown eyes.
79. Dark brown hair.
80. Dark brown eyes.
81. Lines of equal proportion of flaxen hair.
82. Lines of equal proportion of clear blue eyes.
XXXI. Height distribution by special diseases or defects (P_{1} and P_{2}), ratios per $1,000 \ldots$ 386
83. Tuberculosis, pulmonary.
84. Goiter, simple.
85. Exophthalmic goiter.
86. Asthma.
87. Astigmatism.
88. Hyperopia.
XXXII. Height distribution ly special diseases or defects (P_{1} and P_{2}), ratios per $1,000 \ldots$ 387
89. Valvular diseases of the heart (unclassified).
90. Hemorrhoids.
91. Varicose veins.
92. Varicocele.
93. Defective and deficient teeth.
94. Hernia.
Plate.
XXXIII. Height distribution by special diseases or defects (Γ_{1} and P_{2}), ration per 1,000 388
95. Myopia.
96. Tonsillitis, hypertrophic.
97. Cardiac hypertrophy
98. Mitral insufficiency.
99. Mitral atennsis.
100. Tachycardia, simple.
XXXIV. Weight distribution hy special diseases or defecto (P_{1} and P_{2}), ration per 1,000 389
101. Tuherculosis, pulmonary.
102. Goiter, simple.
103. Exophthalnic goiter.
104. Asthma.
105. Astigmatism.
106. Hyperopia.
XXXV. Weight distribution by special diseases or defects (P_{1} and P_{2}), ration per 1,000 390
107. Valvular diseases of the heart (nnclassified).
108. Hemorrhoids.
109. Varicose veins.
110. Varicocele.
111. Defective or deficient teeth.
112. Hernia.
$\mathfrak{X X X V I}$. Weight distribution by sperial diseases or defects (P_{1} and P_{2}), ration per 1 , (Mn). 391
113. Myopia.2. Tonsillitis, hypertrophic.3. Cardiac hypertrophy.4. Mitral insufficiency.5. Mitral stenosis.
114. Tachycardia, simple.
XXXVII. (hest (expiration) distribution by special diseases or defects (P_{1} and P_{2}) ratios per 1,000 3921. Tuberculosis, pulmonary.2. Goiter, simple.3. Exoph thalmic goiter.4. Asthma.5. Astigmatism.6. Hyperopia.
115. Myopia.
116. Tonsillitis, hypertrophic.
117. Cardiac hypertrophy.
XXXVIII. Chest (expiration) distribution by special diseases or defects (P_{1} and P_{2}) ratios per 1,000 3931. Mitral insufficiency.
118. Mitral stenosis.
119. Tachycardia, simple.
120. Valvular diseases of the heart (unclassified).
121. Hemorrhoids.
122. Varicose veins.
123. Varicocele.
124. Defective and deficient teeth.
125. Hernia.
XXXIX. Height measurement, special diseases (P_{1} and P_{2}) in relation to the average, inducted men (P_{1}). 394
XL. Weight measurement, special diseases (P_{1} and P_{2}) in relation to the average. inducted men (P_{Y}). 395
NLI. Chest measurement (expiration), sperial diseases (P_{1} and P_{2}), in relation to the average, inducted men $\left(P_{1}\right)$ 396
XIII. Total and proportionate measurements, special diseases (P_{1} and P_{2}) 397

INTRODUCTION.

This study involves the analysis of the three standard physical measurements of the Army, taken on $1,000,000$ recruits; with special reference to physical defects, taken on $2,000,000$ recruits; and of a set of 17 other measurements made of 100,000 troops at demobilization, for the purpose of securing dimensions for uniforms. The whole study gives an insight into the sizes and proportions of the American male population, ages 21 to 30 years, and is a study of dimensions with reference to health and development, to geographical distribution and environment, and to race and color.

The data were gathered partly at local and camp boards on the occasion of the selective draft, and partly on special order from the War Department to secure detailed measurements of 100,000 troops at the time of demobilization. The statistical work was done by the Medical Record Section of the Surgeon General's Office.

1. IMPORTANCE OF ANTHROPOLOGY IN TIIE ARMY.

For over a century armies have prescribed limits of size for recruits on various grounds. It is urged that small men (under 60 inches) can not carry the prescribed equipment. Men over 78 inches are more apt to suffer from circulatory and other diseases. The size of men has a relation to the standard food ration. This differs in the English and Italian Armies because of the difference in body size of the soldiers. Troops in an Army camp containing a large proportion of South Italians and Polish Jews from New York city should use a different average amount of food per man than those composed mostly of Scandinavians. The length of leg is important for the classification of troops which are required to make long marches. A knowledge of proportions of facial features is essential to gas-mask manufacturers. A knowledge of the size and proportions of the body is essential to the proper cutting of uniforms. It will also aid in detecting pulmonary tuberculosis and cardiac disorders, as well as thyroid and other diseases. A knowledge of racial characteristics is often necessary to decide on classification when military organizations are being formed on racial lines, such as Negro regiments, Slavic legions, etc. And finally, the whole system of identification, whether by finger prints or by Bertillon's proportions, belongs to the field of anthropology.

2. STATURE.

The mean stature of the first million recruits, ages 21 to 30 years, inclusive, and including white and colored, is 67.49 inches ($1,714 \mathrm{~mm}$.). The 100,000 troops measured at demobilization measured 67.72 inches tall ($1,720 \mathrm{~mm}$.). The gain of 6 millimeters on the average was partly because they were older, partly because they were straighter, partly because some of the shorter divisions were not included in the hundred thousand, and partly because some short men were rejected when examined for mobilization.

Comparing the average stature of recruits with those of the Civil War, after combining the figures of Baxter, ${ }^{1}$ 1875, and Gould, ${ }^{2}$ 1869, due allowance being

[^3]made for the number of men recorded in each case, we find that it is practically the same, being 67.502 in the Civil War, and 67.49 in 1917-1918. We might conclude, then, that the mean stature of men of military age has changed little in the United States in the last 50 years. But this conclusion might be hasty, for the men of 1917-1918 were taken from all parts of the United States, while those of 1864-1865 largely excluded the Southern States, and since the men from these States are exceptionally tall, their inclusion tends to raise the mean stature.

Taking the figures from Gould, ${ }^{2} 1869$, the ages of volunteers showed a greater proportion of men below the ages of 24 -that is, of those who had not obtained their maximum growth-than in 1917-1918. This again tends to raise the average stature of 1917-1918 over that of 1861-1865. Baxter, ${ }^{1}$ gives a higher average age for draft recruits, namely, 27.307 .

It is reasonable to suppose that since this country has received a very large number of immigrants of prevailingly low stature from the southern part of Europe, during the last 50 years the average stature of the population of the country should show a decrease. Such, however, is very difficult to demonstrate mathematically, since the methods used in the recruiting of the two armies, at the two periods, differed so materially. Indeed, the question whether the physique of our young men has changed in the last 50 years thus unqualified has little meaning. Had the racial constitution of the population remained constant-that is, had there been no heavy immigration-then the question would have more meaning; but in view of the tremendous immigration, amounting in some years to nearly a million persons, the physical changes of the racial constitution of our stock have been so great as to mask entirely any slight alteration that may have occurred in the physique of the stock of 50 years ago, through either improvement or deterioration of environmental or economic conditions.

From the different States men differ much in stature. The Texans are tallest, having an average stature nearly 1 inch above the national average. The mean of the Southern States is taller than the average, while the men of Connecticut, Pennsylvania, New York, Massachusetts, and New Jersey have an average short stature. They are the States with many immigrants from southeastern Europe. Among the North Central States, Kansas, Idaho, Oregon, Nebraska, South Dakota, Iowa, and Minnesota have high average statures. At demobilization the greatest increase in average stature was found in the Southern States, which had apparently greater room for improvement; at least in absolute millimeters. The average stature of veterans from Massachusetts, District of Columbia, and Indiana had not increased.

The average stature of the men from different sections revealed points of even greater interest. At the head of the list stands the mountain section of North Carolina, with a mean stature of 68.67 inches, nearly 1.2 inches above the national average. The inhabitants of this section are largely descendants of the early Scotch settlers (a tall race) in Cape Fear River basin. The next tallest mean man is found in the Ozark mountain region, 68.64 and 68.63
inches, and then come the Texas sections, averaging about 68.47. At the top of the northern sections is northern Minnesota with its "big Swedes." Other sections with tall average stature are Mississippi, the mountain sections of Tennessee and Kentucky, other parts of North Carolina, Western Kansas, Oklahoma, Arkansas, California, and Nebraska. At the other extreme are Rhode Island, New York City, the mining area of castern Pennsylvania, Philadelphia, the manufacturing towns of northeast Massachusetts, eastern New Jersey, and all parts of Connecticut. The inhabitants of these mining and manufacturing sections are not small because of the injurious somatic effect of the miner's and manufacturer's occupations; for the miners of Idaho average far above the mean of the country, and the inhabitants of the flour mill "twin cities" of Minnesota average three-tenths of an inch above the mean of the country. On the other hand, an agricultural section of eastern Pennsylvania has a population that is seven-tenths of an inch below the mean of the country.

Combining sections, the mountain whites have the greatest mean stature and a low variability; they "run tall" fairly uniformly. Next comes the prevailing white agricultural group of the South, then two groups with a large Mexican and Indian population, then the German-Scandinavian groups and those lowland sections with many native whites of Scotch origin. The shortest group is that containing many French Canadians. The next taller is the eastern manufacturing group with its great numbers of representatives of the short races. Of the eight European races that were most numerous in the examination at demobilization the Scotch were the tallest (67.93 inches), next the English (67.75), then the Germans (67.73), the Irish (67.46), the Polish (66.70), French (66.37), Hebrew (65.71), and Italians (65.03). At demobilization the stature of the whites had increased over mobilization from 67.49 inches to 67.71 ; the Negroes were 67.70 and the Indians were 67.52 tall at demobilization; the Chinese 67.37; and the Japanese 67.30. At demobilization the Negroes were found to be more variable in stature than the whites as 6.91 is to 6.66 centimeters.

3. WEIGIIT.

The mean weight of the first million recruits was 141.54 pounds, which is slightly higher than the mean weight (136.05 pounds) of a few thousand "white American" recruits measured at the time of the Civil War (Baxter, Vol. II, p. 15).* At demobilization troops weighed, on the average, 3 pounds more than did recruits and showed about the same increase that veterans showed over recruits in Civil War times. At demobilization in 1919 there was reduced variability in the weight. The soldiers had increased 2 per cent in weight and diminished 2 per cent in variability; the fine physical conditions of army life tended to raise the weight to a uniform high level.
The greatest weight is found in men from the extreme north. The following States stand at the head of the list: Alaska, South and North Dakota, Minnesota, Oregon, Montana, Washington, Nevada, and Idaho. The men from these States are not the tallest, but as we shall see later they are the stockiest. This stocky condition is not entirely racial; it is probably the reaction of the body

[^4]to climatic conditions. Just as the Eskimos are robust, so whites in Alaska and the Dakotas tend to become so. Also, under army conditions men from Alaska gained on the average 11.5 pounds. However, the number of men from Alaska examined was small and the averages probably untrustworthy. The average increase for the whole country was only 3.4 pounds. In general, the men from the Southern States showed an increase of weight above the average of the entire country.

The "French-Canadian" sections comprised recruits of the least weight; the eastern manufacturing groups came next, largely because they contained so many small men. That conditions of life were not the principal cause of the low weight is indicated by the fact that the recruits from commuter (suburban) groups also showed a low average weight. Of the Europeans at demobilization, Germans show the greatest average weight, South Italians and Hebrews the least. The Scotch are the most variable in weight, the Poles the least. The Negro troops are slightly heavier and show a greater variability in weight than the white troops. The Japanese weigh the least of all color races. In the southern sections those containing a large proportion of colored men show relatively less obesity than those containing a small proportion of them.

4. CHEST CIRCUMFERENCE.

The mean circumference of the deflated chest of the first million recruits was 33.22 inches. At demobilization uninflated chests of the veterans measured, on the average, 34.94 inches. These results are not strictly comparable, however, as the chest was not measured in the same phase of expansion in the two sets. Despite this there is evidence that the mean chest girth of the veterans had increased about 1 inch. The same thing happened in the Civil War. The recruits from the Northwestern States showed the greatest chest circumference, those from the Southern States, Rhode Island, and the District of Columbia the least. In relative chest circumference Connecticut stands first, partly because of the racial composition of her population. Indeed, all States which have many representatives of the stocky Mediterranean race stand high in this regard. The tall Southerners stand very low in the series of relative chest girth. For the groups, the largest mean chest circumference is found in such as are occupied by the Finns, agricultural Russians, French-Canadians, German-Austrians, and Scandinavians. Scotch sections and the southern white show the smallest relative chest girth. The chest girth of the Negro troops was relatively somewhat less than that of whites.

5. BUILD.

The best index of build is debatable. The square of stature as a base is probably the most satisfnctory. On this basis recruits of 1917-1918 showed a much slenderer build than veterans of the World War. Recruits, and also veterans from Alaska and the extreme northwest, revealed the stoutest build; recruits from the southeast the slenderest. Recruits from Colorado, New Mexico, and Arizona had a slender build on account of the presence of so many tuberculous persons in those States, many of whom had gone there on account of the disease. The absolute increase i: the index of build of veterans over
recruits is, for the whole United States, about 0.5 . For Colorado it is 1.4 , an increase of 4.3 per cent. This may mean a weeding out of the tuberculous or it may mean an extraordinary reaction to the outdoor life of the Army, or both. Some of the Southern States show more than the average increase of build, some less. The Western States show more increase than the Eastern. New Hampshire gave a reduction of index amounting to 0.60 , and Florida and Connecticut also a clear decrease.

As compared with Civil War veterans, recruits from our Eastern States show a stouter build; from States west of the Alleghenies, a slenderer build. Of all the sections, men from Alaska, the Finns, the Scandinavians, and those of the North Central States show the heaviest build. The sections with many orientals and Indians also show stout builds. The slightest build is found in the Ozark region and among the mountaineers of the southern Appalachian Mountains. Certain sections of New Mexico and Colorado come low in the list. Of the eight European races, the Poles have the heaviest build and the Scotch and "Irish" the slightest. The condition found in the "Irish" is probably influenced by the Scotch who live in north Ireland. Of the color races, the whites have the slenderest build; the Indian and Clinese the stoutest.

6. OTHER DIMENSIONS.

(a) Sitting height.-This is relatively shorter in the Nordic races than in the Mediterraneans. For the color races, it is least in the Negro troops.
(b) Span.-Span is slightly greater than stature on the average, but individuals differ greatly in this respect; in some the span is 15 per cent greater, in others 15 per cent less than the mean. For the color races the Negroes have the greatest span in relation to stature, 105 per cent, the white troops least (102) per cent. In relation to sitting height the span of Negro troops is 207 per cent, that of white troops 194 per cent.
(c) Sternal notch.-Among the European races the sternal notch is relatively the highest in the Irish (83 per cent), who consequently have the shortest head and neck. It is relatively lowest in the French (81.8 per cent), who have the longest head and neck. It is high among Negro troops (82.8 per cent) and low among whites in general (82.1 per cent).
(d) Height of pubic arch.-This dimension measured nearly the physiological length of the leg. In white troops it is about 50.5 per cent of total stature. Among the Frencl the proportion rises to 50.9 ; among the Italians it falls to 50.1. The Negro troops have relatively long legs (52 per cent) and the Chinese short legs (50.3 per cent).
(e) Neck circumference.-This measurement for white troops gives a mean of 35.98 centimeters, or 14.16 inches. The mean man wears about a $14 \frac{3}{4}$ or 15 inch collar. The Negro troops have an average neck circumference about 1 per cent larger than that of the white troops.
(f) The breadth of shoulder.-The breadth of shoulder is measured between the deltoid muscles. In whites it is 41.8 centimeters, or 24.3 per cent of stature. This is nearly 0.3 centimeters greater than the shoulder breadth of Civil War veterans. In Negro troops the shoulder breadth is about 1 centimeter
more, and the coefficient of variation is much less. Of the eight European races, the Poles have the broadest shoulders, the French the narrowest, the Italians the greatest ratio of shoulder breadth to height, and the French the least. Orientals and Indians have a relatively greater shoulder breadth than whites, but only the Chinese have it as great as the Negro.
(g) Chest diameter.-The shape of the chest is given by the thoracic index (transverse diameter $\times 100 \div$ antero-posterior diameter). The Hebrews have the relatively deepest chests (index 131.9), the English the broadest index (134.6). In general, the Nordic races have broad and shallow chests; the Hebrews, Mediterranean, and Celtic races have narrow but deep chests.
(h) Waist circumference. -The mean waist circumference of the whites is 77.87 centimeters, or 45.3 per cent of stature. This relative waist girth is greatest among Italians, next among Poles, Hebrews, French, and German, and lenst among Irish, English, and Scotch. Absolutely the Germans have the largest waists, but not so large a chest girth as the Poles.
(i) Transverse diameter of the pelvis.-The human pelvis, like that of the anthropoids, is relatively broad as compared with other mammals. The most striking fact about it is the small breadth in the Negro (16.5 per cent of height) and the great breadth in the Chinese (17.5 per cent of height). Whites are intermediate.
(j) Leg length.-The mean leg length is 2.7 centimeters longer for the Negro troops than white. Similarly, arm span is 5.2 centimeters greater. If the Negro race is more like the simians in arm length than whites are, it is less like the simians in leg length, for the simians have long arms but short legs. Similarly, the relative leg length is greatest (43.3 per cent) in the Negro, except for the Japanese (43.4 per cent), and least in the Chinese (41.4 per cent). Of the eight European races the Scotch and Germans have the greatest relative leg length (41.54 per cent) and French and Italians the least (41.06 per cent and 41.07 per cent, respectively).
(k) Thigh circumference.-This averages 52.71 for white troops and 54.08 for Negro. It is rehatively greatest among Italians and least among Scotch.
(l) Calf circumference.-This averages for whites 34.09 centimeters, for Negro troops 34.71 centimeters; but in relation to thigh circumference, calf circumference is somewhat less in Negro than in white troops. Many African tribes are characterized by relatively slender calf.

7. THE GENERAL COMPARATIVE PICTURE OF WHITE AND NEGRO TROOPS

Tables 103 and 104 give the differences in means and standard deviations of 20 dimensions of white and Negro troops. The results of these tables are shown graphically in Plate I. From the tables and the figure it appears that whereas the average height of white and Negro soldiers is practically the same, the Negro men exceeded, on the average, the white men in the following dimensions:
(a) Span.-The total span of the Negroes is about 3 per cent greater than that of white men.
(b) Leg length.-Since the lengths of arm and leg are correlated in animals generally, it is in accordance with expectation to find that the leg is longer in the Negro than in the white troops, showing an excess of about 3 per cent.
(c) Arm length.-As this constitutes an important part of the span, we may expect, as we find, that arm length will be greater in the Negro than in the white troops.
(d) Pubic height.-This measures the physiological length of leg and shows about the same excess in Negroes as leg length.
(e) Knee height.-Is a component of leg length, knee height shows a slight excess in Negro over white troops.
(f) Forearm.-This, as in the total arm length, shows an excess in the Negro troops.
(g) Sternal notch.-This is slightly greater in Negro than in white troops. Consequently the height of neck and head together must be less in Negro than in white troops.
(h) Sitting height.-Since the total height is the same and the leg length greater in Negro than in white troops, it is clear that sitting height must be less in Negro than in white troops, and such proves to be the case. This smaller sitting height is due in part to the smaller length of head-and-neck in Negro troops as compared with white troops, but also the length of the trunk from the gluteal fold to sternal notch is relatively less in Negro than in white troops.

In contrast with the vertical dimensions the circumferences and diameters show for the most part relatively slight differences between white and Negro troops, largely because they are smaller dimensions. However, certain differences are clearly shown. The circumference of the trunk, whether taken at chest or at waist, is slightly less in Negro than in white troops. The transverse diameter of the pelvis is strikingly less in Negro troops. The breadth of the shoulder, however, is somewhat greater in Negro than in white troops, and the same is true of the circumference of the neck, thigh, and calf.

Despite approximately the same height, Negro troops weighed nearly 5 pounds more than white troops. The index of build of the Negro troops was about 32.7 as compared with 31.6 for white troops.

The general comparative picture we get of the white troops (including a great variety of races) and the Negro troops is this: The Negro troops have relatively longer legs and arms, shorter trunk, narrower pelvis, more nearly circular ellipse of cross-section of the chest; larger, shorter neck; more nearly parallel outlines of the trunk, larger leg girth, and a greater weight than the whites. The waist is less marked because of the relatively small transverse diameter of the pelvis and chest and the greater circumference of the waist. The Negro seems more powerfully developed from the pelvis down and the white more powerfully developed in the chest.

In summary, then, the main differences of shape between Negro and white troops are that the former have relatively longer appendages, shorter trunk, head, and neck, broader shoulders, narrower pelvis, and greater girth of neck, length of thigh and calf, than the latter.
COMPARATIVE STATURE AND OTHER MEASUREMENTS

8. CORRELATIONS.

Correlation indicates similarity of variation; thus the right and left sides of the body are correlated in their variation. The variations of the right arm and leg lengths are correlated less closely than the same organ on the two sides of the body. The larger the correlation the closer is the physiological or developmental interdependence. Considering white troops only (which were the more numerous), the correlations calculated in order of size are given below. It is to be noted that the maximum correlation (approached by the correlation between the two sides of the body) is 1 . The minimum is 0 . The departure from 0 marks the relative strength of correlations. Probable errors are omitted; none exceeds 0.0021 .

Stature and sternal n	0. 857
Stature and span	. 794
Stature and pubic arch.	. 696
Stature and sitting height.	. 663
Weight and chest circumference.	. 660
Arm and forearm	. 584
Neck girth and chest girth.	. 506
Stature and knee height.	. 436
Leg length and knee height.	. 418
Pelvic diameter and waist girth.	. 351
Chest girth and pelvic diameter.	. 307
Transverse and antero-posterior diameter of chest.	. 271
Chest circumference and sitting height.	. 242
Waist circumference and leg length.	. 159

It will be noticed that the high correlations are often between the measurement of a whole organ and a part of it, like stature and height of sternal notch or of pubic arch. But stature and span are not of this kind, nor weight and chest circumference. However, arm length (span) and leg length vary together and leg length is an element of stature; consequently span varies with stature. When the two dimensions are not closely related, as in waist circumference and leg length, the index is low.

9. DISTRIBUTION OF EYE COLOR.

Eye color is a rough index of race. The fair-skinned, blond-haired people of Europe belong to the "Nordic" race, and have clear blue eyes. The Mediterranean peoples have dark skin, hair, and eyes. The States with the largest proportion of blue eyes have the largest Nordic element. Alaska, with only seven measured, and Wisconsin, with 1,441 , lead with 54 per cent; Maine and Vermont also have a large proportion and stand high (probably because of their French-Canadian blood). Then come Minnesota and Oregon. At the bottom of the list stands Florida with only 9 per cent of clear blue eyes. The Negroes, Cubans, and West Indians in its population have dark eyes. Next above Florida comes Georgia and then Nevada, Alabama, Tennessee, South Carolina, and other Southern States, with many Negroes in the population. Roughly, the proportion of clear blue eyes diminishes with latitude. Of the eight European races, Irish and Scotch have the highest percentage of blue eyes (clear blue and blue with brown spots combined), 73 and 71 per cent,
respectively. Polish and English have about 66 per cent, German 65 per cent, French 49, Hebrew 37, and Italian 20 per cent. For the United States as a whole the percentage of blue eyes seems to have dropped from 45 per cent in Civil War times to 38 per cent 55 years later. Blue eyes are passing.

10. DISTRIbUTION OF HAIR COLOR.

Since no measure was applied to hair color, the results are not closely comparable inter se. In general, the States with the largest proportion of blue eyes have the largest proportion of blond or flaxen hair. Oregon leads with 28 per cent flaxen hair, Montana comes next with 23 per cent, Utah next with 14 per cent, and then Minnesota and South Dakota with 10 per cent each. The Gulf States show less than 1 per cent.

11. PhYSICAI, dimensions in RELATION TO DISEASE.

A special study has been made of stature, weight, and chest circumference, with the interrelation of the three measurements of recruits, found with certain diseases and defects. A close relation is found between the physique and defects. Tall men are especially prone to varicose veins, varicocele, pulmonary tuberculosis, cardiac disorders (both functional and organic), and goiter (both simple and exophthalmic). A very high percentage of men with low stature were found with defective teeth and refractive errors of the eye. Heavy weight was found in men with varicose veins and flat-foot; the weight was slightly above the average for those with simple goiter and hypertrophic tonsillitis, while for both organic and functional diseases of the heart and tuberculosis, as well as errors of refraction, the weight was below the average. Chest circumference above the average was found in men with varicose veins and asthma; for the first condition, the large chest was associated with great stature and weight; for the latter with low stature and weight, and hence it seems that large chest was a result of the disease itself. Small chest circumferences were found specially in men with tuberculosis, organic and functional diseases of the heart, and errors of refraction.

Considering the three measurements in the rehation of the one to the other, the following points are noted: Men with varicose veins are tall, heavy, and large-chested; with varicocele and hemorrhoids, tall, small-chested, and underweight; with pulmonary tuberculosis and all cardiac disorders, both organic and functional, tall, small chest, and of low weight; with both goiters, the stature is above normal and the chest is small, but for the exophthalmic form the weight is low, while for the simple it is normal. Men with hypertrophied tonsils have normal build; those with relaxed inguinal rings and hernia were slightly below the average in stature and slightly below weight, with relatively small chest; those with flat-foot have low statures, but are very heavy; those with crrors of refraction have low stature and low weight, but relatively normal chest. Asthmatic cases show low stature and abnormally low weight, but markedly hypertrophied chest. Men with defective and deficient teeth and congenital genital defects are short, underweight, and smallchested.

The population with different sizes of stature, weight, chest circumference, and build show diverse variability. High variability results when two or more dissimilar classes are combined in one group. Thus myopics who are average-sized combined with a short racial group make a very variable size group. Men in early stages of asthma make of asthmatics a group very variable in chest circumference. Where size and defect are intimately bound together as cause and effect, variability is low. Weight and pulmonary tuberculosis, weight and mitral stenosis, varicose veins and stature, are thus bound together, and variability of the dimension in the population with the disease is low.

Thus, not only the mean dimensions associated with any disease, but also their variability, are of importance in judging the cause and effect of any disease or defect on the human proportions.

SECTION I.

PHYSICAL MEASUREMENTS.

A. THE IMPORTANCE OF ANTHROPOMETRY IN THE ARMY.

An army is made up chiefly of men and their machines. The men deserve first attention. Their mental qualities and their behavior are of importance, but of no less obvious importance is their physique. The significance of the physique of the soldier to the army is everywhere recognized and much effort is expended to select the physically fit. A soldier must have a good nervous system, heart and vessels without serious defect, good feet, strong inguinal muscles and fascia, strong bones and ligaments, and well-functioning joints, keen sense organs, and freedom from organic diseases.
Not only must the soldier be healthy, but he must fall within certain limits of size. In the British army the lower limit of stature during the World War was 60 inches (152 centimeters); in the French army, 154 centimeters (60.6 inches); in the Italian army, 150 centimeters (59.05 inches) ${ }^{3}$ It may be interesting to consider the following comparative data taken from Baxter ' (Vol. I, pp. IN-XXXVII). In France the lower limit of stature in the year 1701 was 162 centimeters (63.9 inches) ; in the year 1804, 154 centimeters (60.6 inches): after Napoleon's return from the fatal invasion of Russia all limitation of the height of conseripts was practically abolished; in the year 1818, 157 centimeters (61.8 inches); in 1830, 154 centimeters (60.6 inches); in 1832, 156 centimeters (61.4 inches); in 1868, 155 centimeters (61 inches); in 1872, 154 centimeters (60.6 inches). Great Britain, in the year 1872, adopted these standards: Cavalry, 66 inches (167.6 centimeters) to 71 inches (180.3 centimeters); Infantry, 165.1 centimeters (64.5 inches) upward. Belgium, in the year 1871: Infantry, 155 centimeters (61 inches); Switzerland, in the year 1857, about 154.9 centimeters (61 inches) ; Prussia, in the year 1875, 157 centimeters (61.8 inches); Austria, Infantry, in the year 1869, 155.45 centimeters (61.2 inches). In the United States the regulations for the year 1802 placed the minimum height at 66 inches (167.6 centimeters). In 1846 the minimum was placed at 63 inches (160 centimeters); in 1861 at 63 inches and in 1864 at 60 inches (152.4 centimeters). These minimum measurements in 1861 and 1864 were for the Regular Army only. Baxter (Vol. I, p. 22) states that the minimum height authorized by the War Department at the outbreak of the Civil War was 63 inches, and continued to be the regulation height until 1864. However, the enrollment law expressly declared that no exemption should be made on, account of height. Gould ${ }^{2}$ (p. 90) also says that no limit of stature appears to have been established for
volunteer troops of the Civil War, and the rule of the Board of Enrollment was that: "The matter of stature shall be considered only in the general examination as to the physical fitness of the men for military service." In 1867 the minimum was placed at 62 inches; in 1874 at 64 inches (Baxter, ${ }^{1}$ Vol. I, XLIX). During a period of years preceding 1917 it was 64 inches (162.6 centimeters). In the regulations governing physical examinations under the selective service act, 1917 (P. M. G. O., Form No. 11), the minimum height was placed at 61 inches (154.9 centimeters) and the maximum at 78 inches (198.1 centimeters), and it was stated: "To be acceptable men below 64 inches in height must be of good physique, well developed, and muscular." Also it was stated that "unless exceptionally well proportioned, men above 6 feet 6 inches in height should be rejected." In January, 1918, the minimum height was lowered to 60 inches (152.4 centimeters) (P. M. G. O. Changes No. 3). Special Regulations No. 65, authorized June 5, 1918 (but which came into general use some weeks later), set the minimum stature at 63 inches (160 (entimeters) ; but this was again soon lowered, by an order of the War Department, to 60 inches. Consequently, the minimum height was 61 inches (154.9 centimeters) for the period June, 1917, to February, 1918, and 60 inches (152.4 centimeters) thereafter. Military men urge that soldiers shorter than 60 inches (152.4 centimeters) are not capable of carrying the weight of the prescribed equipment.

The stature of the recruits is of military importance in other respects than as an index of their ability to carry weight. The Division of Food and Nutrition, Office of the Surgeon General of the Army, was interested in the size of soldiers in relation to the standard ration, since this would vary with the size of the body. The 77th Division (containing a large proportion of South Italians and Polish Jews from New York City) required a smaller average ration than the men of the 88th Division, mobilized at Camp Dodge and containing a large proportion of Scandinavians and Germans. The knowledge of the size of the body is also important for making standards for uniforms.

Stature is correlated with length of leg, and length of leg is important from a military standpoint. Prof. Manouvier, ${ }^{4}$ of Paris, has pointed out that the marching capacity of a company is determined more by the length of leg than by total stature. Hence, soldiers in ranks or platoons, should be sorted on the basis of leg length (crotch height or pubic height) rather than by total stature.

A knowledge of the size of body is important because it varies markedly with the race. Thus, among the races represented in the United States, the average stature of the male is distributed as shown in Table I.

Table 1.-Approximate aterage stature of principal races represented in the linited States, arranged in order of size (from Martin, ${ }^{5}$ pp. 213-217).

Thus, between the Cochin Chinese, with a mean stature of 15 S centimeters (62.2 inches), and the Scotch, with a stature of 175 centimeters (68.9 inches), is a range in the means of 17 centimeters, or over half a foot.

This diversity of race size has an important bearing on the clothing of the Army. The tariffs of sizes to be supplied to any distribution zone for a draft army will depend on the racial constitution of the population living in that zone. This racial constitution can be approximately known by consulting the most recent census report, which gives for each State the desired information as to country of birth of residents and of their parents.

Another point of contact that the Army has with the race is in forming regiments or companies of particular races. Two divisions (the 92d and 93d) were comprised wholly of Negro troops. The question whether a given person had Negro blood must often have arisen.

On July 31, 1918, the War Department, by General Orders No. 70, issued regulations to govern the raising of troops for a Slavic legion which should be composed of Jugo-Slavs, Czecho-Slovaks, and Ruthenians (Ukranians). It was ordered that: "Companies will, if practicable, be composed of members of the same race, i. e., Jugo-Slavs, Czecho-Slovaks, or Ruthenians. So far as practicable, Italian regiments will also be organized on this basis. All oflicers, except field officers of these regiments, will be, so far as practicable, of those races of which the units are composed." It is clear that many cases might arise of doubtful classification, and the special knowledge of anthropology would in such cases be of value in helping Army oflicials to classify. Actually, on account of the practical cessation of mobilization in the autumn of 1918, the plans for raising such military units composed of European races did not progress far. The incident serves, nevertheless, to illustrate the need in the Army of special knowledge of anthropology.

$$
35636^{\circ}-21-4
$$

Again, there is the importance to the Medical Department of a knowledge of the physical dimensions of soldiers individually and in the aggregate or on the average. Thus, despite all other medical methods for diagnosing pulmonary tuberculosis, loss of weight remains one of value. Hence, weight at induction needs to be known accurately. As weight in relation to stature is more important than absolute weight, stature needs to be known accurately. Chest circumference is important for the same reason as weight. The average weight is important in relation to the size of the mess ration as indicated above. Moreover, a knowledge of the proportions of man in relation to certain diseases will direct the wise physician to exercise a special care over the health of men of aberrant proportions, such as narrow or flat chest, extremely long or extremely short legs, a large neck circumference, etc. Special reference will be made in a later section, under the different measurements, of the military bearing of each.

There is still another class of work of an anthropological sort that has to be done in raising and maintaining an army, and that is making and classifying finger prints and other means of identification.

One of the lessons taught by the experience of raising an army in 1917-1918 is that, at the outset, there should be appointed among the officers of the Medical Department a broadly trained anthropologist to whom should be assigned the following tasks: (1) Collaboration in drawing up schedules of the physical examinations; (2) consultation on the taking of the standard measurements and observations on recruits throughout the country and especially at military camps and posts; (3) general supervision of the service of taking identification data; and (4) organization of the service of answering questions that may arise about the racial classification and racial differences of individuals.

B. HISTORY OF THE ANTHROPOLOGICAL WORK IN CONNECTION WITH THE ARMY, 1917-1919.

I. ANTHROPOMETRIC WORK IN CONNECTION WITH THE DRAFT RECRUTTS.

On April 6, 1917, Congress declared war against Germany, and on May 17 the selective service act became a law. In accordance with the provisions of this act, $9,925,751$ males between the ages of 21 and 30 were registered between June 5, 1917, and September 11, 1918. In addition to this number, between the date of the first registrations, June 5, 1917, and August 24, 1918, 912,564 young men who had in the meantime reached the age of 21 registered. On September 12, 1918, 13,395,706 men between the ages of 18 and 20 and 31 and 45 were also registered. The total number for the three registrations for the United States without the Territories then amounted to $23,908,576$. ${ }^{6}$ Out of the approximately $10,000,000$ males registered on June 5, 1917, $2,510,706^{7}$ were measured and examined physically by local boards prior to December 15,1917 . Of this number, $516,212^{8}$ were entrained for camps. After December 15, 1917, due to the reclassification, upon economic grounds, of all registrants who had not entrained for camps, $3,247,888^{\circ}$ men were placed in Class 1. This number included such of the men examined prior to December 15, who were subsequently classified in Class 1, as had not already (prior to Dec. 15, 1917) entrained for camps.

The records of the physical examinations of all the selective service men who had entrained prior to December 15,1917 , and of such of the Class 1 men as were sent to mobilization camps subsequent to that date, was forwarded to the Office of the Adjutant General of the Army.

In October, 1917, Major Albert G. Love was assigned to duty ${ }^{10}$ as officer in charge of the Medical Record Section of the Sanitation Division, Surgeon General's Office. Lieutenant (later major) Robert H. Delafield, ${ }^{a}$ was assigned to duty ${ }^{10}$ as assistant to the officer in charge. Steps were immediately taken to reorganize the section for its war work. This work consisted, in brief, of the receipt of all records of sickness or injuries of any character that occurred among the United States soldiers; the examination, care, and preservation of these records; the furnishing of information from them to authorized authorities requesting it; the compiling of statistical material from them for use in the Annual Report of the Surgeon General and in the Medical and Surgical History of the War; and the preparation of the statistical section of the Surgeon General's Report, with the editing of the whole.

Prior to that time the statisties for the report had been compiled by hand method. A punch-card system was at once installed; a code book prepared and publislied; and Hollerith tabulating and sorting machines installed. It

[^5]was soon apparent that the work of the section would be incomplete without a thorough statistical study of the reports of the physical examination of the draft recruits. It was also apparent that this work could be done more economically in this section than elsewhere, as it was engaged in similar work with the records of the sick and injured in the military service.

The office of the Provost Marshal General, as well as the Surgeon General's Office, recognized that the data recorded on the reports of the physical examination were of great importance, not only on account of the records of the physical defects noted thereon, but also on account of the anthropological information. Consequently, on December 9, 1917, the Provost Marshal General and the Surgeon General signed a joint communication ${ }^{11}$ to the Adjutant General requesting that the Surgeon General's Office be allowed to take, under proper safeguard, to the building where the Medical Record Section of the Surgeon General's Office was located, a limited number of these records of physical examination from day to day, that the statistical data might be extracted on Hollerith cards from a sufficient number of them. The Adjutant General, recognizing the desirability of this statistical study, approved the request. ${ }^{11}$

Instructions were subsequently issued by the Provost Marshal General to the local boards directing them to send to the Office of the Surgeon General one copy of the report of the physical examination of all Class 1 men who had been examined and found by them to be totally disqualified, mentally or physically, for all military service. As the result of this order 549,099 records were received. A Hollerith statistical card was immediately drawn up for this work and a compilation of the statistical data was begun and carried on as opportunity permitted.

In April, 1918, Dr. Charles B. Davenport, of the Carnegie Institute of Washington, became associated with the Section of the Medical Records, where he served in civilian capacity until commissioned major in the Sanitary Corps in July, 1918. A subsection of anthropology was also authorized as a part of the Medical Record Section. The specific purpose of the organization of this subsection at that time was defined as follows: ${ }^{12}$

To secure the highest quality of the measurement of recruits and of identification records as done by the Surgeon General's Office for the purposes of the War Department; to assist, as called upon, in the analysis and synthesis of the statistics compiled from medical records; * and to assist the War Department in all questions about racial dimensions and differences.

First Lieutenants E. H. Hawkes and Wilson D. Wallis and Second Lieutenant Louis R. Sullivan were appointed in the Sanitary Corps for anthropological work, with special reference to supervising the finger-print identification work and the recording of the physical examination data at some of the larger camps. ${ }^{13}$

As the result of the statistical study of the draft records, "Physical Examination of the First Million Draft Recruits, Methods and Results," was published in Bulletin No. 11 of the Office of the Surgeon General, March, 1919. This dealt with the varying physical standards and their application at mobilization camps and the distribution of physical defects by States and also by urban and rural districts. Subsequently the completestudy of the records of the physical examination of $1,961,692$ of the selective service men who were inducted and sent to military camps, and of 549,099 who were rejected by the local boards as totally,
physically or mentally, unfit for military service, was completed and published in "Defects Found in Drafted Men." In this publication the distribution of the defects is given not only for States and urban and rural districts, but also for 156 population sections of the country separately and grouped into an occupational series, a physiographic series, and a racial series.
Many of the defects and diseases whose distribution is described in these reports are of great anthropological interest, especially the distribution in the racial series of grouped "sections." Some of the findings are that sections containing many French Canadians are characterized by defective appendages (but not an excessive amount of flat-foot), of defective physical development, deficient chest measurements, underweight, underheight, malnutrition, monorchism, cryptorchism, cleft palate, tuberculosis, nervous and mental defects, defective vision, otitis media, defects of the heart, valvular heart disorders, and bad teeth. They form the poorest of the groups from a military standpoint ("Defects Found in Drafted Men," " p. 299).

The sections containing a large proportion of Scandinavians are characterized by little tuberculosis, venereal diseases, alcoholism, and drug addiction, and by a large excess of goiter and a slight excess of curvature of the spine.
Sections containing a large percentage of "Germans and Austrians" are characterized by relatively little tuberculosis, venereal disease, cancer, arthritis, and obesity, but more than the average of goiter, alcoholism, and drug addiction. Epilepsy, hysteria, mental deficiencies, and defective speech are less common than the average, also teeth defects and hernia. But varicose veins, varicocele, and flat-foot are in excess.

Sections containing a large proportion of Finns have relatively high ratios for multiple sclerosis, monoplegia, disorders of heart action, chorea, defective teeth, and cleft palate.

Sections containing 10 per cent or more of agricultural Russims have high ratios for errors of refraction, diseases of the cornea and retina, otitis media, valvular diseases of the heart, varicose veins, foot defects, and muscular atrophy.

Sections containing many Indians showed a prevalence of well-developed men, except for the congenital defect of cleft palate and harelip.

Sections of the black belt of the South gave an excess of venereal disease, benign tumors, arthritis, mental deficiency, hysteria, dementia praecox, psychoneuroses, manic-depressive psychoses, valvular disease of the heart (especially endocarditis, cardiac lyypertrophy, tachycardia), and arteriosclerosis. The following are less than normally common among negroes: Curvature of spine, obesity, the minor paralyses, ear and eye defects, diseases of the thront, varicocele, varicose veins, cardiac arrhythmia, pes planus, cryptorchidism, hypospadia, cleft palate, and harelip.

Measurements of draft recruits.-It has long been recognized that in the Army recruit service the following dimensions should be taken of all recruits: Stature and chest circumference (at expiration and inspiration), and since the Civil War the weight. These mensurements were actually taken for all selective service recruits. The regulations issued to the local boards and to the camp examining boards prescribed that all of them be taken with the recruits stripped.

The instructions issued by the Office of the Surgeon General before the central examining boards were established, to the examiners at the National Army Cantonment, Memorandum No. 3, August 22, 1917, directed (directions being given in italics) "weight, height, and chest measurements will be copied from data on physical forms furnished by the local boards except in those cases referred to the specialists for retaking weight, height, and chest measurements." Subsequently, after the central boards were established, all measurements were retaken by them.

In the preparation of the statistical cards from the reports of physical examination of $1,961,692$ of the selective service men sent to camps who were studied statistically, and of the 549,099 rejected by the local boards, provisions were made for recording the height, weight, and chest measurements, at both inspiration and expiration. These data were tabulated for 994,206 men (among the first million sent to camp) and also in relation to certain selected diseases. Subsequently these same data in relation to the same diseases or defects were tabulated for the second million draft recruits. Accordingly the results from such of the draft recruits as were found upon examination to be affected with the selected special defects or diseases among the first and second million men were tabulated and the constants calculated separately as well as combined. Such a procedure has certain advantages in allowing, especially, a comparison to be made between the first and second million and to secure a criterion as to the constancy and significance of the findings. Such differences as are noted between the findings are to be ascribed in part to the improved technique of the later examining boards, both local and camp; to certain variations in the standards for the acceptance of recruits; to the inclusion in the second million of some young men who reached the age of 21 after preliminary registration; and finally, though by no means of the least importance, to the fact that in the preparation in this office of the statistical cards for the first million recruits only the major military defect was recorded, while in the preparation of them for the second million, a second defect was also recorded.

When transcribing information from the forms of the physical examinations of draft recruits, where the measurements showed a fractional part of a pound or an inch less than $\frac{1}{2}$, the fraction was dropped. If, however, the fraction was $\frac{1}{2}$ or more of an inch or pound, it was counted as 1 , thus raising the measurement to the next unit. This tends to lower the average weight for race given. When comparisons are made with data published in other publications, such as Gould, 1869, and Baxter, 1875, where $\frac{1}{2}$ inches are recorded and used, this difference is material.

It will be noted that the number of men measured both for demobilization and mobilization varied in the different tables. This was due to the frequent omissions of certain measurements from the original return, or to the necessity of excluding such as were obviously incorrect.

II. ANTHROPOMETRIC WORK IN CONNECTION WITH DEMOBILIZATION.

Part of this work is based upon the measurement of the 100,000 troops at demobilization and has an especially interesting history. Having in mind the study made by Gould ${ }^{2}$ on the physique of the Civil War recruits and troops at
demobilization, and recognizing the importance of anthroponetry to the Army, to the Nation, and to science, an effort had been made since the summer of 1917 by the National Academy of Science to secure authorization for special measurements. A special committee was appointed, which met and rendered a report recommending special anthropological measurement. In the stress of the preparation for warfare such authorization was not deemed desirable by the military authorities, nor was such work considered advisable during the period of active hostilities. However, in the latter half of 1919 an order was issued by the Secretary of War to have special measurements of 100,000 men taken upon demobilization, to secure data for dimensions for uniforms.

A telegram was sent by the Surgeon General to Major Davenport, who had been discharged at his own request in January, 1919, as major in the Sanitary Corps (though continuing to serve in the Medical Record Section as a civilian three days a week until about June 1, 1919), requesting him to supervise the measurements to be taken. In accordance therewith he reported to the Surgeon General of the Army on July 7, 1919.

1. ORDERS ISSUED RELATIVE TO SPECIAL UNIFORM MEASUREMENTS.

Orders authorizing -special measurements.-On June 9, 1919, the following order was issued by the Acting Director of Operations, General Staff, to The Adjutant General of the Army:
Subject: Sizes of clothing.
11. The Secretary of War further directs that 105,000 data cards be printed by The Adjutant General and turned over to the Surgeon General of the Army to be used in recording data ordered in Section 1. These cards must show the exact places measurements are to be taken in language sufficiently technical to insure accuracy by Medical Department personnel who are to do the work. In addition to the written descriptions of the locations where measurements are to be taken, the data cards should have outlined figures of the body showing front view, with the exact places measurements are to be taken indicated on them, so that they will be readily understood by the persons employed to make the manikins from the neasurements. A sample of the outline figures to be shown in the data card will be furnished to The Adjutant General to turn over to the Surgeon General when completed. The measurements and other information to be indicated on the data cards will include the following:
(1) Name,
(2) Home State,
(3) Born of native white parents?
(4) Born of parents of African descent?
(5) Nationality, if born in a foreign coun-
try, or of parents who were born in a foreign country, (6) Height (taken standing),
(7) Height (taken sitting), (8) Measurement from finger tip to finger tip
with arms extended horizontally, (9) Distance from spinous process of vertebra at level of spine of scapulic laterally back of shoulder and behind elbow (arm held horizontally with elbow bent) to level of tip of styloid process of ulna,
(10) Distance, when standing, from floor to presternal notch, (11) Height from floor to superior border of pubis,
Transverse diameter of shoulders at level of acromion processes, (13) Transverse diameter of chest just under the arm; that is, at level of articulation of humeri with scapulie,
(14) Transverse dianeter of hips level of anterior-superior spines, (15) Anterior-posterior
diameter of chest level of junction of ensiform with gladiolus, (16) Circumference of chest, level of nipples, (17) Circumference of waist, level of umbilicus,
(18) Circumference of thigh below crotch, (19) Circumference of leg just above patella,
(20) Circumference of knee, level of patella, (21) Circumference of calf (at largest part), (22) Circumference of leg just below level of tuberosity of tibia, (23) Inside length of leg from crotch to tip of internal malleolus of tibia,
(24) Circum-
ference of neck, level of larynx, \qquad (25) If soldier has been fitted by Resco shoe-fitting system under supervision of an officer, state size of shoe worn,

Note.-Tape used in measurements should be drawn snug without looseness or compression. Calipers should be used in taking diameter measurements. All measurements will be given in the metric system.

On June 25, 1919, The Adjutant General of the Army sent the following to the Surgeon General:
Subject: Measurement for sizes of clothing.

1. You are directed to have measurements of 100,000 men made. When measured, men should be naked, except for breechcloth, and should have had at least four months of military training. Measurements shall be taken as follows:

Zone $1,6,000$; zone 2, 24,000; zone 4, 3,500; zone 5, 10,500 ; zone $7,26,000$; zone $8,10,500$; zone $9,3,500$; zone $10,4,000$; zone $11,4,500$; zone $12,1,500$; zone $13,6,000$.
When men about to be demolilized are measured, the taking of the meansurements shall not be permitted to interfere in any way with demotilization. The personnel used in taking these measurements should receive such uniform instruction as will insure correctness and uniformity in data.
2. In zones 5,9 , and 10,35 per cent, 30 per cent, and 25 per cent, respectively, of the men measured should be of African descent. Data cards will be furnished by The Adjutant General, as per memorandum herewith, and when completed should be transmitted to the Equipment Branch, General Staff. These measurements will be used in making manikins from which a pattern for each size can be made.

Haste was essential, since demobilization was being rapidly completed, and at times it was feared that it would be impossible to complete the quota before demobilization had come to an end. This state of mind reflected in some of the orders cited below.
(a) Detailed directions for measurement.-On July 23 the following letter was issued to camp commanders by The Adjutant General:
Subject: Measurements for sizes of clothing.

1. The Secretary of War has directed the Surgeon General to have measurements taken of 100,000 soldiers in various camps and stations in the United States, to be used in the construction of manikins of various sizes with the aim of affording better-fitting uniforms for the Army. Your camp has been designated for taking the measurements of
2. An expert anthropologist will be sent to your camp by the Surgeon General to supervise the measuring of the requisite number of men. He should be directed to report to, and to consult with, the camp surgeon, under whose general direction it is intended that the work shall be conducted. To enable him to satisfactorily perform this work the following enlisted personnel is required, which should be furnished by you from whatever source you may see fit. In view of the great scarcity of Medical Department enlisted personnel now on duty in camps it is not contemplated that the number required be drawn from this source alone, but from other staff and line troops as well.
One assistant measurer for every 80 men measured per eight-hour day.
These men should be selected with a view toward accuracy and reliability, noncommissioned officers if practicable.
One enlisted recorder for every assistant measurer.
One enlisted recorder for every 90 men measured per hour, for the purpose of recorling descriptive data (name, age, birthplace, etc.) on the face of the blank forms.

One enlisted weigher and one recorder for each 90 men weighed per hour.
One enlisted orderly for every four assistant measurers.
3. In addition each measurer will require about 25 square feet of working space, which should be well lighted, inclosed, and sufficiently quiet so as not to interfere with the proper recording of the data; sufficient furniture, stationery, etc., to enable the work to be experlitiously performed will also be necessary. Blank forms for recording measurements will be furnished by The Adjntant General. The expert anthropologist will bring with him the necessary measuring apparatus.
4. It is directed that the measurements be taken while the men are stripperl, and in the case of inen who are about to be demobilized who are measured the procedure should not be permitted to interfere in any way with the denobilization. It is believed that this can be accomplished by having these measurenents taken as a final step in the physical examination prior to demobilization.
5. As this work is of great inportance, you are directed to afford the expert anthropologist every facility possible, both in personnel and naterial, for performing the duties with which he is charged.
6. You will assign to this work only men of the Regular service. Their work will be so arranged and coordinated by the demobilization officer as not to materially lengthen at any time the period of retention of men sent to your camp for discharge. During periods when the men sent for discharge are not sufficient to keep the ineasurers busy, men belonging to permanent camp organizations should be sent for measurement. During rush periols when daily discharges exceed the quota which can be measured per day, the excess will not be detained solely for the purpose of being measured.
7. No emergency man, who could otherwise be spared from camp organizations and dischargel, will be retained due to the work of the measuring board.
(b) Instructions issued by Surgeon General.-On the following days additional instructions and memoranda were issued by the Surgeon General:

July 24, 1919.
Subject: Measurement for sizes of clothing.

1. The Surgeon General has received the following instructions from the Secretary of War in a letter dated June 25, 1919:

You are directed to have measurements of 100,000 men made. When measured, men should be naked, except for breecheloth, and should have had at least four months of military training. Measurements should be taken as follows:

Zone 1, 6,000 ; zone 2, 24,000 ; zone 4, 3,500; zone 5, 10,500 ; zone $7,26,000$; zone $8,10,500$; zone $9,3,500$; zone $10,4,000$; zone $11,4,500$; zone $12,1,500$; zone $13,6,000$.
When men about to be demobilized are measured the taking of the measurements shall not be permitted to interfere in any way with demobilization. The personnel used in taking these measurements should receive such uniform instructions as will insure correctness and uniformity in data.
2. Authority has been obtained for the employment of a group of expert anthropologists to undertake this work in the various camps under the general direction of Dr. Charles 13. Davenport, now employed in this office. This personnel has already been selected and is now being given instructions by Dr. Davenport relative to methods and procedure in taking measurements in camp. Blank forms have been printed and the necessary apparatus accumulated, and it is proposed to begin this work within the next few days. Necessary instructions have been sent to the commanding general of camps in which measurements are to be made. Your canip has been designated for the measurement of \qquad men.
3. As the Surgeon General is charged with carrying out this work, it is desired that the post surgeon act as his representative in camp and give the necessary support and cooperation to the expert anthropologist in immediate charge of the work. As the anthropologist is a civilian and unfamiliar with Army procedure, he will need assistance and guidance from you in order to accomplish successfully his task. The time element is important, as these men are employed under special authority under a limited allotment of funds, and the work in each camp must be pushed with all possible expedition, in order to bring it to a conclusion with our present allotment. It is desired that the post surgeon assume the administrative responsibility for the expeditious handling of the work. The responsibility for the technical features of the work will rest on the expert anthropologist.
(c) Daily reports.-On July 25 a letter of instructions was issued relative to the subject and daily reports by telegraph from the anthropologists were called for. From the daily telegraphic reports a table was made up showing the progress of the work day by day.

2. SUPERVISING PERSONNEI. AND CAMPS WHERE MEASUREMENTS WERE TAKEN.

(a) Supervising personnel.-Personnel to take charge of the measurements at camps had to be assembled and given instruction, and this was accompanied with some difficulties, owing to the fact that most anthropologists had scattered to their summer homes or were working in the West among Indians under the United States Bureau of Ethnology. Eventually the services of the following anthropologists, anatomists, and Army officers were secured to supervise the taking of the measurements at the designated camps. When two or more are named for one camp, the first in order was chiefly responsible for the work. The one or two others were assistants or continued the work after it was well organized:
Dr. Chas. H. Danforth, associate professor of anatomy, Washington University, St. Louis, Mo. Camp Dix, N. J.
Mr. Frank J. Kelley, biologist, United States Department of Agriculture. Camp Dix, N. J. First Lieut. Samuel H. Miller, Medical Corps. Camp Dix, N. J.
Mr. Geo. A. Miller, assistant anthropologist, National Museum. Camp Dix, N. J.
Dr. Geo. G. MacCurdy, professor of anthropology, lale University. Camp Devens, Mass.
Second Lieut. W. B. Davis, Thirty-sixth Infantry. Camp Devens, Mass.
Dr. Robert 13. Bean, professor of anatomy, University of Virginia. Camp Lee, Va., and Camp, Gordon, Ga.

Dr. E. A. Hooton, instructor in anthropology, Harvard University. Camp Grant, Ill.
Dr. J. A. Mason, anthropologist. Field Museum of Natural History, Chicago. Camp Dodge, Iowa. and Fort D. A. Russell, Wyo.

Capt. Fred. P. Nevius, Medical Corps. Fort D. A. Russell, Wyo.
Dr. J. R. Terry, professor of anatomy, Medical School, Washington University, St. Louis, Mo. Camp Sherman, Ohio, and Camp Taylor, Ky.
Maj. Chas. P. Martin, Medical Corps. Camp Sherman, Ohio.
Maj. R. C. Chitting, Medical Corps. Camp Taylor, Ky.
Dr. Daniel Folkmar, anthropologist and statistician, Washington, D. C. Fort D. A. Russell, Wyo., and Camp Lewis, Wash.
Dr. Wm. Howard Griffith, assistant in physical education, University of Pennsylvania. Camp Pike, Ark.

Maj. R. D. Milner, Sanitary Corps. Camp Shelby, Miss., and Camps Travis and Bliss, Tex.
Maj. Samuel Clifford Cox, Medical Corps. Camp Meade, Md., and Cainp Holabird, Md.
Capt. Richard M. Alley, Sanitary Corps. Camp Meade, Md.
Capt. Phil. Russell Pope. Camp Shelby, Miss.
To secure uniformity in the measurements taken, the anthropologists, anatomists, and officers who were to be in charge were ordered to Washington, D. C., for special instructions. The offer of Dr. Hrdlicka, curator, Division of Antrhopology, United States National Museum, Washington, D. C., to instruct them was accepted. Models were furnished by the Adjutant, Army Medical School, and to each anthropologist, singly or in groups, as the case might be, instructions were given in the prescribed measurements and in the method of taking them. Dr. Hrdlicka also consented to assist as an inspector of the work that was being done in some of the camps. He was consequently appointed on temporary duty in August, 1919, to visit Camp Dix and Camp Derens and to give any assistance that might be possible and to further make a report of the conditions as he found them in those camps.
(b) Camps, number of men measured.-The following number of men were measured at the various camps:

Camp Bliss.	1,509	Camp Meade.	6,001
(amp) Devens.	6,111	Camp Pike.	10,500
('amp Dix.	24,040	Cainp D. A. Russell	136
Camp Dodge	5,046	Camp Shelby	3,504
Camp Gordon.	9,724	Camp Sherman.	f, 981
(amp) Grant.	8,500	Cainp Taylor.	7,014
Camp Holabird	1,505	Camp Travis.	6,005
Camp Lee.	3, 508		
(amp) Iowis.	3,825	Total.	103, 909

3. APPARATUS U'SED.

It was decided to use the following apparatus:

1. The Seaver measuring rod: Wooden sliding calipers having a 3 -foot rod metrically divided, as made by the Narragansett Machine Company.
2. The cloth tape, metrically graduated, made by the same company: These tapes wore out rapidly and had to be replaced. The graduation marks became rapidly obliterated on that part of the tape held by the fingers. For a time steel tapes were used but these occasionally cut the skin and frequently broke if kinked, so that experience proved they were inferior to the cloth tapes. In practice a single tape proved to be good for the measurement of only about 500 men.
3. Graduated paper metric scales furnished by the United States Bureau of Standards: These paper scales were less accurate than metal scales, being subject to alteration in length according to the amount of moisture in the air. Wooden scales would have been better and these were sometimes ruled on the studding of the building by the anthropologist in charge.
4. A plumb line and sinker to measure height of sternal notch from floor, subject standing. Instructions were to use a horizontal arm at the notch from which the line would depend; a pencil or a "tongue depressor" was employed.

4. DIRECTIONS FOR TAKING AND RECORDING MEASUREMENTS.

The following directions for general arrangements at camps for taking measurements, and for recording descriptive matter on the forms that were prepared were issued to the anthropologists in charge:

DIRECTIONS FOR TAKING MEASEREMENTS.
(a) Stature (W.).-Each soldier is to stand against a wall upon which the metric scale has been fastened, accurately calibrated from the floor. The subject stands, heels together and in contact with the wall by buttocks and shouklers, and head in the "front" position, looking straight forward. The squared block is to be placed vertically in contact both with the scale and with the vertex of the head until the resistance of the skull is felt. Standing on the subject's left side, read from the under side of the block while subject is still standing in position.
(b) Span (W.) is to be taken standing, the subject touching a fixed strip with the longest finger tip of one hand and reaching out over a graduated scale with the finger tip of the opposite hand, stretching to a maximum. The thumb nail of the operator may be placed in contact with the movable finger tip of the hand which lies upon the scale and the scale read from the maximum position of the thumb nail of the operator.
(c) Height sitting (W.).-A strong box or bench, with a perfectly flat top, is to be placed in contact with the wall, underneath the metric scale on which is to be measured the height of the vertex. The position of the scale should be carefully calibrated, the zero point being at the level of the top
of the box. The subject should sit with the buttocks, shoulder, and hearl in contact with the wall, unless contact of the head should require the soldier to look upward.
(d) Height of knee joint (C.).-While subject is sitting, with under side of movable arm of sliding calipers get height of top of patella from floor.
(e) Height of sternal notch (L.).-This is to be secured by dropping the plumb line and sinker from a short strip of wood ("tongue depressor") held horizontally, subject standing. The plumb line should be held fast by the thumb when the sinker touches the floor and the length of the line plus sinker are to be measured on the scale attached to the wall. The purpose of the horizontal arm is to bring the plumb line in front of the protuberance, if any, of the stomach. The measurement should give the vertical distance of the bottom of the depression of the sternal notch above the floor on which the subject is standing.
(f) Height of pubis (C.).-Use wooden sliding calipers. Standing in front of subject, bring top of sliding arm to level of superior border of the pubis at symphysis. The rod is to be kept horizontal.
(g) Transverse diameter of shoulders at level of heads of humeri (C.).-Use sliding calipers. These are to be in contact horizontally with the skin over the heals of the humeri, the arms of the subject being held at the sides of the boly in the attitude of attention. The skin is to be compressed ouly sufficiently to permit the arms of the calipers to be brought in full contact with the skin, immediately over the head of the humerus. As the contour of the arm at this point is usually not directly vertical, there will be something of a compression of the skin at the lower edge of the arm of the calipers.
(h) Transverse diameter of pelvis at level of the crests of ilium (C.).-The calipers, held horizontally, are to be placed in contact with and pressing upon the skin over the widest part of the ilium, until bone resistance is felt.
(i) Transverse diameter of chest at level of nipples (C.).-The subject stands erect with arms slightly raised in a relaxed position. One arm of the sliding calipers is held fixed against the chest at the level of the nipples. The rod is applied to the chest in front. The movable arm is adjusted by the thumb-until brought into contact with the wall of the chest. A series of contacts is made and a mental note made of the readings. This is to allow for changes in form of the chest during respiration. The middle position of the readings is to be recorded. The arms of the calipers will be held somewhat oblique, perpendicular to the axis of the trunk at this level.
(j) Anterio-posterior diameter of chest (C.).—The subject stands in the same position as in (i). The fixed arm of the calipers is applied to the front of the chest at the level of the nipples, the plane of measurement is perpendicular to the axis of the trunk, the movable arm of the calipers is brought in contact with the back or vertebre. The movable arm of the calipers is brought repeatedly in contact with the back at different phases of inspiration and expiration. The median position of the movable arm in these contacts is recorded.
(k) Second dorsal vertebra to styloid process of right ulna (T.).-Stand behind and to the right of the subject, whose right humerus is raised to a horizontal position; forearm flexed, extending forward at right angles to the humerus. Measure with the tape from the spinous process on the same level with the humerus, along the length of the arm and forearm to the apex of the styloid process of ulna.
(l) Circumference of neck, level of laryngeal prominence (T.).-This measurement is made with the tape from the front. Feel the apex of the laryngeal prominence and pass the tape from the back of the neck slightly down around this prominence perpendicular to the axis of the neck. In measuring with the tape. hold the zero end with the fingers of the left hand in contact with the skin and hold the movable part of the tape with the right hand, guiding that part which comes in contact with the zero end of the tape by means of the forefinger of the right hand. In case of the measurement of a circumference which, like that of the chest, undergoes changes with respiration, read the maximum and minimum and take a strictly intermediate dimension for record.
(m) Circumference of chest, level of nipples (T.).-Arms in the position of (i). The tape is to be placed around the chest and gradually by sliding movements depressed to the required position, which is perpendicular to the axis of the trunk. Make the reading from in front, the tape passing over the nipples.
(n) Circumference of waist, level of umbilicus (T.).-The tape is held in a nearly horizontal position at what is, in "spare" persons, the minimum circumference of the trunk. Read as before.
(o) Circumfirence of thigh, maximum (T.). The measurer kneels at the right side of the sthbject. The tape is placed around the upper portion of the thigh and passed slowly upward by sliding movements until it reaches the level of the gluteal fold. Legs of the subject slightly spread.
(p) Circumfercnce of leg just above patella (T.). -The tape is to be passed around the leg and held horizontally, being brought to the desired position, just above the patella.
(q) Circumfercnce of knee, level of patella (T.). -The tape is to be placed horizontally around the leg and at the middle of the patella in front.
(r) Circumference of leg just below level of tuberosity of tibia (T.). -The tape is to be brought into the horizontal position, as before, just below the tuberosity of the tibia which lies in the median position in front.
(s) Circumfcrence of calf, maximum (T.). -The tape is to be brought into a position slightly above the thickest part of the calf, then gradually worked down the leg with repeated readings until the maximum circumference is determined. This is recorded.
(t) Inside length of leg from the glutcal fold to tip of internal malleolus of tibia (T.).-This is to be measured by the tape from the gluteal fold downward to the apex of the internal malleohns.
(u) The weight of all soldiers measured should be recorded.

In general: Measurements are to be taken so that tape is in close contact with the skin without indenting or depressing it.

Abbreviations: (C.), Calipers; (L.), line and sinker; (T.), tape; (W.), wall.

5. DIRECTIONS FOR USE OF RECORD ON "DESCRIPTIVE" F'ACE OF FORM.

Write legibly; surname to be printed with pen in capital letters.

1. Under "color," check appropriate square. Judge fraction of Negro blood by estimate of skin color. The mulatto is $\frac{1}{2}$ black, clear brown or dark café au lait. If skin color is darker than clear brown, mark $\frac{3}{3}$ black; if light brownish yellow or lighter (and clearly of African descent), mark $\&$ black. In case of a person of probable Indian, Chinese, or Japanese descent, ask: "Of what race?"
(a) Ilair color.-There are two series-not-red and red. The not-red series is of four grades. Distinguish clear red and red more or less concealed by brown.
(b) Eyc color.-Soldier should face light. If no brown pigment on iris, check "clear blue." If some brown pigment but blue field not covered, check "blue with brown spots." If whole iris covered with brown check light, medinm, and dark according to degree.

6. SPECIFICATIONS FOR ARRANGEMENTS REQUIRED AT CAMP AND FOR TAKING MEASUREMENTS THERE.

In the building where the physical examinations are taken have erected at the corner of the building nearest the end of the examination line a sufficient number of vertical partitions running perpendicular to the long side of the building to permit of the simultaneous measurement of the number of men specified for each camp. Thus, for the maximum mumber of 12 sets of apparatus, permitting of the measurement of 12 men simultaneously, there will be required 12 wall spaces at least 6 feet 6 inches wide. These can be secured by using the short end of the room for the measurement of two men and by erecting five additional partitions parallel to the short end of the room against each of which can be measured two men hy using the two sides of the partition. The partitions should be not less than 5 feet apart. Adequate lighting by electricity or otherwise is essential and must be secured.

Each partition is to have at the extreme edge a vertical strip of wood about 1 inch wide and $\frac{1}{2}$ inch thick, extending from between 3 and 6 feet from the floor. Midway in the partition are to be affixed to the partition the metric ruled strips or scales provided in the set of apparatus. The scale is printed in 50 -centimeter strips. Place two strips vertically, one immediately above the other, the bottom of the lowest strip being precisely 100 centimeters above the floor and the top of the uppermost strip 200 centimeters above the floor. Place two of the 50 -centimeter scales in a horizontal position one above the other, so that the ends of the scales nearest to the vertical strip) of wood, described above, shall be 150 centimeters therefrom. The bottom of the lower scale is to be 125 centimeters from the floor and the top of the upper scale is to be 165 centimeters from the floor. On the wall rule vertical lines a centimeter apart, connecting these two scales.

Secure a stout box about 50 centineters high, 50 centimeters long, and 30 centimeters wide, upon which the subject will sit in measuring sitting height. A specially made bench is to be pre-
ferred to a box if such can be made by the camp carpenter. This bench is to be placed at one side of the middle of the partition wall. Immediately over the middle line of the bench is to be affixed to the wall in a strictly vertical position a 50 -centimeter section of the scale. The bottom of this scale to be exactly 60 centimeters above the upper surface of the box or bench. The zero end of the scale should then be changed to 60 centimeters; the 10 -centimeter mark to 70 centimeters, and so on, the upper limit of the scale then reading 110 centimeters in place of 50 centimeters.

A recorder for each measurer should be seated at a desk in the interspace between every two partitions, or any other convenient position, to record the measurements called off to him by the measurer.

The details of the arrangements of partitions and the direction of passage of the examination line will have to be adjusted to meet the conditions found at the different examination rooms.

Omission of measurements.-The weight was omitted at Camp Gordon, Camp Lee, and Camp Devens. The knee height was omitted at Camp Devens, Camp Sherman, and Camp Taylor. The measurement from the styloid process of the ulna to the elbow was omitted from Camp Sherman and Camp Taylor.

7. STATISTICAL TREATMENT OF DATA.

(a) System used.-The taking of the measurements was completed in Oetober, 1919. The data were then transferred to Hollerith punch cards by the use of a prearranged code. This coding and the subsequent handling of the data was all done in the Medical Record Section of the Surgeon General's Office.
(b) Nationality.-To determine the nationality of the soldiers measured the following rules were observed:

1. The nationality of all, except Hebrews, who were born in a foreign country, were credited to that country. Hebrews were counted as such without regard to country of birth.
2. Where neither parent was born in the United States, and both were born in the same foreign country, the soldier's nationality was credited to that country; if both parents were not born in the same foreign country the soldier was entered as of mixed origin.
3. If the soldier and both parents were born in the United States, but if three or four grandparents were born in the same foreign country, the soldier's nationality was credited to that country. If three grandparents were not born in the same foreign country, the soldier was classified as of mixed origin.
4. If only one parent was born in the United States and three or four grandparents were born in the same foreign country, the soldier was counted as of that country; otherwise as of mixed origin.
5. When the data furnished were insufficient to determine the nationality, the name was used to determine it, provided the evidence was sufficiently clear.
6. To further determine the nationality the religion was used in such countries as Ireland, where the races are mixed. For example, where both parents were born in Ireland and of the Catholic religion, the nationality was credited to the Irish, but where they were both born in Ireland and of the Protestant religion, the nationality was credited to the Scotch.

Provisions were also made for determining mixed nationalities, but it was decided that it was not advisable to attempt to tabulate statistics for the mixed races.

MEASUREMENT CARD FOR CLOTHING PATTERNS DEMOBILIZATION-1919

Statistics were tabulated for the following nationalities, which were determined as follows:

Irish.-Soldier, both parents, or three or four of the grandparents, all of Catholic religion, born in Ireland. If the data are not clear as to nationality, if the name begins with Mc or O', and if the mother's language is English and the religion is Catholic, he is classified as Irish.

Italian.-Soldier, both parents, or three or four of the grandparents born in any part of Italy other than the northern provinces. If the data are not clear, and if the name ends in a vowel (not Irish or French), with the religion Catholic, classify as Italian.

Hebrews.-All soldiers included in this race were of Jewish or Hebrew religion, whether born in this country or in any of the foreign countries.

English.-All soldiers were classified as English whenever either they, both of their parents, or three or four of their grandparents were born in England, Canada (French Canada excepted), Australia, or New Zealand.

Scotch.-All soldiers were classified as Scotch whenever either they, both of their parents, or three or four of their grandparents were born in Scotland or in Ireland and were of the Protestant religion.

German.-All soldiers were classified as Germans whenever they, both of their parents, or three or four of their grandparents were born in either of the following countries: Germany and Switzerland (mother's language German).

French.-Soldiers were classified as French where either they, both parents, or three or four of their grandparents were born in any of the following countries: France, Switzerland (mother's language French, and religion Catholic), and French Canada (Quebec, Catholic).

Polish.-Soldiers were classified as Polish whenever either they, both of their parents, or three or four of their grandparents were born in Poland (Hebrews excepted).

STATISTICAL PERFORATED CARDS

Plate III.

Fig. 1. Statistical eard used for tabulating the statisties of the first million draft recruits (P_{1}).
Fig. 2. The same for the second million draft recruits (P_{8}).
Fig. 3. The same for the special measurements of one hundred thonsand veterars, 1919.
$35636^{\circ}-21-5$

C. RESULTS OF THE STANDARD ARMY PHYSICAL MEASUREMENTS.

I. AGE OF RECRUITS

Table 2, prepared from material published in Gould ${ }^{2}$ and from material furnished by the War Risk Bureau, gives the relative frequency of the various ages of officers and men serving in the Civil and World Wars. It is apparent that the great majority of the men measured for the data in this book were between the ages of 18 and 31, inclusive. (See Plate IV.)

Table 2.-Ages of soldiers (officers and men) serving in the Civil a and World Wars.b

| |
| :--- | :--- | :--- |

[^6]
AGE DISTRIBUTION CIVIL WAR VOLS.. AND WORLD WAR TROOPS. OFFICERS AND ENLISTED MEN

ratios per 1000

aVErage age, civil and world war

PLATE: IV゙.
Gould stated that apparently many who were under 18 or 21 gave thelr ages as such that they might be able to enlist at the minimum age of 18 (with consent) or at the minimum legal age of 21.

Baxter's drafted recruits included all troops raised during the draft period, that is draftees, substitutes, and late volunteers.

II. STATURE.

1. GENERAI DISCUSSION.

The distance from the sole of the foot to the vertex of the head is one of the most striking of human dimensions and one of the most easily secured. It is used in anthropology as the basal dimension with which minor dimensions are compared in forming the so-called relative lengths. Such relative lengths are obtained by dividing the minor dimensions by the stature.
Despite its striking nature, the ease of taking it and its universal use (often as standard of comparison), stature is not altogether satisfactory as a fundamental dimension. The principal objection to it is that it is a complex of dimensions of varied significance, the length of the trunk (in many ways the most significant single measure, but difficult to take), the length of the neck, the height of the head, and the length of the inferior (posterior) appendages of the trunk. Actually, the dimensions of the trunk and legs overlap. In many ways the best standard for human dimensions would be the distance of the sternal notch from the buttocks, that is, the sitting height of the sternal notch. This may readily be taken. The relative dimensions of this paper, however, will have for their basis the total stature.
The military reason for laying much stress on stature lies partly in its convenience as a fundamental measure and partly in military history. The potentates of Europe from early time prided themselves on their tall soldiers; they rejected the poorly developed as fit only to stay at home to cultivate the land and to reproduce their kind. It is customary, also, in many army formations to keep together men of about the same height, partly to enable the ranks to keep step better. The latter purpose is imperfectly met, in so far as keeping step depends rather upon similarity of leg length than of total stature; and the two dimensions are not very closely correlated. The military importance of stature is emphasized by the fact that total stature of recruits is taken at practically all recruit stations in all countries. Thus, armies may be compared in respect to average height of their soldiers. Differences in sizes of men of military age between various countries may be quantitatively expressed.

Stature is of great medico-military importance, as it is the basis by which may be judged the build or robustness of the man. Experience has shown that a certain chest circumference and a certain weight are essential for the successful soldier. These measurements are, however, to be judged in relation to stature and not absolutely. This will appear directly in the section relating to the standards of height, weight, and chest circumference. The importance of stature in relation to weight and chest circumference depends on the fact that it gives a warning for tuberculosis, hook-worm, and other diseases.

The method of measuring stature is a simple one. There is affixed to the wall a bit of metric (or English) scale, preferably of wood and accurately calibrated so that it records the vertical distance from the floor. For military purposes the range of the scale need be only from 150 to 200 centimeters, or 59 to 79 inches. To measure, the subject's shoes must be removed and the subject made to stand with his back to the wall at the point of the scale. For a vertical
arm, by which the height of the vertex is secured, one can not do better than to follow the directions given in the Standards of Plysical Examination of the P. M. G. O., Form 75 (second edition), page 79, which read as follows:

Directions for taking height.-Use a.board at least 2 inches wide by 80 inches long, placed vertically, and carefully graduated to one-quarter inch between 58 inches from the floor and the top end. Obtain the height by placing vertically in firm contact with the top of the head and against the measuring rod an accurately squared board of about 6 by 6 by 2 inches, best permanently attached to graduated board by a long cord. The registrant should stand crect with back to the graduated board, eyes straight to the front.

It remains only to state that the subject should be cautioned to stand in the "front" position, heels close together, buttocks (and shoulders) in contact with the wall.

2. MEAN Stature.

The mean stature of the 868,445 recruits of whom the weight was also secured is, as shown in Table 11 (based on Table I), 67.49 inches, or 171.4 centimeters. The mean, in English units, is easily remembered as very near to $67 \frac{1}{2}$ inches, or 5 feet $7 \frac{1}{2}$ inches; also the metric height is almost exactly $1 \frac{7}{10}$ meters. This number is probably close to the average for the entire male population of the ages of 21 to 30 years, inclusive, since the 873,000 men were drawn from all States of the Union in about the proportion of the population and without any obvious selection. It includes thus a great mixture of races whose height is known to be very variable.

The mean stature of 102,304 men, measured at demobilization and including both white and colored, is 67.72 inches, or 1,720 millimeters (Table 14 based on Table CXXXIII). This shows an increase in mean stature of men measured at demobilization over men measured at draft of 0.23 inch, or 6 millimeters. The increase in stature may possibly be due in part to the fact that the men at demobilization averaged more than a year older than at molilization; in part that they were straighter, in part that some of the shortest divisions were not included in the measurements made at demobilization, and in part that some of the shorter men were excluded at the mobilization examination and hence not included in the demobilization measurements.

3. COMPARISON OF MEAN STATURE WITh CIVIL WAR RECORDS.

This mean stature of 67.49 inches may be compared with the statures obtained from recruits during the Civil War as given by Baxter ${ }^{1}$ and Gould. ${ }^{2}$ The avarage stature given by Baxter (Vol. I, p. 23) for 501,068 recruits of all nationalities measured by the Provost Marshal General's Bureau of Civil War times is 67.30 inches (1,709 millimeters). This is an average of stature obtained probably by the same method as that employed in measuring the drafted men of 1917-1918. Our measurements show an increase of 5 millimeters orer the Civil War data. Our data alone exclude men rejected by the State or local boards. There was no minimum height for the Civil War draft, it being stated that no exemptions should be made on account of stature (Baxter, Vol. I, p. 22); at the beginning of the draft in 1917 it was 61 inches. In the Civil War draft the manhood of the Northern States had been much depleted by volunteer
enlistment prior to the draft: For Gould's (p. 105) data for $1,104,841$ white volunteer soldiers, probably very crudely measured and recorded at the beginning of the Civil War, when the minimum height of 63 inches was preseribed but probably not adhered to, the average height was 67.64 , or 171.8 centimeters. This is 0.15 inch greater than our average, which was in turn 0.19 inch greater than Baxter's average. The weighted average for the two groups combined was 67.502 inches, practically the same as our own.

It might be concluded, then, that the mean stature of men of military age has changed little in the United States in the last 50 years, and that our population, so far as stature goes, is placed in the same category as the Scandinavians and below the English middle class. But this conclusion would be hasty. The men of 1917-1918 were taken from all parts of the United States, while those of 1864-1865 largely excluded the Southern States; and since the men of these States are exceptionally tall, their inclusion probably tends to raise the mean stature. A more careful consideration has shown that the mean stature of American males 21 to 30 years has probably diminished since Civil War days about one-half inch. This is chiefly the result of the immigrants during the past half century of short races.

4. COMPARISON OF MEAN STATURE IN VARIOUS COUNTRIES.

It may be instructive to compare the mean height of other countries with the 1,714 millimeters which constitutes the mean height of the young males of the United States (21 to 30 years of age). This average places the United States in the group of nations characterized by a high average stature. This average is almost the same as that of Scandinavian males, 1,710 millimeters. It is about 30 millimeters less than the average of Scotch, 1,746 millimeters, and about 80 millimeters less than the agricultural Scotch of Galway, who, according to Deniker ${ }^{14}$ (p .584), have an average stature of 1,792 millimeters. This average, however, is based on only 75 subjects, and thus may be influenced by accidental inclusion of a few exceptionally tall men. The following table gives the stature of various European races as listed by Martin ${ }^{5}$ (pp. 213-217):

Table 3.-Average statures of European males of various countries.

Group.	Stature (millimeters).	Group.	Stature (millimeters).
Laplanders from Scandinavia	1,523	Turks from Balkans.	1,660
Jews of Russian Poland......	1,612	Venetians.........	1,666
Magyars from west Hungary (conscripts)	1,619	Finns.	1,666
Corsicans..................................	1,633	Thuringians of Saxony (conscripts)	1,667
Austrian Jews of llungary	1,633	Ukrainians...........................	1,669
Roumanians of Hungary	1,635	Dutch in general.	1,675
Portuguese.	1,637	Poles in gencral.	1,679
Hungarians (conscripts)....	1,637	Swedes of Kalmar (conscripts)	1,681
Bulgarians of western Bulgaria	1,638	Danes..	1,691
Lithuanians of Russian Poland	1,639	Wclsh.	1,693
Italians in general.	1,640	Swedes in general (soldiers)	1,705
French (conscripts) (Rapillault, 1902)	1,641	Serbs (conscripts).	1,709
Esthonians............................	1,642	Bosnian-Herzogovinians (soldiers).	1,710
Lithuanians of Lithuania (conseripts).	1,643	Inhabitants of United Kingdom of Great	
Spaniards...............................	1,645	Britain and Ireland...........................	1,719
Conscripts of French Switzerland	1,646	Norwegians (soldiers)	1,720
Roumanians (conscrlpts)...............	1,650	Laplanders	1,736
South Russian Jcws (Weissenberg, 1895)	1,651	Scotch ln general.................	1,746 1,786
Greeks. White Russlans	1,651 1,652	Scotch of the north, Ayrshire, etc... 75 Scoteh, agriculturists of Galway..	1,786 1,792
Dutch of the Province of Zeeland (conscripts)...	1,655	7. Scoth, agricutirists of (laway..	

Table: 4.-Siature, its mean, standard deviation, and coefficient of variation for men (and in part for uomen also) for certain especially stulied groups (Harris and Benedict,' pp. 5.s-54).

Series.	Men.			Women.		
	Mean.	Standard deviation.	C'oefficient of variation.	Meall.	Standard deviation.	Coefleient of variation.
Ameriean:	Centimeters	Centimeters.	Per cent.	Centimeters.	Centimeters.	Per cent.
Harvard students.	175.34	6. ${ }^{5}$	3.76			
Englisli:						
Cambridge students, Pearson.	174.91	6.41	3.66	162.26	6.00	3.70
Cambridge students, MacDonell	174.88	6.46	3.70			
Pearson's second generation. .	174.37	6.88	3.95	162.23	6.63	4.09
Pearson's family records..	172.81	7.04	4.07	139.90	6.44	4.03
Pearson's parental generation.	171.91	6.86	3.99	138.70	6.07	3.8
New South Wales criminais..	169.87	6.58	3.87	158.09	6.15	3. 89
Scottish students.	171.70	5.94	3.46			
MacDonell's convicts	166.46	6.45	3.88			
Goriug's conviets.	166.29	6.76	4.06			
Swedes...	169.79	6.81	4.01	15. 71	6.72	4. 23
Ilessians.	167.36	7.19	4.30	156. 18	6. 90	4.40
French.	166. 80	6.47	3.88	$1: 6.10$	6. 79	4.35
Bavarians, Pearl.	166.55	6.39	3.84	154.71	6.21	4.02
Bavarians, Pearson.	165.93	6.68	4.02	163.85	6.55	4.26

Table 5.-Average stature of adult males of various nativities in the L'nited States in the Civil Wir. period (from Barter, ${ }^{1}$ Vol. I, p. 32).

Nativits.	Number of men.	Mean height.	
United States, Indians	121	Inches. 67.934	Centimeters. 172.5
United States, whites.	315,620	67.672	171.89
Norway.	2,240	67. 667	171.37
Scotiand.	3,476	67.066	170.35
British America.	21,645	67.014	170.22
Sweden.	1,190	66.896	169.92
Ireland...	50,337	66.741	169. 52
Denmark.	3×3	60.618	169.23
Holland..	949	66.637	169.21
Hungary...	89	66. 3 H	169.12
England.	16,196	60.577	169.11
Germany.	34,944	66. 336	169.00
United States, c.slored	25,28	66.531	168.98
Wales.	1,104	66.418	168. 70
Russia.	122	60.393	168, 64
Switzerland.	1,502	66.351	168.61
West Indies	${ }^{5150}$	66.307	168, 42
France.	3,243	60.277	168.3
Poland.	171	60.211	168.18
Mexieo.	91	66.110	167.92
Italy..	339	66.000	167.64
South America.	79	$6{ }^{6.109}$	167.38
Spain..	148	6i. 635	166.71
Portugal	81	65. 432	166.20
Total	501,068		
Total frequeney and mean of.		67.300	170.94

Table 6.-Frequency distribution of stature by classes at mobilization and demobilization (uhite and Negro troops), $191{ }_{1}^{\gamma}-1919$.

A. First million draft recruits. ${ }^{1}$			B. 103,410 troops at demobilization. ${ }^{\text {a }}$		
	Inches.	Per 1,000.	Centimeters.	Inehes.	Per 1,000.
		3.534 3.354 8.672 18.150 35.740 60.611 94.400 126.914 $1+6.927$ 149.599 127.265 96.065 62.542 36.102 17.504 7.342 3.001 1.237 0.413 0.293 0.341	$148-149$ $150-151$ $152-153$ $154-155$ $156-157$ $15-159$ $160-161$ $162-163$ $164-165$ $166-167$ $168-169$ $170-171$ $172-173$ $17-175$ $176-177$ $178-179$ $180-181$ $182-1 \times 3$ $184-185$ $186-187$ $188-189$ $190-191$ $192-193$ $19+195$ $19-197$ $19-197$ $200-199$ $202-201$ $204-203$ $206-207$ $208-209$		

${ }^{1}$ From Table I.
${ }^{2}$ From Table LXXV.
Table 7.-Stature of Army conscripts and recruits, in inches, as determined by Laplace-Charlier frequency curves (by Arne Fisher, from Hoffman, ${ }^{16}$ p. 33).
[Ratio per 1,000.]

Inches of stature.	United States Army recruits, 1906-1915.	$\begin{array}{\|c} \text { Norwegian } \\ \text { conscripts, } \\ 1913 . \end{array}$	$\begin{gathered} \text { Swedish } \\ \text { conscripts, } \\ 1914 . \end{gathered}$	$\begin{gathered} \text { Danish } \\ \text { conscripts, } \\ 1916 . \end{gathered}$	Wurttemberg conscripts, 1911.	Japanese conscripts, 1916.
56.						4.7
57.						12.5
58.....						31.6
59.			1. 3		1.2	64.0
60.			2.2	6.7	7. 0	106.5
$61 .$.		2.1	5.4	15.0	22.7	148.6
62.	3.8	9.9	12.9	30.2	53.1	173.0
63.	19.2	29.4	27.5	54.0	96.9	169.8
64.	53.8	60.1	53.4	92.6	141.7	132.8
65.	105.5	100.3	88.6	130.5	167.5	83.9
66.	155.7	137.6	127.8	157.7	164.8	44.2
67.	182.2	165.2	155.3	160.0	137.2	20.8
68.	169.5	163.1	159.7	136.0	97.0	6.4
69.	1294	132.8	138.5	96.9	59.2	1.2
70.	86.8	96.4	102.0	59.4	30.9
71.	51.0	58.9	63.4	31.7	13.6	
72.	26.3	28.7	34.6	15. 2	5.0	
73.	11.4	11. 3	16.4	6. 7	1.5	
74.	4.2	3.2	7.0	2.8	. 3	
75.	1.2	. 5	2.7	1.1		
76.		. 3	1.3	. 4		-
				. 2		

Table S.- Calculated frequency distributions of statures of men of United States Civil War period, France, Belgiun, and Italy (Baxter,' Vol. I, p. Lxxxt, and Livi, ${ }^{17}$ Anthropometria Militare).
[Ratio per 1,000.]

Stature.				United (States 13. A. Gonid).	France (D'llagenvillers).	Belginm (Queteiet).	Italy (livi).
	Centimeters.	*	Inches.				
133.			52.5			0.1	0.3
136.			53.5		0.5	.3	. 5
139.			54.7		1.6	1	1
142..			55.9		4.5	3	2
145.			57.1		11	7	4
$148 .$			58.3	1	24	14	9
$131 .$			59.4	4	44	23	
$154 .$			60.6	11	73	53	59
157.			61.8	24	105 132	107 138	105
160.			63.0 63.8	45 75	132	136 150	122.
165.			63. 0	109	140	150	150 167
168.			66.1	137	118	136	137
170.			67.0	150	87	107	96
173.			68.1	142	55	53	70
176.			69.3	117	32	25	35
179.			70.5	84	16	14	15
181.			71.3	52	7	7	4
184.			72.4	2N	3	3	2
187.			73.6	13			1.
192..			74.8 75.6	5 2	.3		. 2
194.			76.4	1			
				1,000	1,000	1,000	1,000

5. FREQUENCY IISTRIBUTION.

While the mean is probably the best single measure of the stature of the country as a whole, still the relative frequency of the different statures (inches) will be highly instructive. This is shown in the second column of Table 6 , which gives the proportion of drafted men of 1917-1918 of each stature from 59 inches (strictly, 59 inches and below) up to 79 inches (strictly, 79 inches and above). One sees that the statures below 62 inches are relatively uncommon; but this is in part due to the fact that, churing'a brief period of the draft, men with a stature below 63 inches were rejected, so that some such men were excluded. The sudden diminution of the number of men below 63 inches is thus in part due to a process of selective elimination of the short men. The effests of this selection are still more marked in the case of men 59 inches and under. No men of this stature were supposed to be accepted for military service. Their inclusion, therefore, is partly accidental, and partly due to the intentional acceptance, in spite of their short stature, of men of exceptionally good build. Instead of less than 4 men per 1,000 of our population being 59 inches or under, it is probable that the inclusion of all cases would give 10 per 1,000 or more.

As the distribution in Table 6 shows, the commonest stature at mobilization was 68 (67.5 to 68.4) inches-a stature found in about 15 per cent of our young men. ${ }^{a}$ About 10 per cent measured 70 inches in height, less than 4 per cent 72 inches in height, and above that stature to that of 78 inches the proportional numbers fall rapidly.

[^7]For comparison with Table 6 there are printed Tables 7 and 8, which give for various countries the findings as to frequency distribution of statures. The frequency distribution of stature of 103,410 men at demobilization is given in 2-centimeter classes in Table 6, extracted from Table LXXV. The total range in stature is from 148 to 209 centimeters and above. This tends to raise the class 208-209 above the class 206-207 centimeters, because the former class really has a much more inclusive range than the latter. The total range is from 58.3 to 82.3 inches. There are only seven cases above 200 centimeters, or 79 inches, and it is probable that some of these are due to errors in recording.

Table 7, taken from Hoffman ${ }^{16}$ (p. 33), and Table 8 give the comparative distribution in statures of conscripts of different countries, Civil War volunteers, per 1,000 . We note that for the United States Army recruits, 19061915, the commonest or modal height is 67 inches, a class that contained 182 per 1,000 men. For Norwegian conscripts the mode is also 67 inches, with 165 per 1,000 men. For Swedish conscripts the mode is 68 inches, found in about 160 per 1,000 men.

The accompanying Table 9 gives the direct comparison of the distribution of statures of recruits of 1917-1918 (Table I) with that of Civil War recruits as given by Baxter ${ }^{1}$ (Vol. II, Table 3) for 501,068 Civil War draft recruits of all countries of origin.

Table 9.-Comparison of frequency distribution of statures, I'nited States reemits, ('ivil War and World H^{\prime} ar.

Classes (inches).	Civil War.	1917-1914	Classes (inches).	Civil War.	1917-1918.
Under 61	7.478	6.923	67-68.9.	288. 683	296. 882
61-62.9.	41.587	26.624	69-70.9	177. 205	223. 630
63-64.9.	141.773	96.127	71-72.9.	64.488	98. 714
65-66.9.	263.611	220.932	73 and over.	15.174	30. 164

This table shows that there were slightly fewer (per mille) recruits under 61 inches chosen in 1917 than 1864 . There were nearly twice as many men 73 inches and over chosen in the latter as in the earlier period, and 50 per cent more men of 71.3 inches. The great deficiency in the later series is in men of mediocre size, namely $63-66.9$ inches. This, again, is in accordance with the history of immigration, since within the last 50 years the United States has experienced a great immigration of Scandinavians on the one hand and of south Italians and Polish Jews on the other. However, as pointed out above, the great excess of relatively tall men in the later series is due to the inclusion therein of many tall white men from the Southern States.

The data supplied by the draft boards gave no indication of age; therefore it is impossible to make comparison with the statistics of Gould, ${ }^{2}$ in which the statures are carefully distributed by age of recruits. From Hoffman's ${ }^{18}$ (p. 37) paper based on stature of the United States Army recruits, 1906-1915, it appears that the mean stature increases preceptibly up to 22 to 24 years and then diminishes at greater ages.

Tables 10.-Mean stature at each age. 18 to 2.5 years, Úniced Stales Army recruits, 1906-1915 (Hogmann, ${ }^{16}$ p. 3\%).

6. STANDARD DEVIATION.

The standard deviation of stature for the first million recruits, 1917-1918, is 2.71 inches (6.88 centimeters). (See Table I.) The standard deviation of the English upper middle class, with a stature of 69.22 inches, is 2.59 inches, and for Cambridge University students, with 68.86 inches of stature, the standard deviation is 2.52 inches. Since variability is measured by standard deviation, and since it tends to increase with the mean, it is more usual to make comparison with the standard deviation divided by the mean, the so-called coefficient of variation. The coefficient of variation thus obtained is, for the United States recruits, 4.02 per cent; for the English middle class, 3.74; for Cambridge University students, 3.66 . The relatively large size of the coefficient of variation for United States recruits signifies that the population is much more variable in stature than even the population of the English middle class. It is indeed about 8 per cent more variable. We can understand this high variability of the mean stature for the United States recruits in view of the heterogeneous composition of the population of the United States.
The standard deviation of 501,068 Civil War recruits, using Baxter's figures, (Vol, II, Table 3), is 2.664 ± 0.002. Of recruits of $1917-1918$ the standard deviation of stature is 2.71 inches. Thus it appears that the standard deviation of the military population of the United States in 1917-1918 las increased slightly from that of 1865 . Similarly the coefficient of variation has increased from 3.96 to 4.02 . The difference is clearly to be explained by the inclusion in the 1917-1918 figures of many Scandinavians on the one hand and representatives of the south Italian and Jewish races on the other. It is also influenced by this inclusion of tall southern recruits in the later series.

The standard deviation of mean stature for white troops at demobilization is 6.66 centimeters (1.69 inches), with a probable error of ± 0.01; for Negro troops at demobilization, 6.91 ± 0.04 (1.76 inches). Negro soldiers are more variable than white.

Table 11.-Distribution of stature and weight, draft recruits of 1917-1918.

Classes of stature (inches).	Classes of weight (pounds).						3
	Under 100	100-119	120-139	140-159	160-179	100 and over.	Total.
Under 61.	0.038	2. 021	2. 627	1.611	0.500	0.126	6. 923
61-62.9.	. 078	10. 556	12.335	2.863	. 586	. 206	26.624
63-64.9.	. 061	24.605	52. 594	15. 586	2.663	. 618	96.127
65-66.9.	. 029	28. 185	120.903	58. 668	10. 849	2. 298	220.932
67-68.9.	. 005	14.333	134. 539	115. 311	26.780	5. 914	296.852
69-70.9.	. 001	3.349	68.364	107. 105	36.330	8.481	223.630
71-72.9.		. 507	15.762	49.064	26.321	7.060	98, 714
73 and cser		. 137	1. 961	11. 883	11.623	4. 560	30.164
Total.	. 212	83.693	409.085	362.091	115.652	29.263	999.996

Meanstature, 67.49 inehes. Standard deviation, 2.714 inehes. Coefficient of variation, 4.021 inches.

Table 12.-Distribution of stature and weight in 6,359 American born Civil War draft recruits (Baxter, ${ }^{1}$ Vol. II, p. 300).

Classes of stature (inches).	Classes of weight (pounds).						
	Under 100	100-119	120-139	140-159	160-179	180 and over.	Total.
Under 61.	0.315	0.629	0.472	0.157			1. 573
61-62.9.	. 629	13.996	8.177	1.887	0.157		24.847
63-64.9.	. 315	60.230	67.621	9. 435	1. 258		138. 858
65-66.9.	. 629	58.500	170.939	57.242	4. 403	1.258	292. 971
67-68 9.	. 315	17.927	161.661	116. 056	13.681	1. 887	311.527
69-70.9.		4. 560	50.951	84.604	27.363	3. 145	170.624
$71-72.9 . .$.			6. 133	24.375	16.355	2. 359	49.222
73 and over			. 786	4.089	3.931	1.573	10.379
Total..	2. 202	155.842	466.740	297.846	67.149	10.222	1,000.000

Mean stature, 67.30 inches. Standard deviation, 2.3956 inehes. Coeffieient of variation, 3.560 inehes.

7. MEAN STATURE FROM DIFFERENT STATES.

(a) Recruits.-The mean stature of 67.49 inches for recruits is obtained by lumping the statures of recruits from all States. It will be of interest to compare the stature of men from the different States. This comparison is made in Table 13, which gives the mean stature both in inches and centimeters for the different States, arranged in order of standing, the State with the highest stature being placed first. This table shows that the men of Texas have approximately an inch greater stature, on the average, than those of the entire United States, while men from Rhode Island have a stature an inch below the mean of the United States. The great stature of men from Texas is partly due to the fact that there has been to that State a very small immigration of men with the shorter statures characteristic of southeastern Europe. As shown in Table 17 probably in Texas under 1 per cent of the population is Italian, while Germans and Austrians are relatively common; native whites of native parentage comprise nearly 50 per cent, while nearly 25 per cent are Negroes. On the other hand, in Rhode Island 8 per cent of the population is Italian, 11 per cent French Canadian, and only 2 per cent German; 33 per cent were foreign-born whites. An examination of the table shows that the Southern States, Texas, Oklahoma, Mississippi, Tennessee, and Arkansas stand
at the head of the list, while the States of the Northenst, especially those engaged in manufacturing, lie at the bottom of the list (Rhode Island, Connecticut, Pennsylvania, New York, Massachusetts, and New Jersey). The high stature of the men of the Southern States is due, as indicated, in part to the absence of recent immigration from southeastern Europe, and also in part to the average tall stature of Negroes. The short stature of the population of the manufacturing and maritime States of the Northeast is due in part to the presence in them of members of the shortest European races. In the upper half of the table one finds also States like Kansas, Idaho, Oregon, Nebraska, South Dakota, Iowa, and Minnesota, which are populated largely by Nordics.

Table 13.-Mean stature by States, first million druft recruits; States arranged in order of standing with proportional weight and chest circumference at (expiration) for each inch of stature.

State.	$\begin{aligned} & \text { Number of } \\ & \text { men } \\ & \text { measured. } \end{aligned}$	Mean helght.		Mean welght. Mean height.	Mean chest. Mean height.
Texas	34,531	Inches. 68, 40	Centimeters. 173. 74	Pounds.	Inches.
Oklahoma	19,429	68.28 68.28	173.4 173.43	2.079 2.084	0.483
Misslsslppl.	8,543	68.27	173.41	2. 10	. 485
Tennessee.	14,426	68.27	173.41	2. 052	. 483
Arkansas.	10,111	68.20	173.23	2.071	. 486
Kansas.	9,571	68.20	173.23	2.107	. 487
Alaska.	106	68.15	173.10	2. 208	. 493
Colorado.	6,635	68.15	173.10	2. 069	. 485
North Carolina.	14,668	68.15	173.10	2.076	. 487
Arizona.	3,850	68. 13	173.05	2.099	. 488
Idaho..	4,031	68.10	172.97	2. 133	. 495
Nebraska.	10,774	68.09	172.95 172.92	2.150 2.126	. 482
South Dakota	3,892	68.05	- 172.85	2.159	. 493
lowa.	19,537	68.04	172.82	2. 126	. 491
Minnesota	27, 341	68.04	172.82	2.15	. 494
Kentucky.	15,502	68.02	172. 77	2.058	. 484
Alabama.	15,988	68.01	172. 75	2.077	.485
Montana.	11,648	68.01	172.75	2.151	. 492
Georgia....	20,305	67.99	172.69	2.071	. 488
Missouri....	13,316 24,964	67.96 67.95	172.62 172.59	2.140	.492 .486
North Dakota.	6,444	67.92	172.52	2.163	. 497
West Virginia.	12,367	67.87	172.39	2.0×5	. 490
Utah........	4,568	67.85	172.34	2. 109	. 488
Nevada.	1,441	67.83	172.29	2.143	. 497
Virginia..	17,616	67.80	172.21	2.070	. 489
Wyoming	1,927	67.79	172.19	2.13	. 492
Indiana.	23,194	67.75	172.09	2.090	. 489
California. S Suth Carolina	35,461	67.67	171.88	2.127	. 483
South Carolina......	9,343	67.64	171.81	2.077	. 489
District of Columbla.	4,486	67.63	171.78	2.077	. 482
Louislana.	12,356	67.60	171.70	2.065	. 459
Wisconsin.	18,433	67.60	171.70	2.137	-. 496
Florida......	5, 895	67.58	171.65	2.061	. 489
New Mexico.	2,690	67.50	171.45	2.051	. 491
Illinols.	69,491	67.40	171.20	2.103	. 493
Ohio...	52,814	67.38	171.15	2.098	. 491
Michigan.	3,315 41,872	67.28 67.23	170.89 170.76	2.10	. 497
Delaware	1,891	67.19	170.66	2.085	. 492
Vermont.	2,077	67.12	170.48	2.091	. 498
Maryland.	9,192	67.08	170.38	2.09	. 494
New Hampshire.	2,240	66.97	170.10	2.095	. 495
New Jersey.	29,958	66.77	169.60	2.079	. 498
Massachusetts.	29,534	66.76	169.57	2.07	. 496
New York....	87,818	66.72	169.47	2.091	. 497
Pennsylvania	77, 1*6	66.72	169.47	2.094	. 496
Connecticut. lhode Island.	13,585	66.71	169.44	2.005	. 501
Rhode Island	3,928	66.40	108.66	2.06	. 494

(b) Demobilized men.-Table 14 gives the distribution of mean stature of men at demobilization, by States. In this table the States are arranged in order of mean stature of men, the States with the tallest men being placed at the top of the table.

Table 14.-Mean stature, by States, of soldiers at demobilization (1919).

	State.	Number of ment measured.	Mean stature.	
			Inches.	Centime ters.
United States		102, 301	67.72	172.09
Alaska....		13	69.43	176.35
Mississippi		2,099	68.61	174.28
Tennessee.		2,807 4,361	68.61 68.60	174.26 174.21
Alabama.		1,930	68.57	174.16
Georgia...		3,397	68.51	$17+.01$
Oklahoma		2,310	68.44	173.81
Nebraska		819	68.44	173.84
Kansas...		1,012	68. 43	173.82
Arkansas.....		2,576	68.41	173.76
South Dakota Oregon.......		+16 1,069	68.39	173.70
Washington..		1,069	68.38 68.38	173.68 173.67
Montana.		264	68.35	173.60
Arizona.		130	68.33	173.55
South Carolina		828	68.32	173.51
Minnesota.		1,950	68.31	173.51
Iowa.		1,609	68.28	173.42
Idaho..		161	68.26	173.39
Florida.....		1,022	68.22	173.28
North Carolinia		1,815	68.22	17327
West Virginia. Utah..........		1,686	68. 20	173.24
Wyoming		80	68.16	173.21 173.13
Kentucky		2,921	65.13	173.05
Colorado.		225	68.12	173.02
Virginia.		1,920	68.01	172.75
Missouri......		2,836	67.98	172.66
North Dakota.		358 18	67.96	172.61 172.50
California		481	67.91	172. 49
Louisiana.		2,070	67.86	172.36
New Mexico		229	67.82	172.27
W isconsin.		2,675	67.79	172.18
Indiana.		3,994	67.73	172.03
Illinois........		6,687	67.65	171.83
District of Collu		231 7,076	67.60 67.48	171.70 171.39
Michigan.		3,715	67.32	171.39 99
Delaware.		${ }^{3} 100$	67.26	170.83
Maryland		1,138	67.20	170.70
Vermont		446	67.19	170.67
Maine.		693	67.17	170.60
Connecticut..		996	67.08	170.38
Pennsylvania.		10,874	67.01	170.21
New Jersey.		3,180	66.93	169.99
New York.		9,207	66.92	169.98
New Hampshir		$\underline{+13}$	66.80	169.67
Massachusetts.		4,782	66.77	169.60
Rhode Isla		403	66.54	169.00

Table 15.-Increase in stature of soldiers at demobilization orer stature of recruits, 1917-1919 (inches).

-	Statc.	Increase (inches).	State.	Increase (inclies).
United States.		0.23	Virginia.	0.21
Alaska.		1.28	New York	. 20
South Carolina		. 68	Arizona.	. 20
Florida......		. 64	Texas..	. 20
Alabama		. 56	Wisconsin	. 19
Georgia.		. 52	Idaho.	. 16
Washington.		. 41	New Jersey.	. 16
Connecticut.		. 37	Oklahoma.	. 16
W yoming.		.37	Rhode Island	. 14
Nebraska.		. 36	Maryland.	. 12
Tennessec.		. 34	Kentucky .	. 11
Utah.		. 34	Ohio..	. 10
Mississippi		. 34	Michigan	.01
Montana..		. 34	Nevada.	. 08
South Dakota.		. 34	North Carolina	
West Virginia.		. 33	Vermont.	. 07
New Mexico.		. 32	Delaware	. 07
Oregon.		. 29	North Dakota	. 01
Pennsylvania.		. 29	Missouri.	. 03
Minnesota...		. 27	Massachusetts	. 01
Louisiana.		. 26	Indiana...	-. 02
Illinois..		. 25	Colorado.	-. 03
California		. 24	District of Columbia	$-.03$
Iowa...		. 24	Maine..	-. 11
Kansas..		. 23	Now Hampslire.	-. 17
Arkansas.		. 21		-

8. COMPARISON OF STATURE OF RECRUITS AND VETERANS, BY STATES.

A comparison of Tables 13 and 14 and reference to Table 15 bring out many interesting differences in the stature of recruits and veterans. The increase in stature for the troops measured for the United States as a whole is about 0.23 inch. The State that showed the greatest increase in stature at demobilization as compared with mobilization is Alaska. The increase amounts to about 1.28 inches, but since this difference is based on only 13 men measured at demobilization, little stress is to be laid on it. The next on the list are the four Southern States of South Carolina, Florida, Alabama, and Georgia, in which the increase is from 0.68 to 0.52 inch. From these States there came many Negroes and also many white men of exceptionally tall stature. The end result of increase in stature is probably due to a combination of circumstances. Many of the Negroes assume a lax posture which the Army training would do much to correct and straighten. Similarly, many of the tall Southerners, as is well known, early acquire a stoop. Probably the mean for the recruits at induction was lowered to a certain extent by the inclusion of the measurement of some men subsequently rejected by the camp boards for underweight, defective physical development, etc. Finally, the men have acquired between one and two years additional age and, in the case of the younger troops who are still growing, this would mean an addition in stature, and this addition would be absolutely the greatest in the case of the tallest population, and this tallest population comes from just those Southern States. In the Southern States there are found in the upper half of the table the States which have acquired an increase of 0.25 inch or over, West Virginia, Tennessee, Mississippi, and Louisiana. Only the Southern States of Arkansas, Virginia, Texas, Kentucky, and North Carolina show an increase of less than 0.25 inch.

The increase of stature affected different States differently, so that the order in which they stand is changed in the two periods. Thus, Mississippi, which stood third in stature of recruits, is second in the stature of demobilized troops. Tennessee and Texas changed places. Alabama and Georgia are placed relatively much higher in the order of States at demobilization than at mobilization. On the other hand, farmers from Kansas increased only slightly in stature and consequently stard relatively low in the demobilized list.

In general, the Southern States show greater improvenent in stature than the Northern States, and, as indicated above, there was greater room for improvement. Part of the improvement is doubtless to be attributed to the greatly bettered sanitation in the Army over that which they experienced at home. With the elimination of the hookworm infections and the "straightening up" resulting from the setting-up exercises of military drill, muscular weakness was relieved and the back strengthened. Consequently, 1 centimeter or more was added to the stature.

Among Northern States which showed a considerable increase in stature are: Washington, 0.42 inch; Connecticut, 0.37 ; Nebraska, 0.36; and Utah, 0.34 . The States of the Northwest for the most part lie in the upper part of the table, and this is because they contain so many tall men who showed the greatest absolute increment in stature even if they are not proportionately increased over the shorter men.

While Rhode Island retains her position at the bottom of the list, her men made greater improvement in stature than those from some other States. At the bottom of the table of increase stand New Hampshire, the District of Columbia, and Indiana, in which there has been an average decrease in height at demobilization. Why there should have been a decrease of 0.17 inch in the case of New Hampshire troops is hard to say. Perhaps it is because the number of men examined is only 94 and the diminution is due to the accident of small numbers. Men from the District of Columbia remained practically unchanged in stature and this is probably because the District is a city made up, so far as white population goes, of men who are used to holding themselves well, assuming a good posture, for it is well known that the standing posture of men in cities is, on the whole, superior to that of rural districts. Similarly, the men of Massachusetts (largely urban in its population) have changed little in stature. In the lower half of the table, showing an increase of less than 0.20 inch, lie certain States of the Central West, such as Indiana, Missouri, North Dakota, Michigan, Ohio, and Oklahoma; also certain Eastern Statẹs, such as Delaware, Vermont, Maryland, Rhode Island, and New Jersey, States for the most part not marked by extremely tall stature, in which, therefore, any increase in size with age will be less marked than in the case of States containing tall men.
9. COMPARISON OF STATURE OF RECRUITS FROM THE VARIOUS STATES, 1863-1864 AND 1917-1918.
A natural inquiry is: How does the stature of draft recruits of 1917-1918 compare with that of recruits of the Civil War, 1861-1864, 55 years carlier? The mean stature of $1,104,841$ white volunteer recruits in the first years of the Civil War was, according to Gould ${ }^{2}$ (p. 105), 67.64; for 501,068 draft recruits (Baxter, ${ }^{1}$ Vol. I, p. 23) it was 67.30. ${ }^{a}$ The weighted average for the two groups was 67.502 . To conclude that the average of our male population has diminished 0.15 inch, has increased 0.19 inch, or has remained practically stationary with a decrease of only 0.01 inch, would probably not be justified, for the population measured in 1861 is not strictly comparable with that measured in 1917-1918. For, first, the population of the Civil War recruits largely excluded the Southern States, which were in secession, while that of the World War included them. It is these Southern States that in 1917-1918 showed the tallest average stature; and the inclusion in the later data (and not in former) of several States above the average probably tends unduly to raise the 1917-1918 mean stature as compared with that of the Civil War. Second, in the Civil War there was a larger percentage of men below the ages of 21 and 24 than in the World War. In the Civil War 292 per 1,000 were below the age of 21 and 519.56 were below the age of 24 , while in the World War only 95.94 were below the age of 21 and 433.56 below the age of $24 .{ }^{b}$ Since many men under 21 have not reached their full stature and some not even until the age of 24 , the exclusion of a number of men of the younger ages tends to raise the average for the World War.

A more just basis of comparison of mean stature in the two epochs is that between individual States. Table 16 has been drawn up from Gould's Table I,

[^8]Chapter V, page 94. It should be recalled that this table includes only volunteers from the unsulled part of the northern population during the first years of the Civil War. This table reveals a certain measure of stability in the order of average male statures in the different States, even during the course of half a century. In both the earlier and the later series Iowa, Kentucky, Missouri, and West Virginia stand near the top of the list (of these Northern States) and Connecticut and Rhode Island at the very bottom. New York, Pennsylvania, and Massachusetts stand low in both series-the effect of the immigration of South Irish and South German stock was already evident in 1861-1864. On examining the different columns it appears that there is an increase in mean stature in Minnesota, due to recent Scandinavian immigration thither; Wisconsin shows little change in mean stature because the increase of Scandinavians has counterbalanced the effect of the shorter immigrants. New Jersey's increase is probably largely due to its large commuting population, the overflow of the best of the metropolis which has attracted great numbers of men of exceptionally fine physique. The following States show a decrease: Illinois, 0.57 inch; Ohio, 0.46 inch; Rhode Island and Connecticut about 0.69 and 0.38 , respectively; New York, 0.37 ; Indiana, 0.31 ; Michigan, 0.31 ; Massachusetts, 0.29 . These are the States which have received most of the recent immigration of the Mediterraneans, Polish Jews, and Balkanese. The great reductions in Maine, New Hampshire, and Vermont are due chiefly to the immigration of the French Canadians into these States.

It is reasonable to suppose that, since this country has received a very large number of immigrants of prevailingly low statures from southern Europe during the last 50 years, the average stature of the population of the country should show a decrease. Such is, however, very difficult to demonstrate mathematically, since the methods used in the recruiting of the two armies at the two periods differed so materially.

Table 16.-Comparison of stature (in inches) of native and foreign born white and colored draft recruits, United States, 1917-1918, and white recruits of the Civil War (Gould, ${ }^{2}$ Table I, Chap. V), by States in order of 1917-1918 average statures (Louisiana omitted on account of scanty data in Gould's Table).

a Data for Rhode Island and Connecticut consolidated, 67.09 .
$35636^{\circ}-21-6$

Tamser: 17.-Characteristics and composition of the popu-

	Deslgnation of sectlou.	Characteristics.			Cltles of 25,000 or over.	
1	A labama 1.	Minling and manufacturing area.	760, 740	49.0	Birmingham	26.9
	Alabama 2.	Large Negro population.......	563, 441	44.0	Montgomery	14.8
	Alabama 3.	Large native whlte poputation.	5i7,627	35.0		5.3
	Alabama 4.	Large Negro populatlon........	122,817	31.0		
	Alabama 5	Urban and suburban area	95,309	41.0	Mo	54.0
2	Arizona 1.	Large Indlan population, sparsely scttled.	57, 953	9		12.2
	Arizona 2	Chicfly white population........	146,371	2.9		3 3. 4
3	Arkansas 1	Negro, Mississlppl bottoms.......	641,940	36.0	Little R	17.6
	Arkansas 2.	Large natlve white population, hill country.	212,005	19.0		3.4
	Arkansas 3.	Largc native white population..	720,504	30.0		11.3
4	Callfornia 1	Chiefly agrieultural arca.	1,433, 855	16.1	$\left\{\begin{array}{l}\text { Oakland...... } \\ \text { Sacramento.. }\end{array}\right.$	+8. 9
	California 2	Mining arca	£3, 226	4.4		10.5
	California 3.	Sparsely populated.	114,318	2.5		43.9
	Californla 4.	Urban area.	319, 198		Los Angeles.	100.0
	California ${ }^{\text {a }}$	do	416,912	9, 689. 0	San Franeisco.	100.0
5	Colorado	Large native white populatlon..	108, 622	3.4		18.1
	Colorado 2	Russian population.............	89, 813	8.0		28.8
	Colorado	English population	78, 716	10.0		29.4
	Colorado 4.	Prevailingly agricultural.	139,574	5.0	Colorado Springs	33.5
	Colorado 5	Urban population.	213, 381	3,679.0	Denve	100.0
	Colorado 6	Austrian and Italian population.	159,918	8.0	Pueblo.	46.5
6	Connecticut	$\left\{\begin{array}{c}\text { Prevailingly agricultural and } \\ \text { ncar metropolitan. }\end{array}\right.$	400,100	114.7	Norwich	78.2
	Connceticut 2.	Manufacturing arca	714,656	536.5	New Haven. Bridgeport...	96.1
789	Delaware.	State undivided.................	202, 322	103.0	Wilruington...	48.0
	District of Colam	District undivided................	331,069	5,518.0	Washington	100.0
	Florida 1	More white and maritime	248, 836	18.7	Jacksonville	35.0
	Florida 2	MoreNegro and rural population	220,302	21.0		14.1
	Florida 3	$\left\{\begin{array}{l}\text { Cuban, Spanish, West Indian } \\ \text { population. }\end{array}\right.$	21,563	19.0		92.5
	Florlda 4	Peninsular..........................	261,918	8.7	Tampa.	30.9
10	Georgia 1	Mixed population, native white predominating.	1,334,222	43.0	Atlanta	19.4
	Georgia 2...	Large Negro population..........	1,274,899	45.0	$\left\{\begin{array}{l}\text { Savannah.... } \\ \text { Augusta..... }\end{array}\right.$	$\} 21.9$
1	Idaho	State undivided	325,594	3.9		21.5
12	Illinois	Densely populated.	434,972	192.5	$\left\{\begin{array}{l}\text { Joliet........... } \\ \text { Aurora......... }\end{array}\right.$	63.5
	Illi	$\left\{\begin{array}{l}\text { Mixed native and foreign popu- } \\ \text { lation. }\end{array}\right.$	753,575	68.2	$\left\{\begin{array}{l} \text { Peoria......... } \\ \text { Rockford...... } \end{array}\right.$	¢ 43.9
	Illinois 3	Agricultural area, native........	995, 129	51.0	Springfield.... Decatur	24.3
	Illinois	Largcly German population.....	344,621	80.0	East St. Louis. .	45.3
	Illinois 5	Urban are	2, 185, $2 ¢ 3$	11, 812.0	Chicago	100.0
	Iliinois 6	Negro population (Egypt)	52,591	80.0		41.9
	Illinois 7	Agricultural area..................	805, 587	49.0	Bloomington.	31.1
	Illinois 8.	Agriculture and manufacturing area.	266, 833	45.3		28.2
13	Indiana 1.	Manufacturlng.	282,521	117.0	Soutli Bend.	69.3
	Indiana 2....	Agricultural, considerable German.	128,679	37.0		18.6
	Indiana 3.......	Agricultural area, native stock.	2,259,676	76.0	Indianapoils. . Evansville	40.4
14	Lowa 1	Forelgn white, German and Scandinavlan.	1,442,410	38.0	Sioux City. (Davenport.	29.6
	1 Indian.	${ }^{2}$ Chinese.	Japanesa.		- Russian.	

lation of the zarious sections of the United States.

Native	white.	E				$=$		昆			Eig				
			$\begin{aligned} & 0.0 \\ & 0_{0}^{\circ} \\ & \% \end{aligned}$		$\begin{aligned} & \text { d } \\ & \text { E } \\ & \text { E } \\ & \text { c } \end{aligned}$	号				$\frac{\text { d }}{\text { E. }}$					ड S © on
71.5	2.2	1.1	25.6												
28.5	. 6	. 3	70.6												
67.6	. 8	. 6	31.0												
26.9	. 2	. 1	72.8												
46.3	7.5	3.2	42.8		1.7	1.3									
34.2	13.1	15.4	. 6	36.6	1.5		2.2							8.4	
42.8	23.6	25.9	1.1	6.6	2.2	1.9	2.8			1.2				7.8	
41.7	2.0	.9	53.3												
96.9	1.4	. 5	. 7												
¢3.9	2.9	1.3	12.0												
49.6	25.2	20.0	. 8	$\left\{\begin{array}{l}1.7 \\ 81.5 \\ 32.1\end{array}\right.$	5.7	3.7	2.8		2.6	3.8		2.2			
47.2	27.3	19.9	. 2	$\left\{\begin{array}{l}12.6 \\ 212.6 \\ 11.6 \\ 1.0\end{array}\right.$	4.3	4.0	6.0	$\left\{\begin{array}{l}0.1 \\ 2.0\end{array}\right.$	\} 1.5	6.9		1.4			
57.6	17.5	17.8	1.1	$\left\{\begin{array}{l}13.6 \\ 2.6 \\ 3 \\ 1.7\end{array}\right.$	3.4	1.7	2.5					2.9		6.9	
23.2	23.4	19.0	2.4	$\left\{\begin{array}{l}2.6 \\ 21.3\end{array}\right.$	6.9	2.8	3.5	${ }^{4} 2.2$	1.7	1.9		2.9		1.7	
27.7	36.9	31.4	. 4	$\left\{\begin{array}{l}2.5 \\ 31.1\end{array}\right.$	11.7	13.1	3.3	$\left\{\begin{array}{l}1.5 \\ 11.6\end{array}\right.$	\} 4.4	6.4		1.8			1.3
73.9	15.7	8.6	.4	1.0 10	3.5	1.6	1.9	${ }_{6} 1.0$	1.2	1.2		1.3			
64.3	19.8	14.5	.2	3.6	4.8	1.2	1.8	48.3	3.3			1.2			
51.3	27.1	17.6	. 7	5.3	2.8	6.1	${ }^{8} 1.9$	4.8	2.0		1.9			1.1
69.5	18.2	10.7	1.4		4.8	1.9	1.8	$\left\{\begin{array}{l}11.2 \\ 11.7\end{array}\right.$) 2.2	1.1		1.1			
50.1	28.7	18.2	2.5		7.6	4.8	3.2	$\left\{\begin{array}{l}3.1 .3 \\ 4.4\end{array}\right.$	3.7	2.3		2:0			1.0
52.4	22.9	22.4	1.9		3.6	2.9	2.8	5 8.0	2.0	8.6		1.3			1.3
44.3	29.5	24.9	1.2	5.1	10.5	3.0	$\left\{\begin{array}{r}2.9 \\ 44.5\end{array}\right.$)2.5	5.1	5.5				1.0
30.6	35.9	32.0	1.4		6.4	15.2	3.4	$\left\{\begin{array}{l}3.6 \\ 3.6 \\ 9.0\end{array}\right.$	3.2	9.6	1.8		2.1		
63.2	12.8	8.6	15.4		3.0	5.2	1.3	19.0 12.6		2.1					
50.4	13.6	7.4	28.5		4.0	4.2	1.2	11.7		1.2					
54.2	3.3	2.0	40.5							. 2				- 02	
40.5	1.0	.9	57.8												
16.8	31.6	24.3	27.1			1.0	2.5							12.2 76.8	
55.9	7.1	8.4								2.4				12.4	
68.6	. 9	0.6	29.9												
37.3	1.1	. 6	61.0												
62.5	23.1	12.4	. 2	$\left\{\begin{array}{l}11.1 \\ 2.3 \\ 3.4\end{array}\right.$	3.8	1.4	3.4		5.7			1.9			
34.6	38.2	23.9	1.0		21.2	3.5	2.8	$\left\{\begin{array}{r}3 \\ 4.3 \\ 3.4\end{array}\right.$	\} 6.2	2.2		1.3	1.0		
52.3	29.8	16.9	1.0		10.9	3.5	2.4	$\left\{\begin{array}{l}1.8 \\ 11.4\end{array}\right.$	\} 7.9	2.2					1.0
83.2	10.8	4.4	1.6		4.3	1.3	1.1								
52.9	29.6	13.5	3.8		17.4	2.1	1.6	$\left\{\begin{array}{l} 3.8 \\ 1.5 \\ 1.5 \end{array}\right.$					1.1		
20.4	41.8	35.8	2.0		19.5	7.5	2.0	$\left\{\begin{array}{l}59.9 \\ 48.3\end{array}\right.$	6.9	3.3		1.5	1.7		
60.4	7.4	2.1	30.5		3.5	1.0									
71.0	20.2	8.2	1.0		10.2	2.6	1.4	1.0						
54.1	31.5	14.2	. 2		15.2	4.1	2.4		5.4						
50.6	27.0	21.8	. 6		17.2	1.5		$\left\{\begin{array}{l}3 \\ 4 \\ 12.7\end{array}\right.$	2.4	1.0			5.3		
76.2	16.8	6.4	. 4		8.1	2.0									
82.5	11.0	3.9	2.5	5.6	1.3									
50.7	31.2	14.8	. 2	\cdots	15.9	2.5	1.5	${ }^{3} 1.9$	8.0						

- Austrian.
- Cuban.

TWest I ndian.

Table 17.-Characteristics and composition of the population

	Designation of section.	Characteristics.			Cities of 25,000 or over.	
14	Iowa 2	Native White	782,361	44.0	Des	32.3
15	Kansas	Russlan populat	198,998	12.0		16.3
	Kansas 2	Native and German population.	1,491,951	23.0	$\left\{\begin{array}{l} \text { Kansas Clty... } \\ \text { Wichita......... } \end{array}\right.$	30.9
16	Kentucky	Mountainous area, native white.	569,797	44.0		4.3
	Kentucky	Agricultural area.	1,720,108	63.0	$\left\{\begin{array}{l}\text { Louisvllle. } \\ \text { Covington. }\end{array}\right.$	30.8
17	Louisiana 1...........	Mlsslsslppl bottoms and upland, large Negro populatlon.	599,548	36.8	Shreveport.	13.3
	Loulsiana 2.	Urban area.	339, 075	1,695.0	Ne	100.0
	Louisiana 3	Rural, chlefly whlte population.	717,765 222,741	24.8 13.0		10.8 41.2
18	Maine 1 Maine 2	English Canadian Native white stock, marltime..	222,741 124,729	13.0 37.0		41.2 28.7
	Maine	French Canadian population....	391, 901	37.0	\{Portland Lewiston	64.2
19	Maryland 1.	Urban area.	680,834	1,001.0	Baltimore.	82.0
	Maryland 2	Peninsular area....	176, 412	65.0		12.7
	Maryland 3	Large white populatio Large Negro populatio	$\begin{array}{r} 400,354 \\ 43,741 \end{array}$	77.0 41.0		19.3
20	Massachusetts	Mountainous area	148, 850	89.0	Pittsfeid	67.3
	Massachusetts	Manufacturing ce	2,306, 884	454.0	\{Worcester.	93.3
	Massachusetts	Peninsular reg	179, 345	144.0	Brockton.	73.7
	Massachusetts	Urban area	731,388	14,341.0	(Boston.	100.0
21	Michigan	Finnish population.	206, 943	21.0		40.3
	M1	$\left\{\begin{array}{c} \text { Prevailingly native white popu- } \\ \text { iatlon. } \end{array}\right\}$,158,767	34.0	Grand Rapids. Kalamazoo....	33.6
	Michigan 3...........	Foreign population...............	613, 048	65.9	$\left\{\begin{array}{l} \text { Bay.... } \\ \text { Saginaw } \end{array}\right.$	33.6
	Michigan	Urban area	465, 766		Detroi	100.0
	Michigan 5...........	Dutch and other foreign population.	259, 078	65.6		27.2
22	Minnesota 1	Scandinavian population........	558, 953	12.0		10.6
	Minnesota 2.........	German and Scandinavian populatlon.	752, 212	31.0		18.7
	Minnesota 3.........	Scandinavians and Finns........	207, 388	15.0	Duluth.	61.7
	Minnesota 4..........	Urban area, "Twin Citles"......	557,155	766.0	Minneapol	93.8
23	Mississippl 1..........	Rural area, large Negro populatlon.	1, 029, 399	45.0		10.7
	Mississippi 2..........	Rural area, large native white populatlon.	714,715	32.0		12.7
	Missouri 1	Native white, agricultural.......	1,936, 845	41.0	$\left\{\begin{array}{l}\text { Kansas City.. } \\ \text { St. Joseph.... }\end{array}\right.$	33.0
24	Missouri 2............	Mississippi bottoms, considerable Negro population.	510, 181	38.0		24.2
	Missouri 3	Native white, Ozark region.....	159, 280	24.0		4.4
	Missouri	Urban area.	687,029	11,263.0	St. Louis	100.0
2526	Montana 1	Mining area, forelgn population..	225,098	5.6	Butte.	49.6
	Montana 2	Sparsely settied, mountainous area.	150,955	1.4		14.4
26	Nebraska 1...........	German and Irish, forelgn stocks.	776,717	13.0	$\left\{\begin{array}{l}\text { Omaha........ } \\ \text { Lincoln...... }\end{array}\right.$	32.6
	Nebraska	$\left\{\begin{array}{l} \text { German, Austrian, and Russian } \\ \text { stocks. } \end{array}\right.$	$413,497$	23.0		13.9
27	Nevada 1	State undivided, sparse population.	\} 81,875	. 7		16.3
28	New Hampshire 1...	Mountainous area.................	88,721	19.0		35.5
	New Hampshire 2...	Manufacturng area.	341, 851	75.0	\{ Manchest	65.4
29	New Jersey 1.........	Densely populated.	1,514, 588	2,145.0	$\left\{\begin{array}{l}\text { Newark. } \\ \text { Jersey City... }\end{array}\right.$	89.6
	Now Jersey 2.........	Plains section, rural..............	733,624	177.6	Trenton...... Camden.	56.0
	New Jersey 3.	$\left\{\begin{array}{l}\text { Mountainous area plus Atlantic } \\ \text { County. }\end{array}\right.$) 288,055	107.9	Atlantic City..	48.1
	${ }^{1}$ Austria	a. ${ }^{\text {Russian. }}$		Ja	anese	

of the various scctions of the United States－Continued．

Native	white．	믕						幽			$\begin{aligned} & \text { di } \\ & \text { U } \end{aligned}$				
			$\begin{aligned} & \circ 0 \\ & \text { © } \\ & \text { \% } \end{aligned}$		gín 号 0	过		드․ 든 둔 흘		坒				$\begin{aligned} & \text { 邑 } \\ & \frac{0}{C} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { sin } \\ & \frac{0}{8} \\ & 8 \end{aligned}$
73.1	17.7	7.6	1.4		4.9	2.1	1.6		2.9						
60.3	25.7	12.7	1.3		6.1	．．．．．．．	1.0	$\left\{\begin{array}{l}1.8 \\ 13.1\end{array}\right.$	3.3						
72.9	16.1	7.4	3.4	${ }^{2} .2$	5.4	1.5	1.3	11.2	1.5						
06.4	． 7	． 3	2.5												
76.4	6.9	2.2	14.4		3.8	1.2									
31.8	3.1	2.0	63.0							2.2					
43.5	21.9	8.2	26.3		6.5	3.1				4.8					
61.0	2.7	1.7	34.4							1.3					
59.3	23.9	16.3	． 2			1.9			1.0		5．0 0°	15．3			
86.1	7.8	5.8	． 2			1.2					． 9	2.9			
64.7	18.2	16.9	． 2			3.5	1.6	${ }^{1} 1.3$			12.5	5.1			
49.6	23.1	12.9	14.3		13.3	3.4		$\left\{\begin{array}{l}11.7 \\ 16.4\end{array}\right.$		1.1					
65.6	1.7	1.1	31.6												
73.4	7.9	3.4	14.8		2.7	1.1									
50.0	1.3	． 8	47.8												
46.7	30.7	21.7	． 8		4.1	10.4	2.6	$\left\{\begin{array}{l}13.4 \\ 13.3 \\ 3\end{array}\right.$	\}-...	3.2	7.6	1.4			1.3
33.3	34.7	31.2	． 8		1.6	14.9	4.7	$\left\{\begin{array}{l}11.9 \\ 13.8\end{array}\right.$	20	2.8	9.7	6.1			1.4
51.6	25.2	20.9	2.0		1.0	9.6	2.3	13．4	3.1	3.3	2.7	5.0			
23.9	38.2	35.3	1.9		2.7	22.0	2.9	210.2	1.5	7.1		9.7			1.1
11.6	48.1	39.8	． 1	4.3	5.2	2.8	8.5	$\left\{\begin{array}{l}15.5 \\ 12.4\end{array}\right.$	23．1	4.4	6.6	3.2	1.1		
55.6	29.4	14.5	． 4	4.4	7.2	1.5	2.1		2.5		2.1	6.9			
42.9	37.5	19.0	． 5		16.3	2.1	2.5	${ }^{2} 1.5$			1.8	10.7			
24.7	40.4	33.6	1.2		24.5	3.1	2.8	$\left\{\begin{array}{l}14.3 \\ 15.6\end{array}\right.$		1.7	1.4	10.1	1.5		
31.9	31.3	16.0	． 6	4.1	8.7	1.4	1.6	1.2	2.4			2.5			
23.3	49.0	26.2		＋1．2	10.3	1.3		1.4	37.4		1.3	2.1			
31.9	47.8	20.1			22.3	2.6		2.9	16.8			1.1			
15.7	38.3	44.9	． 8		5.5	1.8	1.9	$\left\{\begin{array}{l}18.6 \\ 2.7\end{array}\right.$	31.1		2.9	5.4			
30.9	40.8	27.2	1.0		12.2	4.2	1.5	$\left\{\begin{array}{l}13.3 \\ 22.7\end{array}\right.$	22.0		1.2	2.4			
27.3	． 9	． 5	71.2												
64.5	． 3	． 6	33.4												
81.4	10.9	4.4	3.2		4.7	1.2									
76.6	10.4	3.1	9.9		5.8										
94.4	3.9	1.4	． 3		1.5										
39.3	35.9	18.3	6.4		20.0	6.0	1.3	$\left\{\begin{array}{l}2.5 \\ 13.5\end{array}\right.$		1.6			1.4		
37.5	31.4	28.5	.6	－1．9	5.5	8.1		14.5	7.7	2.4		4.1			1.2
51.5	23.9	18.1	.3	16．1	5.2	26	2.2	11.5	5.9	1.6		3.7			1.5
54.3	29.3	15.0	． 9	45	12.2	2.5	1.4	$\left\{\begin{array}{l}3.9 \\ 1.9 \\ 1.9\end{array}\right.$	$\} 6.4$						
52.9	39.5	14.3	.1	4． 1	13.5	．．	1.2	$\left\{\begin{array}{l}15.5 \\ 2.2\end{array}\right.$	\} 6.5						
33.1	25.6	22.0	． 6	$\left\{\begin{array}{l}8.1 \\ 3.4 \\ 1.1 \\ 1.1\end{array}\right.$	\} 4.9	5.1	4.0	${ }^{1} 1.2$	2.6	4.6		25			
60.8	21.6	17.4			－	1.6	1.0				12.9	9.6			
51.6	24.5	23.7	． 1		1.0	6.9	1.9	${ }^{1} 1.5$			17.3	4.7			
28.7	37.5	31.5	2.2		14.0	10.0	3.5	$\left\{\begin{array}{l}4.4 \\ 7.1\end{array}\right.$		8.9			2.2		1.4
54.7	21.7	18.1	5.6		6.6	5.6		$\{2.1$		4.4			3.4		
60.4	17.6	16.7	5.2		4.4	4.9	2.4	$\left\{\begin{array}{l}1.4 \\ 1200\end{array}\right.$	\}....	6.7			3.2		

Table 17.-Characteristics and composition of the population

	Deslgnatlon of seetlon.	Characterlstlcs.			Cltles of 25,000 or over.	
30	New Mexico 1.	Indian populatlon.	59,970	2.0		
	New Mexico 2	Native whlte populatio	212,657	3.0		5
	New Mexico 3	Noteworthy Mexican element...	54,614	1.7		13.1
31	New York 1	Suburban territor	565, 449	210.0	Yon	57.9
	New York 2	Urban area, densely populated...	4,766,883	16,667.0	New York City..	100.0
	New York	Eastern manufacturing region...	658,978	85.0	Albany...	56.3
	New York 4.	Western manufacturing region...	1,361, 257	141.0	Rochester.	01.7
	New York 5.	Mountainous Catskill region	284, 857	101.0	Newburgh	39.9
	New York 6.	Urban area.	423,715		Buffalo.	100.0
	New York 7.	Agricultural and dairylng.	774,620	62.0	(Binghamton.	37.7
	New York 8.	Mountainous Adirondaek area...	277, 855	25.0		26.5
32	North Carolina	Sparsely populatedmountainous area.	375, 905	38.0		7.4
	North Carolina	Intermediate...................	657, 162	62.0	Charlotte.	21.7
	North Carolina 3.	Native white of Scoteh origin....	296, 425	40.0		3.8
	North Carolina 4.	Large Negro population..........	651, 669	51.0		16.1
	North Carolina 5.	Island and peninsular area	55, 975	19.0		0.0
	North Carolina 6.	Remainder of State.	133, 408	29.0	Wilmingt	19.3
33	North Dakota 1.	Seandinavian and Canadian population.	113,603	12.0		10.9
	North Dakota 2		262,681	8.0		12.8
	North Dakota 3	Russian population..............	200, 772	6.0		8.6
34	Ohio 1.	Dense foreign population........	989, 804	478.0	Ceveland..	85.3
	Ohio 2	Intermediate	919,823	114.0	$\left\{\begin{array}{l} \text { Youngstown } \\ \text { Akron......... } \end{array}\right.$	51.3
	Ohio 3.	Agricultural	2, 493,883	81.0	Columbus. Dayton.	38.2
	Ohio 4	Urban area	363, 591	7,279.0	Cineinnati.....	100.0
35	Oklahoma	Marked Indian and Negro population.	615, 973	24.0	Muscogee	17.2
	Oklahoma 2.	Chiefly white population.	1,041, 182	23.0	Oklahoma City .	20.6
36	Oregon 1	Fairlv densely populated	445, 464	29.5	Portland	56.9
	Oregon 2	$\left\{\begin{array}{c}\text { Columbla River Valley and } \\ \text { coastal dry plain, sparsely } \\ \text { populated.......................... }\end{array}\right.$	227, 301	2.8		23.4
37	Pennsylvania 1	Urban area	1,549,008	11,647.0	Philadelphia.	100.0
	Pennsylvania 2	Rural area, native st	1,877,385	132.0	$\left\{\begin{array}{l}\text { Reading...... } \\ \text { Harrisburg.. }\end{array}\right.$	$\} 42.5$
	Pennsylvania 3.	Mining ar	1,067,487	245.0	Seranton.....	66.7
	Pennsylvania 4	Coal minin	357,356	118.5		33.7
	Pennsylvania 5	Manufaeturing	750,892	182.0	fJohnstow Altoona.	337.7
	Ponnsylvania 6.	Rural area	892,495	74.0	$\left\{\begin{array}{l} \text { Erie. } \\ \text { New Castle. } \end{array}\right.$	40.5
	Pennsylvanla	$\left\{\begin{array}{c}\text { Allegheny County plus a small! } \\ \text { rural area........................... }\end{array}\right\}$	1,363,333	181.0	Pittsburgh... McKeesport.	70.4
38	Rhode Island.	State undivide	542,610	508.0	Provldence... Pawtucket..	96.7
39	South Carolina 1.	Native white..	300, 348	77.0		16.9
	South Carolina 2..	Large Negro population	638,941	50.0	Colunbla	12.8
	South Carolinas	Peninsular and rural area	576,111	41.0	Charleston	16.1
40	South Dakota 1.	Dry farming area.................	480, 230	9.0		15.2
	South Dakota 2	Large Russian population.......	87, 826	8.0		4.2
	Snuth Dakota	Indian population.........	15, 832	1.0		
11	Tennessee 1.	Negroes, Mississippl bottom3..	352, 510	57.5		9.5
	Tennessee 2.	Agricultural region.	1,148,013	51.5	Memph	27.8
	Tennessee 3.	Mountainous region	683,266	51.5	Chattanooga.	12.9

of the tarious sections of the United States－Continued．

Native	white．	$\stackrel{a}{6}$		ジ				$\underset{\sim}{\ddot{H}}$			荙	$\stackrel{4}{4}$			
				$\begin{gathered} \text { Indian, } \\ \text { Japanese. } \end{gathered}$	$\begin{aligned} & \text { d } \\ & \text { E } \\ & \text { E } \\ & \text { © } \end{aligned}$	妾									辰
61.1	3.8	6.2	． 1	129.1										1.6	
86.9	6.2	5.0	． 6	11.2	1.4					1.1				1.5	
61.5	19.8	16.8	． 6	11.3	1.2									14.3	
44.7	27.6	24.6	2.9		7.3	10.6	2.8	$\left\{\begin{array}{l}2.8 \\ 34.0\end{array}\right.$		8.3			1.5		1.
19.3	38.1	40.4	1.9		12.7	11.7	2.3	226．1		11.1			2.3		
59.4	24.2	15.7	． 7		6.6	8.2	2.4	\｛21．6		3.7	1.8				
47.8	30.9	20.6	． 5		10.8	7.6	3.6	$\left\{\begin{array}{l}2.1 \\ 22.7\end{array}\right.$		4.7		3.4			
60.4	20.0	16.0	2.5		5.8	7.6	2.1	$\left\{\begin{array}{l}2.8 \\ 3 \\ 2.6\end{array}\right.$		5.4					
28.2	43.2	28.0	． 4		27.9	6.1	2.4	$\left\{\begin{array}{r}2 \\ 3.4 \\ 3.8\end{array}\right.$		4.4		4.7			
70.8	17.9	10.5	． 6		4.9	5.3	1.8		2.4	2.4					
62.5	24.7	12.0	.2		1.1	5.4		${ }^{8} 1.0$		1.0	6.7	5.1			
90.8	． 5	． 2	8.3												
74.7	． 4	.3	24.7												
60.9	． 4	.2	3.8 .1												
51.9	． 3	． 2	47.3												
69.6	． 3	． 1	29.8												
57.1	． 9	． 7	41.2												
21.2	47.7	28.6	11.2	12.4	6.2	1.5	1.2	32.2	24.0			16.0			
31.8	43.3	24.2		1.6	8.0	1.5		${ }^{3} 1.4$	30.6			3.8			
27.3	41.4	29.9		11.2	8.5	1.2	1.3	${ }^{29} 29$	13.9			2.9			
33.1	37.1	28.4	1.3		18.9	4.2	3.1	$\left\{\begin{array}{l}28.5 \\ 84.8\end{array}\right.$	．	2.1		1.8	6.2		
64.7	20.0	15.0	1.1		6.3	2.3	3.9	$\left\{\begin{array}{l}2 \\ 2.8 \\ 1.2\end{array}\right.$		3.0			3.6		
78.7	13.7	4.8	2.8		7.1	1.6									
42.6	36.4	15.6	5.4		24.3	5.3		＇2．2		1.0			1.9		
72.6	2.9	1.5	13.6	19.2											
82.7	7.2	3.7	5.0	11.7	2.4			${ }^{8} 1.2$							
55.5	23.1	18.5	． 3	$\left\{\begin{array}{r}1.4 \\ 11.5 \\ 3.6\end{array}\right.$	7.4	1.9	2.2	$\left\{\begin{array}{l} 21.3 \\ 2 \\ 1 \end{array} 1.8\right.$	\} 5.2	1.2		2.6			
74.5	14.3	9.1	． 1	$\left\{\begin{array}{l}1.4 \\ 4.3 \\ 3.3\end{array}\right.$	$\} 3.2$	1.4	1.4		2.7			1.7			
37.7	32.1	24.7	5.4		9.7	12.8	3.7	$\left\{\begin{array}{l}1.9 \\ 38.8\end{array}\right.$		4.8			1.1		
79.5	9.8	7.9	2.6		3.2	2.5	1.0	$\left\{\begin{array}{l}21.6 \\ 81.0\end{array}\right.$		1.9			1.2		
42.5	32.5	23.8	． 2		5.6	6.7	$6.4\{$	2 10.0 811.0		3.9			2.3		
61.3	18.1	18.4	2.2	．．．．．．	1.6	1.7	2.3	$\left\{\begin{array}{l}26.1 \\ 3.8\end{array}\right.$		5.3			3.5		
56.8	19.7	22.2	1.3		4.5	1.5	2.0	2 11.4 3 3		5.9			5.3		． 7
64.1	20.5	14.8	． 6		5.4	2.7	1.8	$\left\{\begin{array}{l}23.8 \\ 31.7\end{array}\right.$	2．8	4.1			1.7		
45.6	29.3	22.3	2.7		10.7	5.8	2.9	$\left\{\begin{array}{l}16.5 \\ 36.5\end{array}\right.$		3.3					
29.4	35.9	32.8	1.8		1.7	13.5	7.8	$\left\{\begin{array}{l}21.6 \\ 82.7\end{array}\right.$	2.3	7.8	11.4	1.9			1.5
67.8	． 4	.3	31.4												
39.5	． 5	.3	59.9												
35.7	1.2	． 6	62.2												
44.7	37.2	16.8		11.1	10.7	2.4	1.6	$\left\{\begin{array}{l}2 \\ 8 \\ 1.7 \\ 1.3\end{array}\right.$	15．5			1.3			
33.5	43.8	22.3			10.3	1.2	1.0	$\left\{\begin{array}{l} 23.3 \\ 325.6 \end{array}\right.$	7.5						
8.1	1.6	25		187.2											
54.5	． 8	． 4	44．2												
74.1	2.4	1.1	22.0												
89.5	1.1	． 6	9.3												
	1 Indian			Austr	n．		Russı	an．		${ }^{4}$ Chine	Sa．		Jap		

'Iable 17.-Characteristics and composition of the population

$\begin{aligned} & \dot{0} \\ & \dot{4} \\ & \stackrel{y}{s} \\ & \stackrel{y}{\circ} \end{aligned}$	Designation of sectlon.	Characteristics.			Cities of 25,000 or over.	
42	Texas 1...	I.arge Mexican population......	606,641	8.0	San Antonio.... El Paso	33.8
	Texas 2.	Sparseiy settled, wbite	2,663,848	16.7	Dallas...	22.3
	Texas 3	German and Negro population..	199,787	32.5	Austin	22.8
	Texas 4.	Coastal natire population.......	268, 413	17.5	Gail	31.5
	Texas 5	Large Negro population....	157, 8.53	24.0		6.3
43	Utah 1.	Sparsely populated.......	88,753	1.3		17.2
	Utah 2.	More denseiy populated..........	254, 504	44.0	Salt Iake City	60.6
	Utah	Mlning area.	30,094	3.0		11.4
44	Vermont	State undivided	355,956	39.0		47.5
45	Virginia 1.	Peninsular region and east shore.	324, 242	130.0	Noríoik. Portsme	38.9
	Vlrginla 2.	Large Negro population.........	601, 358	50.0	Richmond.	27.9
	Vlrginia 3.	Native rural region..................	495, 840	44.0	Lynchburg	16.6
	Virginia 4.	Mountain, white..................	640, 172	43.0	Roanoke..	15.6
46	Washingt on 1.	$\left\{\begin{array}{l} \text { Coastai region pius eastern coun- } \\ \text { ties. } \end{array}\right.$	$\} 436,342$	14.0	Spokane........	43.4
	Washington 2..	Puget Sound, foreign wnite....	569, 055	54.0	$\left\{\begin{array}{l} \text { Seastio... } \\ \text { Takoma. } \end{array}\right.$	68.1
	Washington 3.	Mountainous area................	136,283	6.0		177
47	West Virginia 1	..do.............................	186,238	29.0		13.3
	West Virginia.	Agricultural region.	1,034, 881	59.0	Wheeling. Huntingto	19.6
48	Wisconsin 1	$\left\{\begin{array}{l}\text { Scandinavian and German popu- } \\ \text { lation. }\end{array}\right.$	\} 496,265	24.0	La Crosse.	26.4
	Wisconsin 2.	German population	1,053,772	35.0	$\left\{\begin{array}{l} \text { Oshkosk } \\ \text { Green Bay } \end{array}\right.$	330.4
	Wisconsin 3.	Urban and forelgn stock........	433, 187	1,881.0	Milwaukee	90.9
	W isconsin	Lake counties....................	350,636	84.0	$\left\{\begin{array}{l}\text { Superior } \\ \text { Racine.. }\end{array}\right.$	$\} 45.5$
49	Wyoming.	$\left\{\begin{array}{l}\text { State undlvided, sparsely popu- } \\ \text { lated. }\end{array}\right.$	$\} 145,965$	1.5		29.6

of the various sections of the United States－ContInued．

Native	white	밍		\％				者			缚				
			$\begin{aligned} & \text { B. } \\ & \text { \% } \\ & \text { \% } \end{aligned}$		$\begin{aligned} & \text { 品 } \\ & \text { 类 } \end{aligned}$	总	$\begin{aligned} & \text { d } \\ & \text { 爵 } \\ & \text { 品 } \end{aligned}$			息	E 感 曾 而		$\begin{aligned} & \text { 辱 } \\ & \text { 毞 } \end{aligned}$	晨	Ein
44.1	25.0	21.2	9.6		5.5									17.1	
77.6	4.1	2.3	15.9		1.6										
33.9	26.5	11.4	23.1		7.1			15.4						1.7	
52.3 37	13.1	7.7 4	20.8		4.7 30.0	． 9		${ }_{1}^{1} 1.3$		1.5				1.2	．．．
37.3 53	$\begin{array}{r}7.6 \\ 31.4 \\ \hline\end{array}$	11.7	${ }^{51.1}$	23.7			8.3	13.0	10.4	1.5 1.0					1.2
43.5	36.8	18.6	． 4	2.7	2.4	1.1	13.2		10.5						1.8
44.5	33.7	20.2		21.6		1.6	13.2		3.4	3.7					2.0
64.4	21.1	14.0	． 5			4.1	1.0	31.0		1.8	7.8	4.4			1.1
49.5	3.6	2.8	44.0												
46． 6	2.4	1.4	49.6												
64.8 88.0	1.3 .9	． 8	33.2 10.2												
88.0	． 9	． 8	10.2	12.7											
57.6	22.9	17.7	． 4	$\left\{\begin{array}{l}1.7 \\ 1.3 \\ 0.4\end{array}\right.$	6.2	2.0	1.9	$\left\{\begin{array}{l}11.3 \\ 32.0\end{array}\right.$	6.7	1.0		3.3			
44.5	27.2	25． 1	． 7	$\left\{\begin{array}{l}2.6 \\ 1.2 \\ 1.8 \\ 1.8\end{array}\right.$	5.7	2.4	3.2	$\left\{\begin{array}{l} 1.5 \\ 1.1 \end{array}\right.$	13． 5	1.6		5.0			1.2
59.4	20.6	15．6	． 5	$\left\{\begin{array}{r}23.3 \\ 101 \\ 6.4\end{array}\right.$	4.6	1.6	2.4	$\left\{\begin{array}{l} 12.2 \\ 12.4 \end{array}\right.$	\} 3.3	1.8		3.3			1.0
86.8	3.7	4.8	4.5					${ }^{1} 1.1$		2.4					
85.7	4.9	4.6	5.4		1.6					1.6					
31.8	44.2	23．1	$\cdot 1$	2.8	13.6	1.7		$\left\{\begin{array}{l}13.2 \\ 31.3\end{array}\right.$	22.3		1.5	2.5			
38.0	43.2	18.2	． 1	2.5	26.3	2.9	1.7	$\left\{_{1}^{11.0}\right.$	10.2						
21.6	48.3	29.8	． 2		43．9	2.1	1.1	$\left\{\begin{array}{l} 14.3 \\ 34.1 \\ 34.1 \end{array}\right.$	1.1	1.1			1.9		
31.7	45.9	21.9	． 1	2.3	27.1	2.1	1.3	$\left\{\begin{array}{l} 14.3 \\ 32.5 \end{array}\right.$	4.6						
55.3	22.3	18.6	1.5	$\left\{\begin{array}{l}2.0 \\ 1.0 \\ 1.1\end{array}\right.$	4.3	2.5	3.8	13.6	2.7	1.6		1.2			2.0

[^9]> Tabre: 1S.-List of comnties compriscel in cach "section."

ALABAMA.

Section I: Blount, Cherokee, Colbert, Cullman, De Kalb, Etowah, Fayette, Franklin, Jackson, Jefferson, Lamar, Lauderdale, Lawrence, Limestone, Madlson, Marion, Marshall, Morgan, I'uscaloosa, Walker, Winston.

Section II : Autauga, Barbour, Bullock, Butler, Chambers, Clarke, Dallas, Lee, Lowndes, Macon, Marengo, Monroe, Montgomery, Perry, Russell, Wilcox.

Sectlon III : Baldwin, Bibb, Calhoun, Chilton, Clay, Cleburne, Coffee, Conecuh, Coosa, Covlngton, Crenshaw, Dale, Elmore, Escanibia, Geneva, Henry, Houston, I'ike, Randolph, St. Clalr, Shelby, Talladega, 'Tallapoosa.

Sectlon IV: Choctaw, Greene, Hale, Plekens, Sumter.
Section V: Mobile and Washington.
ARIZONA.
Section I : Apache, Coconino, Gila, Mohave, Navajo, Plnal.
Section II : Cochise, Graham, Greenlee, Maricopa, Pima, Santa Cruz, Yavapai, Yuma.

ARIEANSAS.

Section I: Aslıley, Chicot, Columbia, Crittenden, Cross, Desha, Drew, Hempstead, Jackson, Jefferson, Lafayette, Lee, Lincoln, Little Rlver, Lonoke, Miller, Mississippi, Monroe, Ouachita, Phillips, Pulaskl, St. Francls, Union, Woodruff.

Section II : Baxter, Boone, Carroll, Cleburne, Fulton, Izard, Madison, Marion, Montgomery, Newton, Polk, Searcy, Scott, Sharp, Stone, Van Buren.

Section III: Arkansas, Benton, Bradley, Calhoun, Clark, Clay, Cleveland, Conway, Craighead, Crawford, Dallas, Faulkner, Franklin, Garland, Grant, Greene, Hot Spring, Howard, Independence, Johnson, Lawrence, Logan, Nevada, Perry, I'ike, Poinsett, Pope, Prairie, Randolph, Saline, Sebastian, Sevier, Washington, White, Yell.

CALIFORNIA.

Sectlon I: Alameda, Butte, Colusa, Contra Costa, Del Norte, Fresno, Glenn, Humboldt, Kern, Kings, Lake, Los Angeles, Madera, Marin, Mendocino, Merced, Monterey, Napa, Orange, Sacramento, San Benito, San Diego, San Joaquin, San Luis Obispo, San Mateo, Santa Barbara, Santa Clara, Santa Cruz, Shasta, Siskiyou, Solano, Sonoma, Stanislans, Sutter', Tehama, Trinity, Tulare, Ventura, Yolo, Yuba.

Section II : Amador, Calaveras, Eldorado, Lassen, Mariposa, Modoc, Nevada, Placer, Plumas, Sierra, Tuolumne.

Section III: Alpine, Imperial, Inyo, Mono, Riverside, San Bernardino.
Section IV: Includes city of Los Angeles.
Section V : Includes city of San Francisco.

colorado.

Sectlon I: Alamosa, Archuleta, Conejos, Costilla, Delta, Garfield, Grand, Hinsdale, Jackson, La Plata, Mesa, Mineral, Moffat, Montezuma, Montrose, Rlo Blanco, Rio Grande, Routt, Saguache.

Section II: Larlmer, Logan, Morgan, Phillips, Sedgwick, Weld.
Section III: Boulder, Clear Creek, Eagle, Douglas, Gilpin, Jefferson, Park, Summit, Teller.

Section IV : Adams, Arapahoe, Baca, Bent, Cheyenne, Crowley, Elbert, El Paso, Klowa, Kit Carson. Lincoln, Otero, Prowers, Washington, Yuma.

Section V: Includes city and county of Denver.
Sectlon VI: Chaffee, Custer, Dolores, Fremont, Gunnison, Huerfano, Lake, Las Anlmas, Ouray, Pitkin, Pueblo, San Juan, San Mlguel.

CONNECTICUT.
Section I: Fairfield, Litchfield, Middlesex, New London, Tolland, Windham. Section II : Hartford, New Haven.
Cities not included ln counties, Bridgeport and Stamford.
DELAWARE.
Section I: Includes entire State.

Section I: Includes entire Dlstrict.

FLORIDA.

Section I: Bay, Calloun, Duval, Escambla, Franklin, Holmes, Jackson, Lafayette, Liberty, Nassau, Okalousa, Santa Rosa, Taylor, Wakulla, Walton, Wishington.

Sectlon II : Alachua, Citrus, Columbla, Gadsden, Hamllton, Hernando, Jefferson, Leon, Levy, Madison, Marlon, Putnam, Suwanee.

Section III: Includes county of Monroe.
Sectlon IV : Baker, Bradford, Brevard, Broward, Clay, Dade, De Soto, Hllsboro, Lake, Lee, Manatee, Orange, Osceola, Palm Beach, Pasco, Pinellas, Polk, St. Johns, St. Lucie, Seminole, Sumter, Volusia.
georgia.
Section I: Appling, Bacon, Banks, Barrow, Bartow, Ben Hill, Berrien, Brooks, Bullock, Campbell, Candler, Carroll, Catoosa, Charlton, Chattooga, Cherokee, Clayton, Clinch, Cobb, Coffee, Colquitt, Dade, Dawson, Dekalb. Dorge, Douglas, Eehols, Effingham, Emanuel, Evans, Fannin, Fayette, Floyd, Forsyth, Franklin, Fulton, Gilmer, Gordon, Grady, Gwinnett, Hall, Habersham, Haralson. Hart, Heard, Irwin, Jackson, Jeff Davis, Johnson, Laurens, Lownles, Madison, Lumpkin, Milton, Montgomery, Murray, Oconee, Paulding, Plckens, Pieree, Polk, Rabun, Rockdale, Stephens, Tattnall, Telfair, Thomas, Tift, Toombs, Towns, Turner, Unlon, Walker, Walton,'Ware, Wayne, Wheeler, Whilte, Whitfield, Wilcox, and Worth.

Section II : Baker, Baldwin, Bibb, Bleckley, Bryan, Burke, Butts, Calloun, Camden, Chatham, Chattahoochee, Clarke, Clay, Columbla, Coweta, Crawford. Crisp, Decatur, Dooly, Dougherty, Early, Elbert, Glasseock, Glynn, Greene, Hancock, Harrls, Henry, Houston, Jasper, Jefferson, Jenkins, Jones, Lee, Llberty, Lincoln, McDuffie, McIntosh, Macon, Marion, Meriwether, Miller, Mitchell, Monroe, Morgan, Muscogee, Newton, Oglethorpe, Pike, Pulaski, Putnam, Quitman, Randolph, Richmond, Schley, Screven, Spalding, Stewart, Sumter, Talbot, Tallaferro, Taylor, Terrell, Troup, Twiggs, Upson, Warren, Washington, Webster, Wilkes, and Wllkinson.

IDAHO.
Section I: Ineludes entire State.
ILLINOIS.
Section I: Cook (except clty of Chicago), Dupage, Kane. Lake.
Cities not included in counties, Joliet.
Section II: Adams, Bureau, Fulton, Grundy, Haneock, Henderson, Henry, Kendall, Knox, La Salle, Marshall, Mercer, Peorla, Putnain, Rock Island, Stark, Warren, Will.

Citles not included in counties, Rockford.
Section III: Bond, Calhoun, Chrlstlan, Clark, Clay, Coles, Crawford, Cumberland, Douglas, Edgar, Edwards, Effingham, Fayette, Franklln, Gallatln, Greene, Hamllton, Hardin, Jackson, Jasper, Jefferson, Jersey, Johnson. Lavorence, Marion, Montgomery, Morgan, Moultrle, Perry, Plke, Pope, Rlchland, Sallne, Sangamon. Scott, Shelby, Union, Wabash, Wayne, White, Williamson.

Citles not included in countles, Deeatur and Danville.
Sectlon IV: Clinton. Macoupln, Madison, Monroe, Randolph, St. Clair, Washington.

Section V: Includes city of Chicago.
Section VI: Alexander, Massac, Pulaskl.
Seetion VII: Brown, Cass, Champalgn. Dewltt, Ford, Iroquois, Kankakee, Livlngston, Logan, McDonough, McLean, Macon, Mason, Menard, Platt, Schuyler, Tazewell. Vermllion, Woodford.

Section VIII: Boone. Carroll, Dekalb, Jo Daviess, Lee, MeHenry, Ogle, Stephenson, Whiteslde, Winnebago.

INDIANA.

Section I: Elkhart, Lake, Laporte, Porter, St. Joseph.
Section II: Benton, Jasper, Newton, Pulaski, Starke, Tippecanoe, Warren, White.

Section III: Adams, Allen, Bartholomew, Blackford, Boone, Brown, Carroll, Cass, Clark, Clay, Clinton, Crawford, Daviess, Dearborn, Decatur, Dekalb, Delaware, Dubois, Fayette, Floyd, Fountain, Franklin, Fulton, Gibson, Grant, Greene, Hamilton, Hancock, Harrison, Hendricks, Henry, Howard, Huntington, Jackson, Jay, Jefferson, Jennings, Johnson, Knox, Kosciusko, Lagrange, Lawrence, Madison, Marion, Marshall, Martin, Miami, Monroe, Montgomery, Morgan, Noble, Ohio, Orange, Owen, Parke, Perry, Pike, Posey, Putnam, Randolph, Ripley, Rush, Scott, Shelby, Spencer, Steuben, Sullivan, Switzerland, Tipton, Union, Vanderburg, Vermillion, Vigo, Wabash, Warrick, Washington, Wayne, Wells, Whitley.

IOWA..

Section I: Allamakee, Audubon, Benton, Blackhawk, Boone, Bremer, Buchanan, Buena Vista, Butler, Calhoun, Carroll, Cass, Cedar, Cerro Gordo, Cherokee, Chickasaw, Clay, Clayton, Clinton, Crawford, Delaware, Dickinson, Dubuque, Emmett, Fayette, Floyd, Franklin, Grundy, Hamilton, Hancock, Hardin, Harrison, Howard, Humboldt, Ida, Iowa, Jackson, Johnson, Jones, Linn, Lyon, Marshall, Mitchell, Monona, Muscatine, O'Brien, Osceola, Palo Alto, Plymouth, Pocahontas, Pottawattamie, Sac, Scott, Shelby, Sioux, Story, Tama, Webster, Winnebago, Winneshiek, Woodbury, Worth, Wright.

Section II: Adair, Adams, Appanoose, Clarke, Dallas, Davis, Decatur, Des Moines, Fremont, Greene, Guthrie, Henry, Jasper, Jefferson, Keokuk, Lee, Louisa, Lucas, Madison, Mahaska, Marion, Mills, Monroe, Montgomery, Page, Polk, Poweshiek, Ringgold, Taylor, Union, Van Buren, Wapello, Warren, Washington, Wayne.

KANSAB.

Section I : Barton, Ellis, Gove, Greeley, Hamilton, Harvey, Kearny, Logan, McPherson, Marion, Ness, Reno, Rice, Rush, Russell, Trego, Wallace, Wichita.

Section II: Allen, Anderson, Atchison, Barber, Bourbon, Brown, Butler, Chase, Chautauqua, Cherokee, Cheyenne, Clark, Clay, Cloud, Coffey, Comanche, Cowley, Crawford, Decatur, Dickinson, Doniphan, Douglas, Edwards, Elk, Ellsworth, Finney, Ford, Franklin, Geary, Graham, Grant, Gray, Greenwood, Harper, Haskell, Hodgeman, Jackson, Jefferson, Jewell, Johnson, Kingman, Kiowa, Labette, Lane, Leavenworth, Lincoln, Linn, Lyon, Marshall, Meade, Miami, Mitchell, Montgomery, Morris, Morton, Nemaha, Neosho, Norton, Osage, Osborne, Ottawa, Pawnee, Phillips, Pottawatomie, Pratt, Rawlins, Republic, Riley, Rooks, Saline, Scott, Sedgwick, Seward, Shawnee, Sheridan, Sherman, Smith, Stafford, Stanton, Stevens, Sumner, Thomas, Wabaunsee, Washington, Wilson, Woodson, Wyandotte.

KENTUCKY.

Section I : Bell, Boyd, Breathitt, Carter, Clay, Clinton, Cumberland, Elliott, Floyd, Greenup, Harlan, Jackson, Johnson, Knott, Knox, Laurel, Lawrence, Lee, Leslie, Letcher, Lewis, Magoffin, Martin, Menifee, Monroe, Morgan, Owsley, Perry, Pike, Pulaski, Rockcastle, Rowan, Russell, Wayne, Whitley, Wolfe.

Section II: Adair, Allen, Anderson, Ballard, Barren, Bath, Boone, Bourbon, Boyle, Bracken, Breckinridge, Bullitt, Butler, Caldwell, Calloway, Campbell, Carlisle, Carroll, Casey, Christian, Clark, Crittenden, Daviess, Edmonson, Estill, Fayette, Fleming, Franklin, Fulton, Gallatin, Garrard, Grant, Graves, Grayson, Green, Hancock, Hardin, Harrison, Hart, Henderson, Henry, Hickman, Hopkins, Jefferson, Jessamine, Kenton, Larue, Lincoln, Livingston, Logan, Lyon, McCracken, McLean, Madison, Marion, Marshall, Mason, Meade, Mercer, Metcalfe, Montgomery, Muhlenberg, Nelson, Nicholas, Ohio, Oldham, Owen, Pendleton, Powell, Robertson, Scott, Shelby, Simpson, Spencer, Taylor, Todd, Trigg, Trimble, Union, Warren, Washington, Webster, Woodford.

IOUISIANA.

Section I (parishes) : Ascension Bossler, Caddo, Ciaiborne, Concordla, De Soto, East Baton Rouge, East Carroll, East Feliciana, Iberville, Jefferson, Madison, Morehouse, Natchitoches, Ouachita, Plaquemines, Pointe Coupee, Red River, Richiand, St. Charies, St. James, St. John the Baptlist, St. Mary, Tensas, Webster, West Baton Rouge, West Carroll, West Feliciana.

Section II: Includes parish of Orleans:
Sectlon III (parlshes) : Acadia, Ailen, Assumption, Avoyelles, Benuregard, Bienville, Caicasleu, Caldweli, Cameron, Catahoula, Evangeiline, Franklin, Grant, Iberia, Jackson, Jefferson Davis, Lafayette, Lafourche, La Salle, Lincoln, Livingston, Rapides, Sabine, St. Bernard, St. Helena, St. Landry, St. Martin, St. Tammany, Tangipahoa, Terrebonne, Union, Vermlllon, Vernon, Washington, Winn.

MAINE.

Section I: Aroostook, Penobscot, Piscataquis, Washington.
Section II: Hancock, Knox, Lincoln, Sagadahoc, Waldo.
Section III : Androscoggin, Cumberland, Frankiln, Kennebec, Oxford, Somer set, York.

> MARYLAND.

Section I: Includes county and city of Baitimore.
Section II : Caroline, Dorchester, Kent, Queen Anne, Somerset, Talbot, Wicomico, Worcester.
Section III: Allegany, Anne Arundel, Carroll, Cecll, Frederick, Garrett, Harford, Howard, Montgomery, Prince Georges, Washlngton.
Section IV : Caivert, Charles, St. Marys.
MLASSACHUSETTS.
Section I : Berkshire, Franklin.
Sectlon II : Bristol, Essex, Hampden, Hampshire, Mlddlesex, Norfolk, Worcester.
Sectlon III : Barnstable, Dukes, Nantucket, Piymouth.
Section IV: Suffolk.

michigan.

Section I: Alger, Baraga, Gogeblc, Houghton, Iron, Keweenaw, Luce, Marquette, Ontonagon.
Section II : Alcona, Alpena, Antrlm, Arenac, Barry, Benzle, Branch, Calhouń, Cass, Charievoix, Cheboygan, Chippewa, Clare, Cllnton, Crawford, Delta, DickInson, Eaton, Emmet, Genessee, Gladwin, Grand Traverse, Gratiot, Hillsdate, Ingham, Ionia, Iosco, Isabella, Jackson, Kalamazoo, Kalkaska, Lake, Ieelanau, Livingston, Mackinac, Manlstee, Mason, Mecosta, Menomince, Midland, Missaukee, Montcalm, Montmorency, Newaygo, Oceana, Ogemaw, Osceola, Oscoda, Otsego, Presque Isle, Roscommon, St. Joseph, Schoolcraft, Shlawassee, Wexford.
City not Included in counties, Grand Raplds.
Section III: Bay, Huron, Lapeer, Lenawee, Macomb, Monroe, Oakland, Saginaw, St. Clair, Sanilac, Tuscola, Washtenaw, Wayne (except for clty of Detroit).
Section IV : Includes city of Detrolt.
Section V : Allegan, Berrien, Kent, Muskegon, Ottawa, Van Buren.

MINNESOTA.

Section I: Aitkin, Anoka, Becker, Beltrami, Blg Stone, Cass, Chippewa, Chisago, Clay, Clearwater, Crow Wing, Douglas, Grant, Hubbard, Isanti, Kanabec, Kandlyohi, Kiltson, Koochlching, Lac qui Parie, Mahnomen, Marshali, Meeker, Mille Lacs, Norman, Otter Tail, Pennlngton, Pine, Polk, Pope, Red Lake, Renville, Roseau, Sherburne, Stevens, Swift, Todd, Traverse, Wadena, Wilkin.
Section II : Benton, Blue Earth, Brown, Carver, Cottonwood, Dakota, Dodge, Faribault, Filmore, Freeborn, Goodhue, Hennepin. Houston, Jackson, Le Sueur, Lincoln, Lyon, McLeod, Martin, Morrlson, Mower, Murray, Nicollet, Nobles, Olm-
stead, Pipestone, Ramsay, Redwood, Rice, Rock, Scott, Slbley, Stearns, Steele, Wabasha, Waseca, Washlngton, Watonwan, Wluona, Wright, Yellow Medicine. Section III: Carlton, Cook, Itasca, Lake, St. Louis.
Section IV: Includes clties of Minneapolls and St. Paul.
MISSISSIPPI.
Section I: Adams, Amite, Attala, Benton, Bolivar, Carroll, Chickasaw, Claiborne, Clay, Coahoma, Copiali, De Soto, Grenada, Hinds, Holmes, Issaquena, Jefferson, Jefferson Davis, Kemper, Lafayette, Leflore, Lowndes, Madison, Marshall, Monroe, Montgomery, Noxubee, Panola, Oktibbeha, Rankin, Sharkey, Sunflower, Tallahatchie, Tate, Tunica, Warren, Washington, Wilkinson, Yalobusha, Yazoo.

Section II: Alcorn, Calhoun, Choctaw, Clarke, Covington, Forrest, Franklin, George, Greene, Hancock, Harrison, Itawamba, Jackson, Jasper, Jones, Lamar. Lauderdale, Lawrence, Leake, Lee, Líncoln, Marion, Neshoba, Newton, Pearl River, Perry, Pike, Pontotoc, Prentiss, Scott, Simpson, Snith, Stone, Tippah, Tishomingo, Union, Walthall, Wayne, Webster, Winston.

MISSOURI.

Section I: Adair, Andrew, Atchlson, Barton, Bates, Benton, Bollinger, Buchanan, Butler, Caldwell, Camden, Carroll, Carter, Cass, Cedar, Clark, Clay, Clinton, Cole, Crawford, Dade, Dallas, Daviess, Dekalb, Dent, Duuklin, Franklin, Gasconade, Gentry, Greene, Grundy, Harrison, Henry, Hickory, Holt, Iron, Jasper, Jefferson, Johnson, Knox, Laclede, Lawrence, Lewis. Linn, Livingston, Macon, Madison, Maries, Mercer, Miller, Moniteau, Morgan, Newton, Nodaway, Oregon, Osage, Perry, Phelps, Platte, Polk, Pulaski, Putnám, Ray, Reynolds, Ripley, St. Clair, St. Francois, St. Louis, Ste. Genevieve, Schuyler, Scotland, Shannon, Shelby, Stoddard, Sullivan, Texas, Vernon, Washington, Wayne, Worth.

City not included in counties, Kansas City.
Section II: Audrain, Boone, Callaway, Cape Girardeau, Chariton, Cooper, Iloward, Jackson, Lafayette, Lincoln, Marion, Mississippi, Monroe, Montgomery, New Madrid, Pemiscot, Pettis, Pike, Ralls, Randolph, St. Charles, Saline, Scott, Warren.

Section III : Barry, Christian, Douglas, Howell, McDonald, Ozark, Stone, Taney, Webster, Wriglit.

Section IV : Includes city of St. Louis.

Section I: Broadwater, Carbon, Cascade, Deer Lodge, Flathead, Granite, Jefferson, Lewis and Clark, Lincoln, Mineral, Missoula, Powell, Sanders, Silver Bow, Stillwater, Yellowstone.

Section II: Beaverhead, Bighorn, Blaine, Carter, Chouteau, Custer, Dawson, Fallon, Fergus, Gallatin, Hill, Madison, Meagher, Musselshell, Park, Plillips, Prairie, Ravalli, Rlchland, Rosebud, Sheridan, Sweetgrass, Teton, Toole, Valley, Wheatland, Wibaux.

NEBRASKA.
Sectlon I: Antelope, Banner, Blaine, Boxbutte, Boyd, Brown, Burt, Cass, Cedar, Chase, Cherry, Cheyenne, Cuming, Custer, Dakota, Dawes, Dawson, Deuel, Dixon, Dodge, Douglas, Dundy, Frontier, Gage, Garden, Garfield, Gosper, Grant, Greeley, Hayes, Holt, Hooker, Johnson, Keith, Keyapaha, Kimball. Knox, Lancaster, Lincoln, Logan, Loup, McPherson, Morrill, Nemaha, Otoe. Pawnee, Perkins, Pierce, Richardson, Rock, Sarpy, Saunders, Scotts Bluff, Sheridan, Sherman, Sioux, Thomas, Thurston, Valley, Washington, Wayne, Wheeler.

Section II: Adams, Boone, Buffalo, Butler, Clay, Colfax, Fillmore, Franklin, Furnas, Hall, Hamilton, Harlan, Hitchcock, Howard, Jefferson, Kearney, Madison, Merrlck, Nance, Nuckolls, Phelps, Platte, Polk, Redwillow, Saline, Seward, Stanton, Thayer, Webster, York.

NEVADA.

Section I: Includes entire State.

Section I: Carroll, Cons, Grafton.
Section 11 : Belknap, Clesillre, Hilisborough, Merrimack, RockIngham, Strafford, Sullivan.

NEW JERSEY.

Sectlon I : Bergen, Fssex, Hudson, Passalc, Union.
Sectlon II : Burllngton, Canilen, Cape May, Cumberland, Gloucester, Mercer, Middlesex, Monmouth, Ocean, Salem.

City not included in counties, Orange.
Section III: Atlantic, Hunterdon, Morris, Somerset, Sussex, Warren.

NEW MEXICO

Section I : Mckinley, Rio Arriba, Sandoval, San Juan, Valencia.
Section II: Bernaliilo, Chaves, Colfax, Curry, De Baca, Guadaiupe, Lea, Iincoln, Mora, Quay, Roosevelt, San Mlguel, Santa Fe, Socorro, Taos, Torrance, ${ }^{\text {© }}$ Union.

Section III: Dona Ana, Eddy, Grant, Lea (one-half), Luna, Otero, Sierra.
NEW Yовк.
Section I: Dutchess, Nassau, Putnam, Suffolk, Westchester.
Section II : Kings, New York, Queers, Richmond.
Section III : Albany, Columbla, Fulton, Herklmer, Montgomery, Otsego, Rensselaer, Saratoga, Schenectady, Schoharle, Washington.

Section IV: Cayuga, Erle (except city of Buffalo), Genesee, Jefferson, Monroe, Niagara, Oueida, Onondaga, Ontarlo, Orleans, Oswego, Seneca, Wayne.

Citles not included ln counties, Amsterdam, Nlagara Fails, Troy.
Section V: Greene, Orange, Rockland, Ulster.
Section VI: Includes city of Buralo.
Section VII: Allegany, Broome, Cattaragus, Chautauqua, Chemung, Chenango, Cortland, Delaware, Llvingston, Madison, Schuyler, Steuben, Suliivan, Tloga, Tompklns, Wyomlng, Yates.

Section VIII: Clinton, Essex, Franklin, Hamliton, Lewis, St. Lawrence, Warren.

NORTH CAROLINA.
Section I: Ashe, Alleghany, Alexander, Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Haywood, Graham, Henderson, Jacison, McDowell, Macon, Madison, Mitchell, Polk, Rutherford, Swain, Transylvania, Watauga, Wllkes, Yancey.

Section II: Alamance, Cabarrus, Caswell, Catawba, Chatham, Cieveland, Davidson, Davie, Forsyth, Gaston, Guilford, Iredeli, Llncoln, Meckienburg, Orange, Person, Randolph, Rockingiram, Rowan, Stokes, Surry, and Yadkin.

Section III: Anson, Cumberland, Harnett, Hoke, Lee, Montgomery, Moore, Riclimoud, Iobeson, Sampson, Scotland, Stanley, Union.

Sectlon IV: Beaufort, Bertie, Chowan, Craven, Durham, Edgecombe, Franklin, Gates, Granvilie, Greene, Hallfax, Hertford, Jones, Johnston, Lenoir, MartIn, Nash, Northhampton, Onslow, Pasquotank, Perqulmans, Pitt, Vance, Wake, Warren, Washington, Wayne, Wlison.

Section V: Camden, Carteret, Currituck, Dare, Hyde, Pamlico, Tyrrell.
Section-VI: Bladen, Brunswlek, Columbus, Duplin, New Hanover, Pender.

NORTI DAKOTA.

Section I: Bottineau, Cavalier, Golden Valley, Grand Forks, Pembina, Rolette, Towner, Walsh.

Section II: Adams, Barnes, Benson, Billings, Bowman, Burke, Cass, Divide, Eddy, Foster, Grlggs, McKenzle, Mountrall, Nelson, Ramsay, Ranson, Renvilie, Richland, Sargent, Siope, Steele, Traill, Ward, Wlllams.

Sectlon III: Burlelgh, Dickey, Dunn, Emmons, Grant, Hettinger, Kidder. Lamoure, Logan, McHenry, McIntosih, McLean, Marcer, Morton, Oliver, Plerce. Sherldan, Sloux, Stark, Stutsman, Wells.

OHIO.

Section I: Cuyahoga, Erie, Lake, Lorain, Lucas, Ottawa.
Sectlon II: Ashtubula, Belmont, Carroll, Columblana, Geauga, Guernsey, Harrlson, Jefferson, Mahoning, Medina, Portage, Stark, Summlt, 'Lrumbull, Tuscarawas, Wayne.

Sectlon III: Adams, Allen, Ashland, Athens, Auglaize, Brown, Butler, Champalgn, Clark, Clermont, Cllnton, Coshocton, Crawford, Darke, Defiance, Delaware, Fairfield, Fayette, Franklin, Fulton, Galla, Greene, Hamllton, Hancock, Hardin, Henry, Hlghland, Hocking, Holmes, Huron, Jackson, Knox, Lawrence, Licking, Logan, Madison, Marion, Meigs, Mercer, Mlaml, Monroe, Montgomery, Morgan, Morrow, Muskingum, Noble, Pauldlng, Perry, Plckaway, Pike, Preble, Putnam, Richland, Ross, Sandusky, Scloto, Seneca, Shelby, Unlon, Van Wert, Vlnton, Warren, Washlngton, Williams, Wood, Wyandot.

Section IV: Clty of Cinclnnatl.

OKLAHOMA.

Section I: Adair, Atoka, Bryan, Cherokee, Choctaw, Craig, Delaware, Haskell, Hughes, Johnston, Latlmer, Le Flore, McCurtaln, McIntosh, Mayes, Muskogee, Nowata, Okfuskee, Okmulgee, Osage, Ottawa, Pittsburg, Pushmataha, Rogers, Seminole, Sequoyah, Tulsa, Wagoner, Washington.

Sectlon II : Alfalfa, Beaver, Beckham, Blalne, Caddo, Canadlan, Carter, Cimarron. Cleveland, Coal, Comanche, Cotton, Creek, Custer, Dewey, Ells, Garfield, Garvln, Grady, (irant, Greer, Harmon, Harper, Jackson, Jefferson, Kay, Kingfisher. Kiowa, Lincoln, Logan. Love, McClain, Major, Marshall. Murray, Noble, Oklahoma, Pawnee, Payne, Pontotoc, Pottawatomie, Roger Mills, Stephens, Texas, Tillman, Washita, Woods, Woodward.
oregon.
Section I: Benton, Clackamas, Clatsop, Columbla, Hood River, Ilncoln, Linn, Marion, Multnomah, Polk, Tillamook, Wasco, Washlngton, Yamhill.

Sectlon II: Baker, Coos, Crook, Curry, Douglas, Gillam, Grant, Harney, Jackson, Josephine, Klamath, Lake, Lane, Malheur, Morrow, Sherman, Umatilla, Unlon, Wallowa, Wheeler.

PENNSYLVANIA.

Section I: Philadelphla.
Section II: Adams, Bedford, Berks, Bucks, Chester, Cumberland, Dauphln, Delaware, Franklin, Fulton, Huntington, Junlata, Lancaster, Lebanon, Lehigh, Mlffln, Monroe, Montgomery, Northampton, Perry, Plke, Snyder, Unlon, York.

Sectlon III: Carbon, Columbia, Lackawanna, Luzerne, Montour, Northumberland, Schuylklll, Wayne.

Section IV: Beaver, Butler, Greene, Lawrence, Washington.
Sectlon V : Blalr, Cambrla, Fayette, Somerset, Westmoreland.
City not lncluded in counties, Altoona.
Section VI: Armstrong, Cameron, Clarion, Clearfield, Crawford, Elk, Erle, Forest, Indlana, Jefferson, McKean, Mercer, Potter, Venango, Warren, Wyoming. Citles not included in counties, Wlliamsport and New Castle.
Sectlon VII: Allegheny, Bradford, Center, Clinton, Lycoming, Sullivan, Susquehanna, Tloga.

Clty not included in countles, McKeesport.
RHODE ISLAND.
Sectlon I: Includes entire State.

SOUTH CAROLINA.

Section I: Anderson, Cherokee, Greenville, Oconee, Plckens, Spartanburg.
Section II: Abbeville, Aiken, Bamberg, Barnwell, Calhoun, Chester, Edgefield, Fairfield, Greenwood, Kershaw, Lancaster, Laurens, Lexington, McCormick, Newberry, Orangeburg, Richland, Saluda, Unlon and York.
Sectlon III: Beaufort, Berkley, Charlestown, Chesterfield, Clarendon, Colleton, Darllngton, Dillon, Dorchester, Florence, Georgetown, Hampton, Horry, Jasper, Lee, Marion, Marlboro, Sumter, Willlamsburg.

soutil dakota.

Section I: Aurora, Beadie, Brookings, Brown, Brile, Buffaio, Butte, Charles Mix, Clark, Clay, Codington, Custer, Davlson, Day, Deuei, Donglas, Fail IRlver, Fauik, Grant, Gregory, Hamlin, Hand, Harding, Hyde Jeramid, Kingsbury, Iake, Lawrence, Lhrcohn, Lyman, McCook, Marshail, Meade, Miner, Minnehaha, Moody, Pemington, I'erklns, Rolerts, Sanborn, Splnk, Stanley, Unlon, Yankton.

Sectlon II: Bonhomme, Campbell, Edmunds, Hanson, Hugires, Hutchinson, Mcl'herson, Potter, Suliy, Turner, Walworth.

Sectlon III : Armstrong, Benmett, CorSon, Dewey, Mellette, Shannon, Todd, Washabangh, Washington, Zlebach.

TENNESSEE

Section I: Crockett, Dyer, Fayette, Glbson, Hardeman, Haywood, Lake, Landerdale, Madison, Oblon, Shelby, Tlpton.

Section II: Bedford, Benton, Cannon, Carroil, Cheatham, Chester, Clay, Coffee, Davidson, Decatur, Dekalb, Dlckson, Fentress, Franklln, Giles, Grundy, Hardln, Henderson, Henry, Hickman, Houston, Humphreys, Jackson, Lawrence, Lewis, Líncoln, McNairy, Macon, Marshail, Maury, Montgomery, Moore, Overton, Perry, I'lckett, I'utnam, Robertson, Rutherford, Scott, Smith, Stewart, Smmer, Tronsdale, Van Buren, Warren, Wayne, Weakley, Whlte, Whliamson, Wllson.

Clties not included In counties, Memphls and Kinoxvllle.
Sectlon III : Anderson, Bledsoe, Blount, Bradley, Campbell, Carter, Clalborne, Cocke, Cumberiand, Grainger, Greene, Hamblen, Hamllton, Hancock, Hawkins, James, Jefferson, Johnson, Knox, Loudon, McMinn, Marion, Melgs, Monroe, Morgan, Polk, Rhea, Reane, Sequatchle, Sevler, Sullivan, Unlco, Union, Washlngton.

TEXAS.
Sectlon I: Atacosa, Bastrop, Bee, Bexar, Brewster, Brooks, Caidwell, Cameron, Comai, Cuiberson, Dlmmit, Duval, El Paso, Frio, Gollad, Guadainpe, Hays, Hidalgo, Hudspeth, Jeff Davis, Jlm Hogg, Jim Wells, Karnes, Kinney, Kleberg, La Salle, Llve Oak, McMullen, Maverlck, Medlna, Nueces, Pecos, Presidlo, Reeves, San Patrlclo, Starr, Terrell, Travis Uvaide, Valverde, Webb, Whllacy, Wllliamson, Wilson, Zapata, Zavalla.

Sectlon II: Anderson, Andrews, Angellua, Archer, Armstrong, Balley, Bardera, Baylor, Bell, Blanco, Borden, Bosque, Bowie, Briscoe, Brown, Burnet, Callahan, Camp, Carson, Cass, Castro, Cherokee, Chlldress, Ciay, Cochran, Coke, Coleman, Collin, Collingsworth, Comanche, Concho, Cooke, Coryell, Cottle, Crane, Crockett, Crosby, Dallam, Dallas, Dawson, Deaf Smith, Delta, Denton, Dlckens, Donley, Eastland, Ector, Edwards, Fills, Erath, Falls, Fannln, Fisher, Floyd, Foard, Frankiln, Freestone, Gaines, Garza, Glllesple, Glasscock, Gray, Grayson, Gregg, Hale, Hall, Hamllton, Hansford, Hardeman, Harrlson, Hartley, Haskell, Hemphll, Henderson, Hhll, Hockley, Hood, Hopkins, Houston, Howard, Hunt, Hutchínson, Irlon, Jack, Jones, Kaufman, Kendali, Kent, Kerr, Kimble, King, Knox, Lamar, Lamb, Lampasas, Lee, Leon, Limestone, Llpscomb, Liano, Lovlng, Lubbock, Lynn, McCulloch, McLennan, Madison, Marlon, Martin, Mason, Menard, Midland, Mham, Mills, Mitchell, Montague, Moore, Morrls, Motley, Nacogloches, Navarro, Nolan, Ochlltree, Oldham, Palo Pinto, Panola, Parker, Parmer, Polk, Potter, IRalns, Kandall, Reagan, Real, Red River, Roberts, Rockwall, Runnels, Rusk, San Augustlne, San Saba, Schielcher, Scurry, Shackelford, Shelby, Sherman, Smlth, Somerveli, Stephens, Sterilng, Stonewall, Sutton, Swisher, Tarrant, Taylor, Terry, Throckmorton, Titus, Tom Green, Trinity, Tyler, Upshur, Upton, Van Zandt, Ward, Wheeler, Wichlta, Wilbarger, Wlnkler, Wlse, Wood, Yoakum, Young.

Clty not included in connties, Houston.
Sectlon III: Austln, Colorado, De Witt, Fayette, Gonzales, Lavaca, Washington.

City not inciuded In countles, Austin.
Section IV : Aransas, Brazorla, Calhonn, Chambers, Galveston, Hardin, Harrls, Jackson, Jasper, Jefferson, Liberty, Matagorda, Newton, Orange, Refugio, Sabine, Vlctoria, Wharton.

Section V : Brazos, Burleson, Ford Bend, Grlmes, Montgomery, Robertson, San Jacinto, Walker, Wailer.
$3 S 636^{\circ}-21-7$

UTAH.
Section I: Beaver, Box Elder, Emery, Garfield, Grand, Iron, Juab, Kane, Millard, I'lute, San Juan, Sevler, Tooele, Uinta, Washington, Wayne.

Section II: Cache, Davis, Silt Lake, Sanpete, Utah, Weber.
Section III: Carbon, Duchesne, Morgan, Rich, Summit, Wasatch.
VERMONT.

- Section I: Undivided.

VIRGINIA.
Section I: Accomac, Elizabeth City, Gloucester, Lancaster, Mathews, Middlesex, Norfolk, Northampton, Northumberland, Princess Anne, Warwick, York.

Sectlon II: Amelia, Brunswick, Caroline, Charlotte, Charles City, Chesterfield, Cumberland, Dinwiddle, Essex, Goochland, Greensville, Halifax, Hanover, Henrico, Isle of Wight, James City, King and Queen, King George, King Willianı, Lunenburg, Macklenburg, Nansemond, New Kent, Nottoway, Powhatan, Prince Edward, Prince George, Richmond, Surry, Sussex, Southampton, Westmoreland.

Section III: Albemarle, Alexandria, Amherst, Appomattox. Bedford, Buckingham, Campbell, Culpeper, Fairfax, Fauquier, Fluvanna, Franklin, Greene, Henry, Loudoun, Louisa, Madison, Nelson, Orange, Pittsylvanla, Prlnce William, Rappahannock, Spotsylvania, Stafford.

Section IV : Alleghany, Augusta, Bath, Bland, Botetourt, Buchanan, Carroll, Clarke, Craig, Dickenson, Floyd, Frederick, Giles, Griyson, Highland, Lee, Montgomery, Page, Patrick, Pulaski, Roanoke, Rockbrillge, Rockingham, Russell, Scott, Shenadoah, Snythe, Tazewell, Warren, Waslington, Wise, Wythe.

- washington.

Section I: Adams. A sotin, Benton, Clallam, Clarke, Columbia, Cowlltz, Franklin, Garfield, Grays Harbor, Jefferson, Klickitat, Lewis, Lincoln, Mason, Pacific, Skamania, Spokane, Thurston, Wahkiakum, Walla Walla, Whitman.

Section II: Island, King, Kitsap, Pierce, San Juan, Skagit, Snohomísh, Whatcom.

Section III : Chelan, Douglas, Ferry, Grant, Kittltas, Okanogan, Pend Oreille, Stevens, Yakima.

WEST VIRGINIA.
Sectlon I: Berkeley, Grant, Hampshire, Hardy, Jefferson, Mineral, Morgan, Pendleton, Pocahontas, Preston, Randolph, Tucker.

Section II: Barbour, Boone, Braxton, Brooke, Cabell, Calhoun, Clay, Doddridge, Fayette, Gilmer, Greenbrier, Hancock, Harrison, Jackson, Kanawha, Lewis, Lincoln, Logan, McDowell, Marion, Marshall, Mason, Mercer, Mingo, Monongalia, Monroe, Nicholas, Ohio, Pleasants, Putnam, Raleigh, Ritchie, Roane, Summers, Taylor, Tyler, Upshur, Wayne, Webster, Wetzel Wirt, Wood, Wyoming.

WISCONSIN.

Section I : Ashland, Barron, Bayfield, Buffalo, Burnett, Chippewa, Crawford, Douglas, Dunn, Eau Claire, Iron, Jackson, La Crosse, Pepin, Pierce, Polk, Price, Rusk, St. Croix, Sawyer, Taylor, Trempealeau, Vernon, Washburn.

Section II: Adams, Clark, Columbia, Dane, Dodge, Florence, Fond du Lac. Forest, Grant, Green, Green Lake, Iowa, Jefferson, Juneau, Lafayette, Langlade, Lincoln, Marathon, Marinette, Marquette, Monroe, Oconto, Onelda, Outagamie, Portage, Richland, Rock, Sauk, Shawano, Vilas, Walworth, Washlngton, Waukesha, Wampaca, Waushara, Winnebago, Wood.

Clty not included in counties, Green Bay.
Section III: Milwaukee.
Section IV : Brown, Calumet, Door, Kenosha, Kewaunee, Mauitowoc, Ozankee, Racine, Sheboygan.

City not included in counties, Superior.
wYoming.
Sectlon I: Includes entire State.

PLATE V.

Table 19.-Consolidation of similar sections; the series and their constituent groups.
Series I. The occupational series:
Group 1. Agricultural, North, native white, 73 per cent.
Group 2. Agricultural, North and West, mixed foreign and native white.
Group 3. Agricultural, South, native white.
Group 4. Agricultural, South, Negro, 45 per cent plus.
Group 5. Eastern manufacturing.
Group 6. Commuter.
Group 7. Mining.
Series II. The physiographic series:
Group 8. Sparsely settled, not more than 3 per square mile.
Group 9. Desert.
Group 10. Maritime.
Group 11. Mountain.
Series III. The racial series:
Group 12. Mountain whites.
Group 13. Indian, sparsely settled.
Group 14. Mexican, sparsely settled.
Group 15. Native whites of Scotch origin.
Group 16. Russian, 10 per cent plus.
Group 17. Scandinavian, 10 per cent plus.
Group 18. Finn, 10 per cent plus.
Group 19. French Canadian, 10 per cent plus.
Group 20. German and Scandinavian, 10 per cent plus.
Group 21. German and Austrian, 20 per cent plus.
Group 22. German and Austrian, 15 per cent plus.
Table 20.-Consolidation of similar sections; the groups and their composition out of sections.
Group 1. Agricultural, North, native white, 73 per cent:
Illinois. .. 3
Indiana................................ 3 Pennsylvania............................ 2
Iowa.
2
Group 2. Agricultural, North and West, mixed foreign and native white:
Colorado. 4 New York................................. 7
Illinois. 8 Ohio.. 2
Indiana................................ 2 Pennsylvania........................... 6
Iowa................................... . 1 South Dakota............................. 1
Kansas................................ 2 Vermont.................................... 1
Michigan............................... 2 Washington.................................. 1
Nebraska............................. 2 Wisconsin.................................... 2
New Jersey. 2
Group 3. Agricultural, South, native white:
Alabama. 2, 3,6
Arkansas............................. 2,3 Oklahoma....................................... 1,2
Kentucky. 2 Tennessee.................................... 2
Louisiana. 3 Texas...................................... 2, 4
Maryland.............................. 3 Virginia....................................... 3
Mississippi. 2 West Virginia............................ 2
Missouri. 1,3
Group 4. Agricultural, South, Negro, 45 per cent plus:
Alabama. 2, 4 North Carolina........................... 4

Georgia. 2 Tennessee............................... 1
Louisiana............................ 1 Texas.. 5
Mississippi........................... 1 Virginia.................................... 2

Table: 2).-Consolidation of similar sections; the groups and their composition out of sections-C'on.

Group 5. Eastern manufacturing

Connecticut 2 New York 3
Massachusetts 2 Ohio. 1
New Hampshire 2 Pennsylvania 5
New Jersey 1 Rhode Island 1
Group 6. Commuter:
Illinois 1 New York 1
Now Jersey 1
Gmup 7. Mining:
Alabama Montana 1
California 2 Nevada 1
Colorado. 1,3,6 Peunsylvania 3, 4
Idaho Utah.3
Gronp 8. Sparsely settled, not more than 3 per square mile:
California 3 Oregon 2
Montana 2 Utah 1
Nevada 1. Wyoming 1
New Mexico. 2
Gromp 9. Desert:
Arizona New Mexico 2
Nevada. 1
Group 10. Maritime:
Maine. 2 North Carolina 5
Maryland 2,4 Virginia. 1
Massachusetts 3
Gronp 11. Mountain:
Arkansas. 2 New Hampshire 1
Massachusetts 1 New York 5, 8
Missouri 3 Washington 3
Montana 1 Wyoming. 1
Group 12. Mountain whites:
Kentucky 1 Tennessee 3
North Carolina 1 Virginia. 4
South Carolina 1 West Virginia 1
Group 13. Indian, sparsely settled:
Arizona 1
New Mexico. 1 South Dakota 3
Group 14. Mexican, sparsely settled:
Arizona 1,2 Texas 1
New Mexico 3
Group 15. Native whites of Scotch origin :Kentucky
2 North Carolina. 3
Group 16. Russian, 10 per cent plus:
Colorado 2 Pennsylvania 3
Kansas. South Dakota 2
North Dakota 3
Group 17. Scandinavian, 10 per cent plus:
Michigan1 Útah.1,2
Minnesota $1,2,3$ Washington 2
North Dakota. 1,2,3 Wisconsin. 1, 2

Group 19. French Canadian, 10 per cent plus:
Maine. 3 New Hampshire 1, 2
Massachusetts. 2 Rhode Island. 1Group 20. German and Scandinavian, 10 per cent plus:
Minnesota............................ 1,2 Wisconsin. 1,2
South Dakota. 1
Group 21. German and Austrian, 20 per cent plus:
Illinois............................... 1,4 Minnesota. 2
Indiana. 1 Ohio 1
Group 22. German and Austrian, 15 per cent plus:

Illinois.	1,4	New Jersey..	1
Indiana.	1	Ohio........	1
Iowa.	1	Pennsylvania	3, 5, 7
Minnesota	2	Wisconsin.	1,2,4

10. AVERAGE STATURE OF RECRUITS FROM DIFFERENT SECTIONS.

For various purposes the country has been divided into 156 sections, on the basis of population. Table 21 gives the average stature of recruits from the different sections arranged in order of this stature. At the head of this table stands Section 1 of North Carolina, the sparsely populated mountainous area of that State. Here the stature is 68.67 inches (174.42 centimeters), being 1.18 inches above the average of the United States. This tall stature is practically the same as that given for 1,304 Scotch in general, namely, 174.6 ceatimeters. The reason for the exceptionally great stature of men from Section 1 of North Carolina is primarily that many are of Scotch origin. As is well known, North Carolina, especially the Cape Fear region, was settled by Scotch Presbyterians in the middle of the seventeenth century. Their descendants have penetrated to the higher regions of the Cape Fear River in Scotland County and many of them have settled in the mountain region of western North Carolina. It is probable that there has been something of a selection of the largest and hardiest of these Scotch to settle the mountain region. It appears also that in Section 2, comprising the intermediate part of North Carolina, the stature is very great, 68.26 inches. In Section 3, comprising a large proportion of native whites of Scotch origin, the stature is 68.24 inches, while in those parts of North Carolina which lie near the sea coast the population is only slightly above the average for the United States. Unfortunately, it is not possible to say what was the stature of men of North Carolina at the time of the Civil War because this State was one of those in secession and its statistics are not included in those of recruits of the northern Army. During the Civil War the greatest average stature was found in men from Kentucky and Tennessee. In the present table Section 1 of Kentucky (mountainous area, native whites), gives an average stature of 68.21 inches, which is 0.72 above the average of the whole United States, and Section 2 of Kentucky (agricultural area of the central and western part) has an average stature of 67.95 , or nearly 0.5 inch
above the mean of the whole United States. The mean stature for Kentucky, 68.02 , is less than that given by Gould ${ }^{2}$ (p. 95) for men from Kentucky and Tennessee-namely, 68.16 .

Table 21.-Mean height, by sections; sections arranged in order of standing, with proportional weight and chest circumference (expiration) for earh inch of height; also standard deviation for each height; first million druft recruits.

Statex.	Section.	Ciaracteristics of sections.	Nummen measured.	$\begin{aligned} & \text { Mean } \\ & \text { height. } \end{aligned}$	Standard deviation (helght).	Mean weight. Mean height.	Mean chest. Mean lieight.
A verage for United states			868,445	Inches. 67. 49	Inches. 2.71	Pounds. 2.097	Inch. 0.492
North Caroilna..	1	Sparseiy populated mountainons area..	2,738	68.67	2. 55	2. 0.06	. 489
Arkansas.	2	Large native white population, hill country.	1, 559	68, 64	2.60	2.050)	. 484
Missour	3	Native white, Ozark regioll..............	1,139	68. 63	2.48	2.000	. 483
Texas.	2	Sparseiy settied, white.	22,372	68. 50	2.60	2.050	- 480
	5	Large Negro population	1,316	68. 46	2.65	2. 110	- 487
Do	3	German and Negro population	1,415	68. 45	2.61	2. 110	. 484
Minnesota	1	Scandinavian population.	6, 461	68.44	2. 54	2.170	. 495
Mississiplii......	2	Rural area, iarge native white popmlation.	3, 394	68.44	2.66	2.070	. 480
Tennessee.	3	Mountainous region.	5,900	68. 43	2.51	2. 050	. 481
Oklahom	2	Chiefly white popuiat	10,958	68.37	2. 57	2. 090	. 485
Kansas.	1	Russian population.	1,067	68.30	2. 57	2. 122	. 486
Tennessee.	2	Agricuitural region.	6, 308	68. 29	2. 60	2. 010	. 484
North Carolina.	2	Intermediate.. ${ }^{\text {a }}$. ${ }^{\text {a }}$.	4, 309	68. 26	2.57	2. 066	. 486
Do.......	3	Native white of Seotch origit	2,033	68.24	2. 72	2. 074	. 485
Arkansas.	3	Large native white populatio	3,607	68.22	2.64	2.063	. 485
California	3	Sparsely popuiated.	2, 108	68.21	2.53	2.116	. 490
Kentucky.	1	Mountainous area, native white	4,033	65. 21	2.51	2.051	. 486
Nebraska.	2	German, Austrian, and Russian stocks.	3, 145	68.21	2.59	2. 136	. 489
Alabama.	3	Large native white population.	2,670	68.21	2. 74	2. 062	. 484
Washington.	3	Mountainous area.	1,539	68. 19	2.56	2. 142	. 493
Texas...	1	Large Mexican population	6,676	68. 19	2.70	2.080	. 487
South Carolina.	1	Native white............	1,561	68. 19	2.83	2.060	. 484
Kansas.	2	Native and German population	8,505	68.18	2.54	2.105	. 488
Arizona.	2	Chlefly white population.	2, S_{23}	68.17	2.61	2. 096	. 487
Montana.	2	Sparsely settled, monntainous	6, 231	68.17	2.57	2. 150	. 483
Oklahom	6	Negro population (Egypt).	409 8,471	68. 16	2.38 2.59	2.073	-482
Utah.	1	Sparsely popuiated	1,224	68. 16	2.64	2.114	. 492
Alabama	4	Large Negro populatio	669	68.16	2.61	2.115	. 486
Alaska.	Ail.	Undivided.	106	65.15	2.30	2.208	. 493
Mississippi	1	Rural arca, largo Negro pophlation.	5,149	68.15	2.67	2. 120	. 188
Minnesota	2	German and Scandinavian population..	7,601	68.14	2.63	2.170	. 497
Virginia.	4	Mountain, white........................	5, 512	68.14	2. 54	2. 0.5	. 489
Oregon.	2	Columbia River Valley and coastal dry plain, sparsely populated.	1,077	68. 13	2. 52	2. 140	. 490
South Dakota.	3	Indlan popuiation.......................	217	68. 13	2.41	2. 180	. 495
Wisconsin.	1	Scandinavian and German popnlation..	3, 297	68.13	2.66	2. 130	. 494
Colorado.	3	Engiish population..	381	68.12	2.66	2.086	. 487
Indiana.	2	Agricuitural, considerable German	837	68. 12	2.48	2. 120	. 491
Virgini	3	Native rural region.	3, 866	68.12	2.73	2.066	. 489
Idaho.	All.	State undivided.	4, 034	68. 10	2.57	2. 133	. 495
Missouri	2	Mississippibot toms, considerabie Negro population.	3,448	68. 10	2.63	2.090	. 456
Iows.	1	Foreign white, German and Scandlnavian.	12, 139	68. 09	2.56	2. 139	. 492
Missour	1	Native white, agricultural.	13,548	68.09	2.59	2. 080	. 480
Texas.	4	Coastal nati ve popuiation.	2, 722	68. 09	2.70	2.090	. 487
Georgia.	,	Mixed population, native white predominating.	10,248	68. 08	2.63	2.064	. 486
Oregon	1	Fairiy densely populated............... .	2,748	68, 08	2.61	2. 153	. 492
South Dakot	1	Dry farming area..	3, 0.51	68.07	2.65	2. 160	. 492
Tennessee	1	Negroes, Mississippi bottoms.	2,218	68.07	2.59	2.090	. 483
Coiorado.	1	Large native whíte populatlon	1,056	68.03	2.79	2081	. 489
Arkansa	1	Negro Mississippi bottoms. .	4,945	68. 05	268	2.083	. 4.57
Colorado	4	Prevalingiy agricuitural.	1,227	68. 05	2.70	2. 087	. 486
North Dakota.	2	Scandinavian population.	3,307	68, 03	2.48	2. 159	. 497
Arizona	1	Large Indian popuiation, sparsely settled.	1,027	6, 02	2.73	2. 106	. 4.69
Nebraska.	1	German and Irish, foreign storks.	7,629	68. 02	2.69	2. 120	. 485
Washiugton	1	Coastal region pius eastern counties	5,176	68. 01	260	2. 139	. 492
West Virginia	1	Mountainous area.	1,507	67.98	2.71	2.072	. 485
Alabama	1	Mining and manufacturing	8, 841	67.97	2.67	2.071	. 484
Iowa.	2	Native white.	7,401	67.96	2.61	2. 108	. 488
Nabama.	2	Large Negro population	3,327	67.95	2.71	2.098	.459
Kentueky........	2	Agricultnral area........	11, 469	67.95 67.92	2.62 2.53	2. 0170	. .495

Table 21--Mean height, by sections; sections arranged in order of standing, with proportional weight and chest circumference (expiration) for each inch of height; also standard deviation for each height; first million draft recruits-Continued.

States.	Sec. tion.	Characterlsties of sections.	Number oil men measured.	Mcan height.	Standard deviation (height).	Mean weight. Mean height.	$\frac{\text { Mcan chest. }}{\text { Mean height. }}$
Georgia.	2	Large Negro population.	10,078	Inches. 67.91	Inches. 2.66	Pounds. 2.077	Inch. 0.490
Louisian		Rural, chicfly white populatlon	5,235	67.89	2. 69	2. 064	. 488
New Mexico	3	Noteworthy Mexican element..	- 540	67.89	2.73	2.048	480
North Dakota.	3	Russian population..	2,005	67.87	2.61	2. 172	496
Washingtor..	2	Puget sound, foreign	6,601	67.87	2.70	2.140	492
Illinois...	7	Agriculturalarea..	5,442	67. 66	2.58	2.092	499
	3	Agricultural area,	8,928	67.86	2. 59	2.094	457
West Virginia	2	Agricultural region.	10, 860	67.85	2. 70	2.057	491
Indiana......	3	Agriculturalarea, na	18, 743	67.81	2. 56	2.083	487
Colorado.	,	Russian population.	1,105	67.83	2.67	2.091	. 490
Minnesota	4	Urban area, "Twin Cities	9,759	67.83	2. 63	2. 130	. 459
Nevada.	All.	State undivided.	1,441	67.83	2.69	2.143	497
Montana	1	Mining area, forcign	5,117	67.82	2.65	2.150	. 491
Wisconsi	2	German population...	7,685	67.82	2. 58	2.140	. 495
Alabama	5	Urban and suburbau arear	481	67.81	2.56	2. 066	. 483
North Carol	4	Large Negro populatiou	4,570	67.79	2.72	2.097	. 489
W yoming.	All.	State undivided...	1,927	67.79	2.63	2.130	. 492
Illínois...	.	Agricultural and manufacturi	2, 451	67.77	2. 63	2.110	. 493
California	1	Chiefly agricultural area.	17,793	67.75	2.68	2. 137	. 494
Ohio.	3	Agricultural area..	17,606	67.75	2.59	2. 085	. 489
Utah.		More dcusely populated.................	2,781	67.75	2.56	2. 105	. 485
Louisiana	1	Misslssippi bottoms and upland, large Negro population.	4,074	67.73	2.63	2.073	. 491
North Carolina.	6	Remainder of State..	744	67.73	2.63	2.076	. 489
South Carolina.	2	Large Negro populati	3,975	67.72	2.77	2. 100	. 490
California.	4	Urban area.	7,428	67.71	2. 64	2.099	. 487
Do...	2	Mining area.	943	67.69	2.64	2.154	. 499
Florida.	1	More white and maritim	2,486	67.69	2.67	2. 050	. 486
North Carolina.	5	Island and peninsular area	254	67.69	2.61	2.087	. 491
Florida.	2	More Negro and rural population.......	996	67.69	2. 63	2.070	. 490
Colorado.	5	Urban population........................	1,644	67.68	2.69	2. 070	. 485
North Dako	1	Scandinavian and Canadian population.	1,132	67.67	2. 56	2. 159	. 498
Colorado	6	Austrian and Italian population........	1,222	67.65	2.71	2.060	. 481
Minnesota	3	Scandinavians and Finns.	3,520	67.65	2.66	2. 170	. 502
Utah.	3	Miningarea.	563	67.65	2.78	2. 127	. 494
Michigan.	2	Prevailingly native white pop	12,567	67.63	2.55	2. 100	. 493
District of Columbia.	All.	Undivided.	4,493	67.63	2.65	2.077	. 482
Maine...........	2	Native white stock, maritime	828	67.60	2.59	2.091	. 497
Illinois	,	Largely German populatiou.	4,238	67.59	2.64	2.115	. 494
Do	2	Mixed nativeand foreign population	7, 803	67.59	2.60	2. 114	. 494
Michigan	5	Dutch and other foreign population	2, 892	67.51	2.65	2.090	. 491
Missouri.	4	Urban area...	6,789	67.49	2.63	2.050	. 488
Virginia.	2	Large Negro population.	5,352	67.46	2.72	2.077	. 490
New Yor	7	Agricultural and dairying	6,465	67.45	2.64	2.098	. 496
Florida.	4	Peninsular	2,340	67.44	2.57	2. 069	. 491
Illinois.	,	Densely populated.	6,303	67.43	2.67	2.123	. 495
New Mexi	2	Native whitc population	1,857	67.43	2.85	2.049	. 493
Michigan	3	Foreign population	6,298	67.40	2.62	2.110	. 497
Wiscons		Lake counties..	2,890	67.39	2.57	2. 140	. 500
Ohio.		Urban area.	3,557	67.39	2.90	2.104	. 489
Marylan		Peniusular are	1,068	67.37	2.69	2. 050	. 490
Pennsylvania.	,	Ruralarea.	8,616	67.37	2.90	2.099	. 494
Virginia.	1	Peninsular region and east	2,886	67.34	2.73	2.091	. 487
South Carolina	3	Peninsular and rural areas.	3,804	67.33	2.64	2.060	. 491
Ohio..........	2	Intermediate.	14,443	67.31	2.74	2.096	. 491
Californ	5	Urban area.	7,189	67.28	2.61	2. 137	. 495
Maine	1	English Canadian.	1,240	67.28	2. 59	2. 110	- 497
Maryland.	3	Large white populatiou	2,683	67.26	2.48	2.090	. 496
New Mexico.	1	Indian population.....	293	67.26	2.90	2.068	. 494
New Hampshire.	,	Mountainous area.	665	67.25	2.54	2.106	. 501
Indiana.........	1	Manufacturing-..........................	3,614	67.22	2.64	2.113	. 497
Florida.	3	Cuban, Spanish, West Indian population.	84	67.21	2.60	2.026	. 487
Delaware..	All.	State undivided.	1,894	67. 19	2.61	2.075	. 492
New York.	5	Mountainous, Catskill region.	795	67.16	2.69	2.074	. 493
Vermont	All.	State undivided..............	2,077	67.12	2.52	2.091	. 498
Michigar	1	Finnish population	2,344	67.10	2.61	2. 160	. 501
Illinols.	5	Urban area.........	33,919	67.09	2.67	2. 099	. 495
Maine.	3	French Canadian populatiou	1,247	67.07	2.58	2.080	. 495
New York	8	Mountainous, Adirondack area	2,990	67.06	2.64	2. 090	. 497
Ohio.	1	Dense foreign population.	17, 208	67.06	2.67	2.111	. 495
New York	4	Western manufacturing region	14, 222	67.01	2.67	2. 096	. 495
Wisconsin.	3	Urban and forcign stock.	4,527	66.99	2. 56	2. 100	. 497
New York.	- 6	Urban area....	6,514	66.95	2. 66	2. 126	. 498
Massachusetts.	 do.	8, 557	66.94	2.64	2.090	. 494
Louislana.	2	. . do.	3, 047	66.93	2. 66	2. 056	. 488
Maryland......	- $\begin{array}{r}1 \\ \hline\end{array}$	Peninsular region	5,441 1,127	66.93 666.90	2.69 2.70	2. 2.070	. 493
Massachusetts.	- 3	Peninsular region	1,127	6). ${ }^{\text {\% }}$	2.71	2.070	. 491

Table 21.-Mean height, by sections; sections arranged in order of standing, with proportional weight and chest circumference (erpiration) for auch inch of height; also standard devintion for each height; jirst million draft recruits-Continued.

States.	Section.	Chanacteristies of sections.	Num- ber of men meas urel.	Mean height.	Standard devlatlon (helght).	Mean welght. Mcan helght.	Mean chest. Mean helght.
New lork.	3	Eastern manufacturing region	5, 150	Inches. 66.87	Inches. 2.66	Pounds. 2.092	Inch.
New llampshlre.	2	Mamufacturing area.	1,581	66. 86	2. 61	2051	. 493
Massachusetts...	1	Mountainous area	1,373	66.85	2.67	2070	. 492
Michigan.	4	Urbanarea.	17,771	68.84	2.61	2.110	- 496
New Jersey	3	Mountalnous area plus \mathbf{A} tiantic County.	3, 196	66. 81	2.76	2.052	. 501
Do)	Pluns section, rural.	8,985	60.83	2. 80	2.078	-490
Pennsylvanl:	4	Coal minlng.	4,827	66. 80	2.69	2. 109	. 496
Connectlent.	1)	Manufacturing area.	8,708	63.73	2.73	2006	. 499
Penusylvaniu	1)	Ruralarea, native stock	14,218	66.73	2.62	2.095	. 497
New Jersey.	1	Densely populated.	17,795	66.72	2.74	2.078	. 497
Connectleut	1	Prevailhgly agricultural and newr metropolitan.	4,377	(66. 67	$2.6 \times$	2094	. 503
Massachusetts..	2	Mamufacturing center.	18,447	60.67	2.67	2.070	. 497
Pemisylva	7	Allegheny County plusasmall ruralarea	17,213	66.67	\cdots	2.093	- 495
Do..	5	Manufacturing.	8, 192	66.66	2. 69	2.116	. 497
New York	1	Suburban territory	4,934	66. 6.5	2. 76	2091	. 497
Pennsylvania	1	Urbanarea....	16,0.5	66.62	?.65	2.065	. 491
1 DO	3	Mlnlng area.	7,305	66.55	2.57	2.105	. 500
New York.	${ }^{-1}$	Urban area densely populated	46,718	66. 46	2. 73	2.044	. 498
thode lsland.	All.	State undivided.	3,92*	66.40	2.61	2.060	. 494

To return to Table 21, the second entry from the top is Arkansas, Section 2. This section comprises about 97 per cent "native whites of native parentage"; that is, the old American southern white stock that lives in the hill country of northwestern Arkansas. The third section in order is Missouri 3, which included native whites of the Ozark region, a region practically contiguous with Arkansas 2 , and composed of the same sort of men. In this section about 95 per cent of the population are of old white American stock, and fewer than 3 per thousand are Negroes. As has often been remarked, there is great resemblance in the general constitution of the population of the Ozark region in Missouri to that of the mountains of Kentucky and Tennessee.

The next three sections are in Texas, and two of these contain a considerable Negro population. As already pointed out, the proportion of immigrants from southeastern Europe in Texas is negligible. The State was settled chiefly by the tall southern stock. Next on the table comes Minnesota, Section 1. This comprises the northern counties, with prevailingly Scandinavian population. We have already seen from the table of statures, page 68, that the Scandinavians are among the tallest races of Europe. This characertistic they have carried with them into Minnesota and have transmitted to their sons.

In the upper part of the table one finds certain other sections of interest, such as the mountain region of Tennessee (Section 3), the State of Oklahoma in general, recently populated by a selected lot of whites; Arkansas in general, including sections with a prevailingly white population; Kansas, both sections, with the prevailingly native, German, and Mennonite Russian population; Section 6 in the State of Illinois, so-called "Egypt," with a prevailingly Negro population; and in general, those sections of the Southern States which have a large Negro population.

The bottom of the table is occupied by Rhode Island. The reason for this has already been pointed out. It is the presence of short races, Italian,

French Canadians, and Portuguese. Next to the bottom comes Section 2 of New York, comprising Greater New York, the most densely populated part of the Western Hemisphere. Here the mean stature is 66.46 , or approximately 1 inch below the average for the United States. This low average stature of Greater New York is associated with a very high standard deviation, namely, 2.77. This indicates, as common observation confirms, that the stature of the population is exceptionally variable, comprising tall elements, selected from the most vigorous representatives of the northwestern and western races of Europe, including many of German and British stock, and, on the other hand, a very large proportion of representatives of the shortest races of Europe: Polish Jews, South Italians, and Greeks. The preponderance of the short races has resulted in bringing the average stature well toward the bottom of the list. The third section from the bottom is Pennsylvania 3. This comprises certain mining counties in the eastern part of the State. In the census of 1910 these included 4 per cent Italians, 21 per cent Austrians and Russians, 2.3 per cent Hungarians, and 42.5 per cent native whites of native parentage. The whites of native parentage were, however, in turn largely descended from the short races. Fourth from the bottom lies Pennsylvania 1, Philadelphia. This city comprises over 10 per cent Austrians and Russians (largely Jews), 5 per cent Italians, and only 37 per cent native whites of native parentage. Philadelphia approximates New York City in its possession of a large mixture of southeastern and eastern Europeans, and hence tends to fall near the bottom of the list. The next section is that of New York 1, which includes territory surrounding Greater New York, and whose population naturally is largely influenced by conditions in the great city. Then come certain manufacturing and mining populations. Next comes Massachusetts 2, a manufacturing center of that State outside of Boston. Reasons similar to those cited above account for the low position in the table of Section 1 of Connecticut and Section 1 of New Jersey (being densely populated portions of the State adjacent to Greater New York), and all other sections in Connecticut, Pennsylvania, and New Jersey. Michigan 4 comprises Detroit, and Section 2 of New Hampshire includes the manufacturing area of that State along the Merrimac River. The remaining sections of the table are those in which the population is less strikingly selected for great or small height or in which no great mixture of statures occurs.

In examining the table more generally, we find that there are very few sections with a large Negro population in which the stature is below the average. In fact, Virginia 2 is the only instance of this kind. On the other hand, there are relatively few mining areas in which the population is markedly above the average. The most striking of these are Alabama 1, the population tributary to Birmingham, which consists almost exclusively of native whites, 72 per cent, and Negroes, 26 per cent. Another instance is Montana 1 (67.82 inches), in which the foreign population is largely Irish and Scandinavian. California 2, with an average stature of 67.69 inches, has a high proportion of native whites of native parentage (47 per cent) and many English, Irish, and German, together with somo Italians. In Utah 3, with a mean stature of 67.65 inches, the mining population included a large proportion of English. These have
doubtless migrated into the mining region from the more densely populated part of the State which has attracted to itself, through Mormon proselytizing, many representatives of the English and Scandinavian peoples. Those sections that include a large proportion of Germans and Scandinavians naturally lie in the upper part of the table. The great cities lie prevailingly in the lower part of the table, not because city life tends to stunt growth but because cities attract the people from southeastern Europe, who remain in them instead of going upon the farms. On the other hand, the agricultural areas are occupied by persons of tall stature because the small races of southeastern Europe do not go to them in large numbers, whereas Scandinavians and many of the Germans do. Some of these conclusions will be strengthened and new ones will be gained by a study of the groups of similar sections shown in Table 22.

11. Higil and low standard deviations in the different sections.

Table 21 gives the standard deviation in stature for each section. For the United States as a whole the standard deviation in stature is 2.71 inches. Some of the highest standard deviations are: Ohio 4 (Cincinnati), 2.90; Pennsylvania 6 (a rural area in the northwestern part of the State), 2.90; New Mexico 1 (including many tuberculous whites, and also Indians and Mexicans), 2.90; New Mexico 2 (with more whites, but also Mexicans and Indians), 2.85; South Carolina 1 (mountain whites, but also a large colored population), 2.83. High variability is found in many large cities and suburban areas, for the reason suggested above; e. g., New York 2 (New York City), 2.77; New Jersey 1 (suburban), 2.74; New York 1 (suburban), 2.76. Low variabilities are found in Alaska, 2.30; Illinois 6 (31 per cent Negro), 2.38; South Dakota 3 (87 per cent Indian), 2.41; Missouri 3 (the Ozark region, with 94 per cent whites, prevailingly tall), 2.48 . Low variability implies homogeneity in the population; high variability, heterogeneity.

12. MEAN STATURE, BY GROUPS OF SIMILAR SECTIONS.

In Table 22 and Table IV'the different sections are grouped so as to bring together those which have certain points of similarity. The mean stature and standard deviation have been worked out for these groups. The groups are arranged in order of the average stature. At the top of the list lies the group of mountain whites (group 12), including sections from the States of Kentucky, North and South Carolina, Tennessee, Virginia, and West Virginia. The average stature of men from these sections is 68.29 , which is 0.8 inch above the a verage for the whole United States. Since these sections, except South Carolina, have a small proportion (less than 10 per cent) of Negroes, their exceptionally high average stature depends upon the physique of the mountain whites. These mountain whites, as pointed out, are, in the case of North Carolina and Kentucky, largely of Scotch origin. In the other States it is probable that there is a large mixture of Scotch and also some of the best physically developed of the stock that originally settled Virginia. The group is characterized by small variability, indicating that the population is fairly homogeneous in origin. The largest variability is found in South Carolina 1, in which the Negro element constitutes 31 per cent. The smallest variability (2.51) is found in the moun-
tain whites of Kentucky, comprising the smallest proportion of Negroes, 2.5 per cent.

The second group (group 3) in rank is that of the agricultural areas of the South that comprise a rather small proportion of Negroes. The proportion varies, however, in the different sections from 0.7 to 47.3 per cent. The average stature of this group is 68.18 inches, and all but one representative of this group are markedly above the average for the whole United States. The exception is Maryland 3, in the western part of the State, including nearly 75 per cent native whites and almost entirely native-born Americans. The variability of the group is low, namely, 2.64 , as contrasted with 2.71 for the whole United States. The other sections obviously comprise exceptionally tall white men, and this is because of the racial stock which settled Alabama, Arkansas, North Carolina, Virginia, Kentucky, Tennessee, and Texas. They seem to have been a taller lot than settled New England. This can not be inferred from present day statisties, because of the recent immigrants, but from the statistics of the Civil War. According to Gould ${ }^{2}$ (p. 125), the stature of native-born volunteers from New Hampshire was only 67.93; Vermont, 67.88; Rhode Island and Connecticut, 67.43; New York, 67.42; and Massachusetts, 67.41. To northern eyes, even at the time of the Civil War, southern whites appeạred tall and lank.

The third section (group 14) in order includes four sparsely settled sections near the Mexican border. One of these includes 17 per cent Mexicans, another 14 per cent, the others less. The highest average stature is found in Texas 1, which comprises 17 per cent Mexicans. These are largely of Indian stock and the tall stature is no doubt due to the infusion of Indian blood. This appears also in the next group (group 13) of sections selected because of their large Indian population. In South Dakota 3, with 87 per cent of Indians, the average stature is 68.13 , or 0.64 inch above the average.

The next group (group 20) in point of stature includes certain agricultural areas of the North, with a large German and Scandinavian population. The average stature of this group is 68.11 , or 0.62 inch above the average for the whole United States. The tallest men are found in Minnesota 1, which includes 37 per cent of Scandinavians.

The next group (group 8) includes seven sparsely settled sections, mostly of the Southwest, excepting two sections of Wyoming and Oregon. In this group the average stature is 68.01 , or 0.52 inch above the average. These sections include a large sprinkling of Indians and a very small percentage of recent immigrants.

The next group (group 15) includes two sections of native white persons of Scotch origin. In this group the mean height is about 0.5 inch above the average for the United States. Next comes a group (group 17) which includes a number of sections characterized by having 10 per cent or more Scandinavians. In this the mean height is 67.96 , or 0.47 inch above the average. The tallest section is Minnesota 1 , already referred to in another connection, with its mean stature of 68.44 inches. The next tallest section is Utah 1, including over 10 per cent Scandinavians and 8 per cent English, with a mean height of 68.16. The shortest people of this group are found in Michigan 1, 67.10 inches,
which includes a large Finnish population, and this helps to pull down the average.
The next group (group 9) includes three desert sections whose population includes many white people from other sections who suffer from tuberculosis. The average for the whole group is 67.86 inches, which is 0.37 inch above the average for the whole United States. Arizona 2, which includes Tucson, gives the tallest men of this group, 68.17 inches.

Passing now to the bottom of the table, we find that those sections in which the French Canadians (group 19) constitute 10 per cent or more of the population form the group with the least mean height, 66.67 , or 0.82 inch below the average for the whole United States. Of these sections, Rhode Island, with 11.4 per cent French Canadians and a large number of Portuguese, is the shortest.
The next taller group (group 5) is the castern manufacturing group, in which the mean height is 66.77 , or 0.72 inch below the average. The sections of this group are characterized by a large proportion of the short races of southeastern Europe.

Next comes the group (group 6) including commuters. The sections of this group lie adjacent to the large manufacturing cities of the East and partake of many characteristics of their population.

The next taller group (group 16) is that which contains sections made up of about 10 per cent or more Russians. These are largely Russian Mennonites, chiefly engaged in mining. The section with the shortest stature is that of Pennsylvania 3 , including a large mining population, while the tallest is Kansas 1, with 13 per cent Russians, engaged in agricultural pursuits. The differences in the stature of these populations are due chiefly to the difference in stature of the associated peoples.

Next above comes the group (group 22) in which the German and Austrian part of the population constitutes more than 15 per cent of the whole. Here the average stature is 67.27 inches, or only 0.22 inch below the average of all. When we select just those sections in which the Germans and Austrians constitute 20 per cent or more, the average 'stature, 67.41 inches, approaches still more closely the average stature of the whole country.
The mining group (group 7) comprises a population with just exactly the average stature of the whole United States and with a variability the same as that of the whole United States. The mining sections are for the most part regions of great admixture of various foreign nationalities.
It is noteworthy that those agricultural areas of the South which comprise 45 per cent or more of Negroes (group 4) have a shorter average stature than those agricultural areas of the South in which the proportion of Negroes is less. Since there is little difference in the average stature of white and colored, this result is to be ascribed to the fact that in the sections inhabited by the taller white man, there are fewer Negroes than in other sections of the South.

Table 22.- Mean height, by groups of sections; groups arranged in order of standing, with proportional weight and chest circumference (expiration) for each inch of height; also the standard deviation for each height; first million draft recruits.
[From Table IV', p. 42\%.]
[Height and clest in inches, and weight in pounds.]

$\begin{aligned} & \text { Group } \\ & \text { No. } \end{aligned}$	Description.	Number of men measured.	Mean height.	Standard deviation (height).	Mean weight. Mean height.	Mean chest. Mean height.
	A verage for the U'nited States.	S68, 445	Inches. 67.49	Inches. 2.01	Pounds. 2. 097	Inch. 0.492
12	Mountain whites.	21,254	68. 29	2.57	2.05	4862
3	Agricultural, native white, Soutlı	117,890	68.18	2.61	2.07	4854
14	Mexican, sparsely settled..	11,064	68. 16	2. 69	2.09	. 4874
13	Indian, sparsely scttled.	10,038	68.12	2.61	2.08	. 4881
20	German and Scandinavian, over 10 per cent	28,095	68.11	2.62	2.15	. 4951
8	Sparsely settled, not more than 3 per square inile.	16, 165	68.01	2.63	2.13	. 4929
15	Native whites of Scotch origin...........	13,322	68.00	2.61	2.06	. 4841
17	Scandinavian, 10 per cent.....	51,009	67.96	2.63	2.15	. 4952
9	Desert......	6,121	67.87	2.72	2.09	. 4917
11	Agricultural Negroes, 45 per cent plus	49,506	67. 82	2.68	2.09	- 4891
11	Mountain................................	17, 101	67. 72	2. 68	2.11	
2	Agricultural, mixed, foreign-native white..........	97, 340	67.62	2.66	2.11	. 4931
1	Agricultural, native white, North, native white over 73 per cent, North	66, 855	67.60	2. 63	2.09	. 4900
7	Mining.	35, 730	67.49	272	2.11	. 4929
18	Finn, 10 per cent.	5,864	67.43	2.65	2.16	. 5016
21	German and Austrian, over 20 per cent	38,962	67.41	2. 69	2.13	. 4955
10	Maritime..	6,161	67.31	270	2.09	. 4903
22	German and Austrian, over 15 per cen	126,994	67.27	2. 72	2.12	. 4954
16	Russian, 10 per cent plus.	12,076	67.11	2. 68	2. 12	. 4976
6	Commuter.............	29, 032	66. \&6	2.75	2.09	- 4970
5 19	Eastern manufacturing	81,718	66.77	270	2.09	. 4970
19	French Canadian, 10 per cent	25, 862	66.67	2.65	2.07	. 4966

Table 23．－Height distribution shown by groups of sections，first million draft recruits．
SECTION A：ABSOLUTE NUMBERS．

	$\begin{aligned} & \text { 諾 } \\ & \text { 品 } \end{aligned}$	
	\％	
	に	
	R	
	：	
	二	
	\mathfrak{R}	85zer ker
	i	
	F	
	ㅇ	
	\％	
	\％	
	E	
	8	？Wivise kok
	！	
	＂	
	8	 －-
	응	
	Ξ	
	8	
		\％
	$\begin{aligned} & \text { 言家\% } \end{aligned}$	

SECTION B：R．ITIOS PER 1,00 ）．

$\begin{aligned} & \text { İ } \\ & \text { O } \\ & \text { B } \end{aligned}$		 	8
	或苞	－	F．
	跸		¢
	N		\％
	18	 	
	I	 	$\begin{aligned} & \text { aid } \\ & 0 \end{aligned}$
	T	8\％ 	$\begin{aligned} & 8 \\ & i \end{aligned}$
	\％		${ }^{*}$
	$1-$		α
	\％		$\stackrel{\text { ¢ }}{\sim}$
	$1-$		号
	F	8＂	\pm
			0
	9		$\stackrel{\square}{\square}$
	R		8
			$\stackrel{\sim}{*}$
	8		ci
			9
	\％		家
			\＄
	5		輷
		－8\％¢－\％	\bigcirc
	8		$\stackrel{1}{4}$
			＇－
	8		$\stackrel{\square}{8}$
			ल
	E		－
			हे
	\％		¢
			5
	8		\bigcirc
	$=$		\％
	\square		$\stackrel{ }{ }$
	3		$\stackrel{5}{5}$
			N
	感弟		∞
		వ wix mor 	180
			$\begin{gathered} \vdots \\ \stackrel{\rightharpoonup}{\circ} \\ \text { E } \end{gathered}$

13. THE FREQUENCY DISTRIBUTION OF STATURES IN THE GROUPS OF SECTIONS.

The average is quite an inadequate method of indicating the composition of a population with reference to stature, for two populations which are very different in composition may have the same average. Thus one locality may have a large proportion of its men of average stature and another may be composed of nearly equal proportion of very short and very tall men. The average for the two populations might be alike. In Table 23 is given the distribution of statures for men from the different groups in ratios per 1,000 men of a given group. If we compare the ratios of men 61 inches tall in the different groups, we find that there is a large proportion of such exceedingly short men in those sections where French Canadians constitute 10 per cent or more of the population. Next in order come the commuter and eastern manufacturing groups with a large proportion of south Italians and Polish Jews. Then come the sections containing 10 per cent or more Russians, and after them the maritime groups.

The smallest proportion of 61 -inch men is found among the mountain whites, the sections containing a large proportion of Indians, the districts characterized by 10 per cent or more Germans and Scandinarians, the southern white agricultural districts, and those sparsely settled areas which contain a good many Indians.

If, now, we turn to the very tall men, say 74 inches, we find that they are commonest in the southern white agricultural groups. Next come the groups of Germans and Scandinavians 10 per cent, then the mountain whites, the desert districts, and those containing a large proportion of Indians on reservations and elsewhere. The smallest proportion of these tall men is found in those sections occupied by 10 per cent or more French Canadians. Next come the eastern manufacturing and commuter sections, and next the group containing 10 per cent or more Russians. It is significant to note that, though the commuter group contains a slightly larger proportion of 61 -inch men than the eastern manufacturing group, it contains proportionately very many more men of $72,73,74,75$ inches than does the eastern manufacturing group. 'This indicates that the commuter groups contain not only representatives of the races of eastern and southeastern Europe, who crowd the factories, but also men of the Nordic race, who are more largely leaders in affairs of the cities. In other words, the commuter groups are characterized by a deficiency of men of mediocre stature, 64-67 inches, as compared with the eastern manufacturing group.

A comparison of the southern white agricultural groups with agricultural groups containing 45 per cent or more Negroes shows in the latter a rehative excess of short statures, 66 inches and less, and a relative deficiency of statures over 72 inches. This is partly associated with an inferiority in stature of Negroes over the average southern whites (Pl. XVIII). A comparison of the northern agricultural areas, one with over 73 per cent native whites and the other with larger admixture of foreigners, reveals an excess of men under 62 inches in the latter group and also an excess of men 69 inches and over. This shows that the agricultural areas containing a mixture of foreign and native whites are, as might be expected, much more variable in stature, just on account of the $38656^{\circ}-21-8$
variety of races present. The consequence is that the foreign and native groups have a smaller proportion of men of mediocre stature, 67-69 inches, than have the northern native agricultural groups.

If we compare the mining groups with the average of the whole country, we find they are characterized by an excess of short men, 66 inches and under. They are also characterized by a slight deficiency in very tall men, 71 inches or taller. A comparison of the mountain whites of the Alleghenies and the inhabitants of the mountain in other districts shows that the mountain whites have a relative deficiency in men under 67 inches and a marked excess of men with a stature over 69 inches.

Table 22 gives for the different groups of sections the mean height of the drafted men. This is a summary table of Table IV already discussed. In this table there are given the averages and standard deviations. A study of the standard deviations is significant, since this is the measure of variability.

The groups are arranged in descending order of the mean height. This brings out clearly, what has been indicated before, that the mountain whites and southern agriculturists, the Indians, and the Mexicans constitute the tallest part of our population and the groups containing many French Canadians, eastern manufacturing and commuter groups include the shortest of our population. The average height for the United States is, as we have repeatedly seen before, 67.49 inches, and the standard deviation is 2.71 , which means that this is the center of gravity, as it were, of the variation above and below the average. When the variation above and below the average is slight, the standard deviation is small; when it is great, the standard deviation is large. Referring to Table 22, we find that the smallest standard deviation applies to the group of the mountain whites, this despite the fact that they are the tallest men, and in the tallest men one would expect a greater variability than in the shorter men, just because there are more inches of height to vary. The fact that the standard deviation is so small, 2.57 inches, indicates that we have to do here with a very homogeneous population. As a matter of fact, this group contains relatively few colored men; it is made up of the old British stock descended from the immigrants of colonial days. At the other extreme, the greatest variability is found in the commuter group. This, of course, is not a biological group at all, but a mixture of successful business men of the Nordic strain together with great numbers of recent immigrants who tend to settle in the seaboard cities and in their suburbs. The latter include, of course, the short races; the combination is the reason for the high standard deviation. Among other small standard deviations is that of the Indian group, 2.61, again containing a fairly homogencous population. The Scandinavian and GermanScandinavian groups have likewise standard deviations less than the average. The same is true of the northern agricultural groups with their 73 per cent of native whites. The "sparsely settled group" has the same standard deviation. The groups of native whites of Scotch origin and the southern agricultural native white groups are others with small standard deviations. The groups with 45 per cent Negroes or more have a greater variability, owing to the mixture of races. Groups which have a variability above the average for the whole country are, the mining group, to which all kinds of men resort;
the desert group, which includes orientals and tall tuberculous cases from the other sections, and the German and Austrian group, 15 per cent.
Plates VI and VII show for each one of the groups of sections the distribution of the frequency of heights. In each of the charts the average for the whole United States is given so that the departure from this average in each of the different classes may be seen at a glance. It appears that the sections containing 10 per cent Finns have a distribution of height agreeing most closely with that of the United States as a whole. The group containing French Canadians shows the greatest departure from the United States as a whole, owing to the short stature of the people of this section. The Mexican group has a peculiar form, including a more mediocre and a taller subgroup. The taller subgroup is possibly due to the persons affected with pulmonary tuberculosis who are above the average in stature, together with tall Indians.

14. COMPARISON OF STATURE in Eight European Races of men at demoBILIZATION.

For the sake of completion there are added here the results of measurements of stature at demobilization (1919), in the case of eight European races. Table 25 gives the proportional distribution of different classes of stature. The order is given in the following table:

Table 24.-Mean stature and standard deviation of each of the eight European races.

The standard deviation in stature is least in the Italians (probably because they are shortest) and greatest in the English (6.62 centimeters), indicating a great admixture of race statures in that people. Other high standard deviations are German, 6.61; French, 6.50. Next to the Italians (6.06) in staturevariability stand the Polish with a standard deviation of 6.12 , and the Hebrews with 6.20 . The Irish have a standard deviation of 6.31 , and the Scotch of 6.39 .

ments 596061626364656667686970717273747576777879
HEIGHT DISTRIBUTION BY GROUPS OF SECTIONS (P \mathbf{P}_{1})

menes 596061626364656667686970717273747576777879
mowes 596061626364656667686970717273747576717879 ve denotes average for u.s.
plate vii.
Table 25.-Comparative frequency distribution of height in each of eight races, demobilization. SECTION A: ABSOLUTE NUMBERS.

Race.	Total.	Height in centimeters.																														
		$\begin{array}{r} 148-1 \\ 149 \end{array}$	$150-1$	$\underset{153}{152-}$	$\begin{array}{\|c} 154 \\ 155 \end{array}$	$\begin{gathered} 156- \\ 157 \end{gathered}$	$\begin{array}{\|c} 158 \\ 159 \end{array}$	$\begin{aligned} & 160- \\ & 161 \end{aligned}$	$\begin{gathered} 162- \\ 163 \end{gathered}$	$\stackrel{164-}{165}$	$\begin{array}{\|l\|} 166- \\ 167 \end{array}$	$\begin{aligned} & 168- \\ & 169 \end{aligned}$	${ }_{171}^{170-}$	${ }_{173}^{172-}$	${ }_{175}^{17+}$	$\begin{gathered} 176- \\ 177 \end{gathered}$	$\left\|\begin{array}{c} 178- \\ 179 \end{array}\right\|$	$\left\|\begin{array}{\|c} 180- \\ 181 \end{array}\right\|$	$\begin{gathered} 182 \\ 183 \end{gathered}$	$\left.\begin{gathered} 18+- \\ 185 \end{gathered} \right\rvert\,$	$\begin{aligned} & \begin{array}{l} 156- \\ 187 \end{array} \end{aligned}$	$\begin{gathered} 188 \\ 189 \end{gathered}$	191	193	195	197	199	200	203	205	207	209
English	4, 204	1	1	3	15	25	49	116	193	258	374	451	517	487	437	44	292	221	136	82	43	34	17	8	1	2						
Beotch	2, 074			3	7	7	19	56	80	115	172	178	8	283	${ }_{705}^{252}$	${ }_{517} 21$	${ }_{356}^{176}$	101 240	${ }_{151}^{87}$	48	17 64	10	${ }_{12}^{7}$	2	3	1					1	
Irish..	6,164	$\frac{1}{2}$	${ }_{6}^{1}$	8	18	${ }_{35}^{47}$	100	191	316 288	448	${ }_{593}^{551}$	686 773	831 882	${ }_{832} 758$	784	630	386 489	$\xrightarrow{2+0}$	${ }_{231}^{101}$	152	88	47	17	${ }_{8}$	${ }_{3}$	4	3			2	1	
French	1,457	1	2	4	12	41	62	81	109	143	181	179	190	144	100	84	60	26	20	7	5	3	2									1
Italian.	3, 519	2	15	51	100	169	256	375	450	504	423	370	294	199	139	77	46	21	15	5	3	4							1			
Polish.	2, 408		3	3	21	30	49	107	195	227	296	292	316 169	288	210	148	113	${ }_{27}^{44}$	28 12	19	$\begin{array}{r}12 \\ 3 \\ \hline\end{array}$	4		2								
Hebrew	1,692		3	6	31	52	85	145	184	229	206	214	169	138			34	27	12			4				1						
Number m	28, 595	7	31	86	222	406	697	1,251	1,815	2,401	2,826	3, 143	3,439	3,129	2, 771	2,196	1,596	1,027	680	395	236	137	55	25	7	9	3		1	2	1	
Not mea	75																															
	28, 670																															
SECTION B: PROPORTIONAL RATIOS PER 1,000 .																																
English	4,204	0.24	0.24	0.71	3. 57	5. 95	11.66	27.59	45. 91	61. 37		107.28	122. 98	115.84				52. 57		19. 50		8. 09	38									
Sotch.	2,074 6 6			1.45 1.30	3.38 2.92	3. 38		27.00 29.20	31.27	55.45 71.39	82.93	85. 83	115. 72	${ }_{122.97}^{136}$. 91								
Irish....	6,164 7,077	- 16	. 16	1.30 1.13	2. 5	7.63 4.95	12.49	26. 99	${ }^{51.27} 40$	71.39 68.54		109.23	124.63	117.56	${ }_{118}^{11.37}$						12.58	6. 6		1. 13	. 42	. 57	0. 42			28	0. 16	
French	1,457										124.23	122.86	130.40	98. 83	68.64	57.6	41.18	17.8	13.73	4.80	3.43	2.06	1.37									69
Italian.	3, 519		4.26	14.49	28.42	48.03	72.75	106. 56	127.87	143.22	120.20	105. 14	83.54	56. 55	39.50				4. 26	1.42		1.14							0.2			
Polish.	2,408				8. 72	12. 46	20.35	44.43	80. 98	194. 27	122.92	121.26	131.23	119.60 81.56	87.21 50.83	${ }_{3}^{61.46}$	46.93	18.27	11.63					. 83		. 42						
Hebrew	1,692		1.77	3.55	18.32	30.73	50. 23	85.70	108.75	135.34	121.75	126.48	99.88	81.56	50.83	33.10	20.10	15.96	7.09	4.14		2.36				. 59						
Number measured.	28, 595	. 25	1.08	3.01	7.76	14.20	24.37	43.75	63.47	83. 96	93.83	109.92	120.27	109.43	96.91	76. 80	55.81	35. 91	23.78	13.81	8.25	4.79				. 31	. 10		. 03	. 07	. 03	
Not measured.																																
Total.	28, 670																															

Corresponding to their tall stature, we find among the Scotch a larger proportion of men of stature class 172-173 centimeters than among any other people. Indeed, this constitutes the modal class for the Scotch. For the English, 170-171 centimeters is the modal class and the same holds for the German, Irish, Polish, and French. For Hebrews and Italians, however, the modal class is 164-165 centimeters. Under the English system, the modal stature of the Scotch is about 68 inches (172.72 centimeters), of the Italians 65 inches (165.10 centimeters).

Table 26.-The mean stature in five color races, demobilization, 1919. a

	Race.	-	Number of men examined.	Mean stature.	
				Inches.	Centimeters.
White.			96, 596	67.71	171.98
Nerro.			6, 454	67.70	171.9\%
Indian.			107	67.52	171.51
Chinese..			23	67.37	171.11
Japanese.			32	67.30	170.94

a It will be noted, from examination of Tables $74,75,83,84,85,86,87,89,89,90$, and 91 , that the average stature varies slightly for the white and Negro troops, the variation depending upon the number of men measured.

15. COMPARISON OF WIIITE AND COLOR RACES.

A comparison of stature of white and color races is afforded by Table 26 taken from Tables 107 and LXXXIV and LXXXIX. It gives for the different color races the mean stature (in centimeters and inches). It appears that the stature of the white troops exceeds that of the negro by only 0.02 centimeter, or 0.01 inch. As Table LXXXIX shows, the colored troops are markedly more variable, having a standard deviation of 6.908 ± 0.041, while that of the white troops is only 6.660 ± 0.010 (Table LXXXIV). As the difference is about six times the probable error, it is doubtless significant. The remaining three races are of decidedly shorter stature, and of them the Japanese are the shortest with a stature of 170.94 centimeters (67.30 inches). This figure is far greater than the average for Japanese given by Miwa as 159.3 centimeters (62.72 inches). We conclude, therefore, that the 32 Japanese included in our measurements were exceptionally tall representatives of that short race.

III. WEIGHT.

1. GENERAL DISCUSSION.

This measurement is of great importance in itself and of still greater importance in relation to stature. The varying relation of weight to stature is a measure of build. Build is of importance as an index of physical robustness and general health. Just how weight should be expressed in relation to stature has been much discussed and will be further elaborated in the fifth section, dealing with build. Different races differ in size and average build. In judging weight as an index of health one must, accordingly, take into account the
racial constitution of the individual and not apply the same absolute standard to Scotch，French，and Polish Jews．

The medical significance of weight is indicated by its deviation from the normal in various diseases．Table I gives the normal distribution of weights，as deter－ mined from 868,445 drafted men．This normal distribution for each stature is shown in Plates XI and XII．The mean weight of the whole population is 141.54 pounds（Table I）．If，now，there be selected a group of men having a special disease，it is found that their mean weight frequently varies markedly from this average of all．Thus，it is evident at a glance that men affected with tuberculosis（Plate XXXIV）have a low weight，while men with varicose veins （Plate XXXV）and flat feet have a weight that is above the normal．Abnormal weight may，therefore，be symptomatic of these and other diseases．

Weight is of medico－military importance since a marked progressive change of weight under fairly uniform conditions of nutrition and exercise is an impor－ tant diagnostic feature．Loss of weight under these circumstances suggests need of careful examination．Increase of weight requires careful consideration of possible endocrine glandular disturbance．

2．METHOD．

The method of measuring weight is fairly simple．When practicable，the subject should be weighed without clothing，since the weight of the latter and contents of the pockets can not be judged accurately enough for＂practical＂ purposes．For recording in times of peace，any good beam scale，in which the weight has to be adjusted，may suffice；but for rapid work in mobilization examination，an automatic，springless scale（like that known under the trade name of＂Toledo＂）has advantages over the beam scale，both for speed and elimination of error in reading the somewhat obscure markings on the beam scale．Care，of course，will be exercised that the subject is standing directly on the platform of the scale and free from contact with anything else．

Mean weight without relation to stature is of only limited significance；still it must be considered in army statistics，since the food requirements of a body of men are better indicated by weight than by any other single measure．The absolute weight of adults varies，of course，with stature．In the very careful measurements made at the Nutrition Laboratory of the Carnegie Institution of Washington（Harris and Benedict ${ }^{15}$ pp．53，57），the absolute weight of a series of men of which the average stature was also found is given（Table 27）．

Table 27．－Weights associated with statures with the standard deviations，and the coefficient of variation for each，in various classes of American males（IIarris and Benedict ${ }^{15}$ ）．

Series．	N．	$\begin{gathered} \text { Average } \\ \text { stature } \\ \text { (eentimeters). } \end{gathered}$	Standard deviation．	Coefficient of variation．
Original series：				
Athletes．．	16	177.44 ± 1.57	9.33 ± 1.11	5． 26 ± 0.63
Others．	62	171.82 ± 0.58	6.79 ± 0.41	$3.95 \pm .24$
Whole series	89	$172.45 \pm .56$	$7.80 \pm$ ． 39	4． $53 \pm .23$
Gephart and Dubois sele	72	$172.75 \pm .56$	$6.98 \pm .39$	$4.04 \pm .23$
First supplementary series．．	23	174.61 ± 1.04	$8.17 \pm .74$	$4.68 \pm .42$
Original and flrst supplementary	117	$172.97 \pm .50$	$7.94 \pm .35$	4． $59 \pm .20$
Second supplementary series．．．．．	19	$172.95 \pm .75$	4． $83 \pm .53$	$2.79 \pm .31$
Other than Gephart and Dubois seri	64	$173.20 \pm .69$	8．21士．49	4．74土．28
All men of three series．	136	172．96 \pm ． 44	$7.59 \pm .44$	4．39士． 18

Table 27．－Weights associated with statures with the standard devialions，and the coeficient of varia－ lion for each，in various classes of American males（IIarris and Benedict ${ }^{15}$ ）－Continued．

Series．	N	Average weight （kilograms）．	Standard deviation．	Coeflicient of variation．
Original serles：				
Athletes．	16	73． 82 ± 2.17	12.87 ± 1.83	17.43 ± 2.14
Others．	62	63.03 ± 0.77	9.92 ± 0.55	14.32 ± 0.88
Whole series．	N9	$64.33 \pm .77$	10．73士． 54	$16.68 \pm .87$
Gephart and Dubols selectio	72	$63.33 \pm .67$	$8.37 \pm .47$	$13.22 \pm .76$
First supplementary series．．．．．．	28	62.69 ± 1.34	10．48土． 94	16．72 ± 1.55
Original and first supplementary series	117	$63.94 \pm .67$	$10.69 \pm .47$	$16.73 \pm .76$
Second supplementary series．．．	19	$6{ }^{3.3} .06 \pm 1.13$	$7.30 \pm .80$	11.22 ± 1.24
Other than Gephart and Dubois selectio	64	64.96 ± 1.02	12．04土． 72	$1 \mathrm{R}, 54 \pm 1.14$
All men of three series．．．．．．．	136	$64.10 \pm .60$	$10.30 \pm .42$	$16.06 \pm .67$

3．MEAN WEIGHT．

The mean weight of the population of 868，445 accepted recruits of 1917－1918 considered in this paper is 141.54 pounds，or 64.26 kilograms．

Baxter ${ }^{1}$（Vol．I，pp． 51 and 52）states：
While the annals of recruiting contain copious details as to stature，the amount of information furnished upon the subject of weight is，for the most part，extremely meager．A principal reason for this is to be found in the fact that weight is not a regulated quality in any code of laws governing the enlistment of recruits．The circumference of chest thought to be indispensable as an accom－ panist to certain degrees of stature，is carefully laid down in the English regulations，but weight is not even mentioned．It is to be presumed that the matter is left to the discretion of the examining surgeon，with whom the decision as to the other qualities named might，it is thought，be also left with advantage．A due proportion in the weight is quite as essential in the soldier as a well－formed chest，and is of greater importance than lofty stature．In former times，when it was necessary to make use of a ramrod in loading a musket，men of a certain height were absolutely necessary for the service；but in these days of breech－loading arms，a man from 5 feet to 5 feet 4 inches in stature，and well proportioned in build and weight is，cxteris paribus，as serviceable a soldier as can be desired．
The instructions delivered to enrolling surgeons during the War of the Rebellion contained no injunctions as to weight．As a matter of course，it was duly considered in the estimate of＂physical fitness＂of the conscript；but，unfortunately for the purpose of the present investigation，it was not an obligatory process，and a large part of the returns contain no entry upon the subject．Some energetic officers，however，saw fit to make their work complete by adding the particulars of weight of the other details given and for their records the tables in which the weight is a component，were completed．It is reasonable to assume，as the information was voluntarily furnished，that it was procured with due accuracy．The men weighed were invariably quite naked．

However，the mean weight of recruits of 1917－1918 may be compared with such information as is given by Baxter for recruits of the Civil War．This is， for 6,359 white Americans， 136.05 pounds（ 61.77 kilograms），and for 377 colored natives， 141.67 pounds（ 64.32 kilograms）．The weight of recruits of British， American，English，Irish，and German origins averaged somewhat under 137 pounds．This smaller weight of Civil War recruits is associated with their shorter mean stature and lower mean age．

Men at demobilization， 1919 （white and colored combined），weighed 144.59 pounds，an increase of 3.35 pounds over weight of recruits．The whites alone， at demobilization，1919，weighed 144.67 pounds，whereas the whites at de－ mobilization，Civil War，weighed 141.3 S pounds．Here again appears the superiority of weight of the troops of 1919 as compared with those of 1565 ．

The position of males of the United States in relation to those of other countries is indicated by the accompanying table (Table 28) of average weights of adult males of different nationalities:

Table 28.-Average weights of adult males of various nationalities (Martin, ${ }^{5}$ p. 238).

4. THE FREQUENCY DISTRIBUTION OF WEIGHT

(a) Recruits 1917-1918.-Table I (page 421) gives the absolute and relative frequencies of each of the different classes of weight into which the 868,445 recruits of 1917-1918 fall. Each of the classes has a range of 5 pounds. The modal class is seen to be 137 pounds, and this class includes 123 per $1,000 \mathrm{men}$. The frequency is very little less in classes 132 pounds and 142, but below and above these limits the frequency rapidly diminishes to 97 pounds on the one hand and to 202 pounds on the other. Below the lower limit of 97 pounds it is clear that there are proportionately few individuals, but at 202 pounds the upper limit is by no means reached, inasmuch as the class of 202 pounds and over comprises 5.4 per 1,000 persons.
(b) At demobilization.-Table 29 gives the relative frequency of the different classes of weight as found at demobilization in 1919. The weights are here taken in classes with a range of 10 pounds. For comparison, weights from Table I are given in the first column. The comparison reveals the fact that in veterans as compared with recruits, the mode shifts from 130-139 to 140-149. Of the veterans there were less than half as many of the weight 100-109 and there were also fewer of them of the weight 190-199. As a result of military training and warfare, either the lightest and heaviest men had been weeded out or else the light men had become heavier and the overweight men had lost weight; there was a tendency for the men to become more nearly uniform. However, the frequency of the modal class has not increased, but has fallen slightly, from 238 to 236 . The average weight increased from 141.54 to 144.89 pounds.

Table 29.-Frequency distribution of the various classes of weight (per mille) at mobilization, 1917-1918, and demobilization, 1919.

Weight-
Mobilization; mean 141.54; standard deviation 17.42 pounds
Demobilization; mean 144.89; standard deviation 17.06 pounds.
Plates XI and XII show, for the first million men, the relation of weight to stature. This is done by a series of 12 graphs, one for each class of stature from 62 to 73 inches, inclusive. On each graph is drawn in a faint line the normal distribution of weight for the entire population. This is for comparison with the curve drawn in heavier line showing the relative frequency of the different classes of weight for men of the respective stature. One learns from these graphs that, as is to be expected, the distribution of frequencies of weights in men 67 inches tall accords most closely with that of the whole population, although the weights of men with a stature of 67 inches are less variable than the weights of the entire population. As the stature diminishes from 67 inches the modal weight departs toward the lighter end of the series and as the stature increases from 67 inches, the modal weight departs toward the heavier end of the series.

5. Tile Standard deviation of the weight series.

The standard deviation of the weight variability of the 873,159 recruits was 17.42 pounds, or 7,908 grams. The standard-deviation of weight of men at demobilization was 17.06 pounds. This means that the demobilized men were 2 per cent less variable in weight than the recruits. This result is doubtless due in part to the cutting off of the extremes by discharge for disability and in part by the equalizing effect of an approximately uniform good environment.

6. MEAN WEIGIT FOR THE DIFFEIRENT STATES.

Table 30 shows, by States arranged in order of size, the average weight at mobilization and, for comparison, at demobilization. From this table is compiled the next Table 31, in which the States are arranged in order of the differences of average weight of recruits and veterans.

Table 30.-Average weight, by States, at mobilization, 1917-18, and demobilization, 1919 (in pounds); States arranged in order of standing, with proportional weight for each inch of height, and chest circumference (expiration) for each pound of weight, for the first million draft recruits.

State.	$\begin{gathered} \text { Number } \\ \text { of men } \\ \text { measured. } \end{gathered}$	Mean weight at demobilization.	Mean weight. Mean height.	Mean chest. Mean weight.	$\frac{\text { Mean weight. }}{\text { Mean chest. }}$	Demobilization. (average weight).	Difference.
Alaska.	106	Pounds. 150.49	Pounds. $\text { 2. } 208$	Inch. 0. 223	Pounds. 4. 472	Pounds. 162. 00	
South Dakota.	3,492	146.90	2.159	-. 228	4.472 4.352	162.00 152.19	11.51
North Dakota.	6, 444	146.95	2. 163	. 222	4. 353	150. 89	3.94
Minnesota.	27, 341	146. 41	2. 150	. 230	4. 354	151, 37	4.96
Oregon.	2, 748	146. 38	2. 150	. 228	4. 368	148.32	1.94
Montana.	11,648	146. 32	2. 151	. 2228	4.372	151.11	4.79
Washington.	13, 316	145.44	2. 140	. 230	4.347	148. 39	2.95
Nevada.	1,441	145.35	2. 143	. 232	4. 307	149. 50	4.15
Idaho.	4, 031	145.31	2. 133	. 232	4.307	150.97	5. 66
Nebraska	10, 774	144.74	2. 126	. 222	4. 354	151. 23	6. 49
Iowa.	19,537	14.72	2. 126	. 230	4. 332	150. 035	5. 33
Wyoming	1,927	144.61	2. 130	. 231	4. 332	148. 44	3. 83
Wisconsin	18,433	144. 50	2. 137	. 232	4. 307	147. 87	3.37
California.	35, 461	143.98	2. 127	. 231	4.312	145. 37	1.39
Kansas..	9, 571	143.72	2. 107	. 231	4. 319	150. 14	6. 42
Mississippi	8,543	143.23	2. 100	. 231	4.330	147. 54	4.31
Utah......	4,568	143.13	2. 109	. 231	4.319	149.25	6.12
Arizona.	3,850	143. 04	2. 099	. 232	4.301	14.3. 34	5. 30
Oklahoma	19, 429	142.35	2. 084	. 232	4. 293	148.47	6.12
Texas..	34, 531	142.22	2. 079	. 232	4. 307	147.36	5. 14
Michigan	41, 872	141.99	2.110	. 235	4.258	145. 07	3. 08
Illinois.	69, 491	141.77	2. 103	. 234	4.260	145. 42	3.65
Indiana.	23, 194	141.64	2. 090	. 233	4.274	141.78	3.14
West Virginia.	12, 367	141.53	2.085	. 235	4.251	146.60	5.07
North Carolin	14,668	141.49	2. 076	. 235	4.255	146.17	4.68
Missouri.	24,964	141.43	2.081	. 233	4.275	145. 70	4.27
Ohio.	52, 814	141.38	2. 098	. 234	4.268	144.45	3.07
Alabama.	15, 988	141.28	2. 077	. 233	4. 277	144. 79	3. 51
Arkansas.	10, 111	141.28	2. 071	. 234	4.259	146. 83	5. 55
Colorado	6,635	141.06	2. 069	. 234	4.265	147. 38	6.32
Maine.	3, 315	141.03	2. 100	. 237	4.221	142.97	1. 94
Georgia..	20, 305	140. 82	2. 071	. 235	4.241	143.94	3. 12
Distriet of Colum	4,486	140.53	2. 077	; 232	4.303	140.80	. 27
South Carolina.	9, 343	140.49	2. 077	. 235	4.244	14.89	4. 40
Maryland.	9, 192	140. 40	2. 090	. 236	4.240	141.81	1. 41
Virginia..	17,616	140. 34	2.070	. 236	4.230	146.05	5. 71
Vermont.	2,077	140.33	2. 091	. 238	4.198	136. 95	-3.38
New Hampshire	2,240	140.33	2. 095	. 236	4. 227	142.67	2. 34
Tennessee...	14, 426	140.10	2. 052	. 235	4.249	14.5. 54	5. 44
Kentucky.	15, 502	140.00	2. 058	. 235	4. 245	14. 50	4.50
Connecticut	13, 585	139. 82	2. 095	. 239	4. 182	141.05	1. 23
Pennsylvania	77, 186	139. 72	2. 094	. 236	4.221	142.46	2. 74
Louisiana.	12,356	139.62	2. 065	. 236	4.221	146.41	6.79
New York	87, 818	139. 53	2. 091	. 238	4. 200	140.43	. 90
Delaware	1,891	- 139.45	2. 075	. 237	4.212	142. 22	2.77
Florida....	5,895	139.32	2. 061	. 237	4.214	141. 50	2.18
New Jersey...	29,958	138, 81	2. 079	. 239	4.170	140. 29	1. 48
New Mexico.	2, 690	138. 47	2. 051	. 239	4. 178	144. 00	5.53
Rhode Istand	3, 928	136. 44	2. 060	. 241	4.156	140. 19	3.75

Here, again, the numbers at demobilization from certain of the States and Territories, like Alaska, Nevada, and Wyoming, are so small that no stress must be laid upon the average that they show.

7. INCREASE IN WEIGHT AT DEMOBILIZATION OVER MOBILIZATION (TABLE 31).

For the United States as a whole, the troops show an increase in weight of 3.35 pounds. The greatest increase was found in men from Alaska, 11.51 pounds, where the number weighed was too small to furnish reliable averages. In the upper half of the list, showing an increase of 4 pounds or more, we find certain Southern States, such as Louisiana, with an average increase of 6.8 pounds; Oklahoma, 6.1 pounds; Virginia, 5.7; Arkansas, 5.6; Tennessee, 5.4; Texas, 5.1; West Virginia, 5.1; North Carolina, 4.7; Kentucky, 4.5; SouthCarolina, 4.4; and Mississippi, 4.3. On the other hand, the only Southern

States in which the troops showed an increase of less than 4 pounds were Alabama, 3.5; Georgia, 3.1; and Florida, 2.2. Evidently the tall and slender men were most improved in absolute weight by army life, partly because there was the greatest room for improvement. A striking increase in weight was shown also by troops from Nebraska, Kansas, Colorado, Utali, Iowa, and South Dakota, a group which (with the exception of Colorado) contains prevailingly agricultural States.

At the other end of the table stands last New Hampshire, with a decrease of over 3 pounds on the average in her troops at demobilization as compared witl mobilization. As pointed out above, the numbers were small, and it is possible that the troops at demobilization were a specially selected lot. Next from the bottom stand men from the District of Columbia with practically no change. Then come men from New York, Connecticut, Massachusetts, Maryland, New Jersey, all States containing large cities in which the population is probably well nourished and free from parasitic diseases such as keep the weight of the southern men down. Consequently they show the least change as a result of the medical treatment and sanitary conditions in the Army.

Table 31.-States arranged in order of difference of weight at mobilization, 1917-1918, and demobilization, 1919.

Staie.	Difference.	State.	Difference.
	Pounds.		Pounds.
United States.	$\begin{array}{r} 3.35 \\ 11.51 \end{array}$	North Dakota.	3.94
Louisiana.	6.79	Ill!nois........	3. 33
Nebraska.	6.49	Rhorle 1sland.	3. $¢ 5$
Kansas.	6.42	Alabama.	3.51
Colorado.	6.32	Wisconsin.	3.37
Utah..	6.12	Indiana..	3.14
Oklahoma	6.12	Georgla.	3.12
Virginia.	5.71	Miehigan.	3.08
Idaho..	5.66	Ohio......	3.07
Arkansas.	5.55	Washingt on.	2.95
New Mexico	5. 53	Delaware..	2.77
Tennessce.	5.44	Pennsylvania.	2.74
Iowa..	5.33	Vermont.	2.34
Arizona.	5.30	Florida.	2.18
South Dakota.	5.23	Maine..	1.94
Texas..	5.14	Oregon...	1.94
Wert Virginia.	5.07	New Jersey	1.48
Minnesots.	4. 96	Maryland..	1.41
Montana.	4.79	California.	1.39
North Carolina.	4.68	Massachuset ts	1.34
Kentueky	1.50	Connecticut	!. 23
South Carolina.	4.40	New York.	. 81
Mississippi.	4.31	Distriet of Columbia	. 27
Missour	4.27	New Hampshire. .	-3.38
Nevada.	4.15		

Table 32.-Comparative view of mean height and mean weight of men from different States: (a) First million draft recruits (white and colored), 1917 and 1918; (b) 100,000 demobilized troops (white and colored), 1919; and (c) Civil War volunteer recruits (Gould).

States.	First million draft recruits (white and colored), 1917 and 1918.			100,000 demobilized troops (white and colored), 1919.				Civil War volunteer recruits (Gould) 1869, pp. 104 and 105.	
	$\begin{gathered} \text { Number } \\ \text { of men } \\ \text { measured. } \end{gathered}$	Mean height.	Mean weight.	Number of men measured.	Mean weight.	Number of men measured.	Mean height.	Number of men measured.	Mean height.
A verage for United States.	808,445	Inches. 67.49	Pounds. 141. 54	83,585	Pounds. 144.89	102,304	Inches. 67.72	1,104,84i	Inches. 67.64
Alabama	15,988	68.01	141.28	383	144.79	1,930	68.57		
Alaska..	106	68.15	150.49	12	162.00	13	69. 43		
Arizona	3,850	68.13	143.04	125	148.34	130	68.33		
Arkansas	10,111	68.20	141.28	2,538	146. 83	2,576	68.41		
California	35,461	67.67	143.98	414	145. 37	481	67.91		
Colorado	6,635	68.15	141.06	208	147.38	225	68. 12		
Connectieu	13,584	66.71	139.82	550	141.05	996	67.08		
Delaware.	1,891	67.19	139.45	189	142.22	300	67. 26		
Distriet of Columb	4,486	67.63	140.53	184	140.80	231	67.60		
Florida.	5, 895	67.58	139.32	140	141.50	1,022	68. 22		
Georgia.	20,305	67.99	140.82	446	143.94	3,397	68. 51		
Idaho.	4,031	68. 10	145.31	153	150.97	164	68.26		
Illinois	694,491	67.40	141.77	6,462	145.42	6,687	67.65	188, 507	67.97
Indiana	23, 194	67.75	141.64	3, 804	144.78	3,944	67.73	118,251	6R, 06
Iowa.	19, 537	68.04	14.72	1,543	150.05	1,609	68. 28	29,604	68. 13
Kansa	9,571	68.20	143. 72	978	150.14	1,012	68. 43		
Kentueky	15, 502	68.02	140.00	2,753	144.50	2,921	68. 13	23,993	68. 16
Louisiana	12,356	67.60	139.62	1,726	146.41	2,070	67.86	2,582	66.83
Maine....	3,315	67.28	141.03	209	142.97	693	67.17	52,314	68.12
Maryland.	9,192 29,534	67.08 66.76	140.40 138.40	983 1,320	141.81 139.74	1,138	67. 20	7,333	67.31
Massachuse	29,534	66.76	138.40	1,320	139.74	4,782	66.77	40,855	67.05
Michigan.	41,872	67.23	141.99	3,618	145.07	3,715	67.32	23,322	67.62
Minnesota	27, 341	68.04	146. 41	1, 882	151.37	1,950	68.31	6,697	67.63
Mississippi	8,543	68.27	143.23	1,566	147.54	2,099	68.61		
Missouri.	24,964	67.95	141.43	2,752	145.70	2,836	67. 98	57,494	68. 03
Montana.	11,648	68.01	146.32	245	151. 11	264	68.35		
Nebraska	10,774	68.08	14.74	791	151. 23	819	68.44		
Nevada.	1,441	67.83	145.35	16	149.50	18	67.91		
New Hamps	2,240	66.97	140.33	94	136.95	413	66.80	26, 821	67.40
New Jersey.	29,958	66. 77	138.81	3,103	140. 29	3,180	66. 93	18,875	66.58
New Mexico	2,690	67.50	138. 47	221	14.00	229	67.82		
New York.	87, 818	66.72	139.53	8,965	140.43	9,207	66. 92	188,008	67.09
North Carolina	14,668	68.15	141. 49	570	146. 17	1,815	68.22		
North Dakota	-6,444	67. 92	146.95	335	150.89	358	67.96		
Ohio Oklahoma	52, 19,429	67.38 68.28	141.38 142.35	6,900 2,274	144.45 148.47	7,076 2,310	67. 48	108,288	67.84
Oregon...	3,825	68. 09	146.38	1,049	148.32	1,069	68. 38		
Pennsylvania	77, 186	66.72	139.72	10,408	142.46	10,874	67.01	77,761	67.14
Rhode Island.	3,928	66.40	136. 44	209	140. 19	403	66. 54	41,305	67.09
South Carolina.	9,343	67.64	140.49	205	144.89	828	68.32		
South Dakota.	3,892	68.05	146.96	399	152.19	416	68.39		
Tennessee.	14,426	68.27	140.10	781	145.54	2,807	68.61		
Texas.	34,531	68.40	142.22	4,282	147.36	4,361	68.60		
Utah.	4,568.	67.85	143.13	99	149.25	104	68. 19		
Vermont	2,077	67.12	140.33	93	142.67	446	67.19	24,062	67.61
Virginia	17,616	67.80	140.34	1,421	146.05	1,920	68.01		
Washington	13, 316	67.96	145. 44	1,984	148.39	2,025	68.38		
West Virgin	12,367	67.87	141.53	1,516	146. 60	1,686	68.20	17,563	68.43
Wisconsin.	18,433	67.60	144.50	2,616	147.87	2,675	67.79	51,202	67.65
Wyoming	1,927	67.79	144.61	71	148. 44	80	68.16		

8. MEAN WEIGHT OF RECRUITS FROM THE DIFFERENT SECTIONS.

From the mean weight of 141.54 pounds for recruits from the United States at large, that of the various sections showed considerable deviation (see Table 33). Thus, excepting Alaska, the greatest average weight is found in South Dakota 3 (148.3 pounds), whose population is largely Indian. Next comes Minnesota 1, with a prevailingly Scandinavian population. Other high mean weights (of 147 or more) are found in Minnesota 2, North Dakota 3, and South Dakota 2. These contain (besides Scandinavians) Germans and Russian Mennonites. Sections with mean weights between 146 and 147 pounds are:

Montana 2, South Dakota 1, Oregon 1, Minnesota 3, North Dakota 1, and Washington 3.

The foregoing is a strikingly different list of sections from that standing at the top of Table 13, of mean stature; those were all southern sections. These comprise heavy men of only slightly greater stature than the average; those are tall and lank. The first southern section to come in as we proceed downward on Table 33 is Texas 5, with a large Negro population, mean weight 144.7 pounds.

At the bottom of the table of mean weights is Florida 3 (Key West), with a population that is prevailingly Cuban, Spanish, and West Indian, racially small and living under insanitary conditions, with a mean weight of only 136.2 pounds. Next comes Rhode Island and then Philadelphia (137.6 pounds). New Orleans, with its numerous French, comes next highest; then the manufacturing section of northeast Massachusetts; then the part of New Mexico where many tuberculous patients dwell; and then, New York City with a mean weight of 138.5 pounds. Above lie numerous sections of the Middle and New England States-homes of men of small races. Relatively few southern sections are found in the lowest 10 per cent of the table; another of Florida's sections, however, is found here, possibly a consequence of hookworm and malaria. Chicago stands a little below the middle of the table (mean weight 140.9 pounds). Minneapolis and St. Paul stand in the upper third (144.2 pounds). Many other points of interest will be revealed from a study of the table.

Table 33.-Mean weight by sections; sections arranged in order of standing with proportional weight for each inch of height and chest circumference (expiration) for each pound of weight; also standard deviation for each weight; first million draft recruits.

State.	Section.	Characteristics of sections.	Num. ber of men measured.	Mran weight.	Standard devistion (weight).	Mean weight. Dean height.	Mean chest. Mean weight.
Average for United States.			868,445	Pounds $1+1.54$	Pounds. 17.42	Pounds. 2.097	Inch. 0.234
Alaska	All.	Undivided	106	150. 49	14.95	2. 208	223
South Dakota	3	Indian population.	247	148.30	16. 77	2.180	228
Minnesota.	1	Scandinavian population	6,461	148. 28	16.61	2.170	228
Minnesota.	2	German and Scandinavian population..	7,601	147.64	17.31	2.170	. 229
North Dakota.	3	Russian population	2,005	147. 48	16. 83	2.172	. 229
South Dakota.	2	Large Russian population	594	147. 22	16.15	2.170	. 228
North Dakota.	2	Scandinavian population.	3,307	146.93	16.23	2.159	. 230
Montana.		Sparsely settled, mountainous	6,531	146. so	16.65	2. 150	. 229
South Dakot	1	Dryfarming area.	3, 051	146. 80	18.34	2. 160	. 228
Oregon.	1	Fairly densely populated	2,748	146.61	17.44	2.153	. 228
Minnesota..	3	Scandina vians and Finns.	3,520	146. 44	16. 84	2.170	. 232
North Dakota	1	Scandinavian and Canadian population	1,132	146. 10	16. 20	2.159	. 230
Washington.	3	Mountainous area.........................	1,537	146. 07	16.29	2.142	. 230
California.	2	Mining area.	943	145.84	16.85	2.154	. 231
Oregon.	2	Columbia River Valley and coastal dry plain, sparsely populated.	1,077	145.82	16.64	2. 140	. 229
Montana.	,	Mining area, foreign population	5,117	145. 70	16.65	2.150	. 229
Nebrasks	2	German, Austrian, and Russian stocks.	3,145	145.70	17.73	2. 136	. 229
Iowa.	1	Foreign white, German and Seandinavian.	12, 136	145.67	17.10	2.139	. 230
Washington.	1	Coastal region plus eastern counties.....	5,176	145. 50	17.10	2. 139	230
Nevada	111.	State undivided, sparse population.	1,441	145. 35	17.11	2. 143	232
Idaho.	All.	State undivided.	4,034	145.31	16. 29	2. 133	232
Wasiungto	2	Puget Sound, foreign white.	6,601	145. 25	17.28	2. 140	230
Wismnsin	1	Scandinavian and German popuiation..	3,297	14. 13	16.93	2. 130	. 232
Kansas.	1	Russian population.	1,067	144.95	17.44	2.122	. 239
Wisconsin.	2	Cierman popuiation......................	7,685	144.94	17.13	2. 140	. 232

Table 33.-Mean weight by sections; sections arranged in order of standing with proportional weight for each inch of height and chest circumference (expiration) for each pound of weight; also standard deviation for each weight; first million draft recruits-Continued.

State.	Section.	Characteristics of sections.	Number of men meas ured.	$\begin{aligned} & \text { Mean } \\ & \text { weight. } \end{aligned}$	Standard devlation (weight)	Mean weight. Mean height.	Mean chest. Mean weight.
California.	1	Chiefly agricultural area		Pounds.	Pounds.	l'ounds.	Inch.
Michigan.	1	Finnish populatiou. .	17,344	144.80 14.74	17.74	2.137	0.231
Texas.	,	Large Negro population	1,342	144.68	13.23	2.110	231
W yoming	All.	state undivided, sparsely populated	1,927	144.61	16.89	2.130	231
Indiana.	2	Agricultural, consíderable German.	837	144.45	17.24	2.120	231
Californi	3	Sparscly populated.	2,108	144.39	17.53	2.116	231
Nebrask	1	German and Irish foreign stocks	7,629	144.37	17.48	2.120	230
Texas.	3	German and Negro population.	1,382	144.36	17.53	2.110	231
Wisconsin		Lake counties.........	2,890	144.35	17.48	2.140	234
Alabama.	4	Large Negro population.	669	144.21	14.81	2.115	. 229
Minnesota	4	Urban area, "Twin Citics'	9, 759	144.20	17.48	2.130	. 230
Mississippi	1	Ruralarea,large Negro population	5,149	144.16	16.45	2.120	. 231
Utah......	1	Sparsely populated.........	1,224	144.06	15.49	2.114	233
Do	3	Mining area.	563	143.88	16.54	2.127	232
California	5	Urban arca.	7,180	143.82	18.18	2.137	231
Kansas.	2	Native and German population	8,504	143.56	17.21	2.105	231
Arizona	1	Large Indian population, sparsely settled.	1,027	143.29	16.93	2.106	. 232
Illinois.	1	Densely populated........................	6,303	143.19	17.88	2.123	233
Iowa	2	Native white..	7,401	143.15	17.27	2. 106	. 231
Illinois	4	Largely German populatiou	4,236	143.02	17.82	2.115	. 233
Do	8	Agricultural and manufacturing a	2,451	143.01	17.17	2.110	233
Arizona	2	Chiefly white population.	2,823	142.95	17.34	2.096	232
Illinois.	2	Mixed native and foreign population...	7,803	142.92	17.64	2.114	. 233
Oklahoma	2	Chiefly white population.	10,778	142.92	16.97	2.090	. 232
Alabama	2	Large Negro population.	3,327	142.57	16.77	2.098	. 233
Utah.	2	More densely populated	2,781	142. 56	16.83	2.105	. 230
Missouri	3	Native white, Ozark regi	1,139	142.49	15.68	2. 080	. 234
New Yor	6	Urbanarea..	6,541	142.35	18.14	2.126	. 234
Texas.	2	Sparsely settled, white	22,118	142.31	17.29	2.080	231
Do	4	Coastal native populatio	2,701	142.24	17.05	2.090	. 233
Michigan.	3	Foreign population.	6,298	142.23	17.63	2.110	. 235
California.	4	Urban area.	7,428	142.19	17.92	2. 099	. 232
North Carolina.	4	Large Negro populatiou	4,570	142.18	17.01	2.097	. 233
Colorado	3	English population..	381	142.13	15.50	2.086	. 233
Illinois	3	Agricultural arca, native.	8,928	142.13	17.23	2.094	. 232
Missour	2	Mississippi bottoms, considerable Negro population.	3,448	142.12	16.96	2.090	. 233
Indiana	1	Manufacturing.	3,614	142.07	18.15	2.113	. 235
Colorad	4	Prevailingly agricultural	1,227	142.05	16.20	2. 087	. 233
Do.		Russian population	1,105	142. 04	15.50	2.094	. 234
South Carolina..	2	Large Negro populatio	3,975	142.04	16.29	2. 100	. 234
Illinois.	7	Agricultural area.	5,442	142.03	17.47	2.092	. 234
Maine.	1	English Canadian.	1,240	142.02	16.51	2.110	. 235
Mlchigan	2	Prevailingly native white population...	12,567	142.01	16.85	2. 100	. 235
Tennesse	1	Negroes, Mississippi bottoms.	2,218	141.97	17.11	2. 090	. 232
Texas	1	Large Mexican population.	6,389	141.85	17.40	2. 080	. 234
Ohio.	4	Urban area.	3,557	141.83	18.74	2.104	. 232
Arkansas.	1	Negro, Mississippi bottoms.	4,945	141.81	16. 39	2.083	. 233
Mississippi......	2	Rural area, large native white population.	3,394	141.81	16.43	2.070	. 231
Missourl.	1	Native white, agricultural...............	13,588	141.67	17.06	2.080	. 234
New Hampshire.	1	Mountainous area........................	665	141.67	17.96	2.016	. 238
Colorado........	1	Large native white population..........	1,056	141.64	15. 73	2.081	. 235
Oklahoma	1	Marked Indian and Negro population. .	8,471	141.63	16.80	2.078	. 233
West Virginia	2	Agricultural region.-......................	10, 860	141.62	16. 96	2.087	. 235
Ohio.....	1	Dense foreign population.................	17,208	141.62	18. 15	2. 111	. 234
North Carolina..	3	Native white of Scotch origin	2,053	141.55	16.75	2.074	. 234
New York. .-...	7	Agricultural and dairying	6,466	141. 53	17.62	2.098	. 236
Pennsylvania...	6	Rural area...............	8,616	141.40	16.93	2.099	. 235
Indiana.........	3	Agricultural area, native stock..........	18,743	141.37	17. 80	2.083	. 233
Maine.	2	Native white stock, maritime	828	141.37	16. 10	2. 091	. 237
Michiga	5	Urban area.	17,771	141.32	17.59	2.110	. 235
Do.	5	Dutch and other foreign population....	2,892	141.27	17.04	2.090	. 235
North Carolina. .	5	Island and peninsular area....	254	141.27	15. 86	2.087	. 235
Ohio............	3	Agricultural area.	17,606	141.27	17.46	2.085	. 235
North Carolina..	1	Sparsely populated mountainous area..	2,738	141.22	15.96	2. 056	. 238
Ohio.	2	Intermediate..............................	14,438	141.10	17.31	2.096	. 234
Gcorgia.........		Large N egro population	10,078	141.09	16.83	2.077	236
North Carolina. -	2	Intermediate.	4,309	141.07	17.14	2.066	235
Pennsylvania.	5	Manufact uring	8,907	141.06	17.02	2.116	. 235
Do.	4	Coal mining.	4,827	140.94	17.22	2.109	. 235
Illinois.	5	Urban area.	33, 919	140.86	17.60	2. 099	226
West Virginia.	1	Motutainous arca	1,507	140.85	16. 45	2. 072	. 236
Virginia.	1	Pcuiusular region and cast shore	2,884	140. 82	17.25	2. 090	.233
Alabama.	1	Mining and manufacturing area.	8,841	140. 81	16.41	2.071	. 233
Arkansas.......	2	Large native white populatlon, hill country.	1,556	140.78	14.90	2. 050	. 236
Do.	3	Large native white population.	3,607	140.77	16. 13	2.063	. 235

Tanle 33.- Mean weight by sections; sections arranged in order of standing with proportional weight for earh inch of height and chest circumference (expiration) for earh pound of ucight; also standard deviation for cach weight; first million draft recruits-Continued.

State.	Sectlon.	Characterlstis\% of sectlons.	Number of men measured.	Mean weight.	Standard deviation (weight).	$\frac{\text { Mean welght. }}{\text { Mean height. }}$	Mean chest. Meanweght.
Virginla.	3	Natlve rural reglon.	3,866	Pounds. 140.77	Pounds. 16. 2 s	Pounds. 2.006	Inch. 0.237
Maryland	-3	Large white population	2,683	140.76	16. 48	2.000	. 237
Alabama.	3	Large natlve white popl	2,670	140.71	15.4	2. 005	235
North Carolina..		Remainder of State.	743	140. 63	16.35	2.078	235
Wlsconsin.	3	Urban a n dorelgn stock	4,527	140.62	18. 04	2. 100	237
Georgia.	1	Mlxed population, native white predominating.	10,248	140. 35	16. 71	2.064	235
District of Columbla.	All.	District undivided.	4,493	140.53	18. 03	2.077	. 232
Louisiana.......	1	Mississippl bottoms and upland, large Negro population.	4,074	140.47	16. 35	2.073	. 236
Now York.	4	Western manufactnring region	14,220	140. 46	17. 49	2.096	236
Missouri.	4	Urban area...	6,789	140.44	18. 40	2.050	235
South Carolina.	1	Native white.	1,504	140. 42	16. 72	2.060	235
Vermont.	Ali.	State undivlded	2,073	140.33	16. 43	2.091	235
Maryland	1	Urban area.	5,441	140.29	17. 49	2. 100	235
New York	8	Mountainous, Adirondack	2,990	140.21	16.71	2.000	237
Alabama.	5	Urban and suburban area	481	140. 16	16.61	2.006	234
Colorado	5	Urban population.	1,644	140. 16	16. 26	2.070	. 234
Florida.	2	More Negro and rural population	996	140. 14	17.53	2.070	. 236
Louisiana	3	Rural, chiefly whito population.	5,235	140.13	16. 22	2.064	. 236
Pennsylvania.	3	Mining area..............	7,305	140. 10	17.17	2. 105	237
Vlrginia.	2	Largo Negro popuiation..................	5,352	140. 10	16. 43	2.077	. 236
Kentucky	2	Agricultural area.	11, 669	140.02	16. 76	2.060	. 234
Tennessec	3	Mountainous region	5,900	140.02	16. 43	2.050	. 235
Vlrginla.	4	Mountain, white	5,512	140.02	15.94	2.005	. 238
Maryland	2	Peninsular area...	1,068	140.01	16. 56	2.080	. 236
New York	3	Fastern manufacturing	5, 150 8,708	139.94 139.92	17. 50	2.092	. 238
Connectle	2	Manufacturing area. . M (ive	8,708	139.92	15. 20	2.030	. 238
Kentucky. Pennsylva	2	Mountainous area, native Rural area, native stock.	4,033 14,207	139.92 139.83	15. 26	2.051	. 237
Maine.	3	French Canadian population	1,247	139.71	17.21	2.0ヘ0	238
Connecticu	1	Prevailingly agricultural and near metropolitan.	4,876	139.65	17.73	2.094	240
Florida	4	Peninsular.........................	2,340	139.60	16.85	2.069	237
Massachusetts.	4	Urban area	8,587	139.39	17.65	2.090	. 237
Pennsylvania...	7	Allegheny County pius a smail rural area.	17, 243	139.55	17. 56	2.093	.236
Tennessce.	2	Agricultural region.	6,308	139.50	16. 33	2.040	237
Delaware	All.	State undivided.	1,894	139.45	17.06	2.075	. 237
Colorado	6	Austrian and ltallan population	1,222	139.40	16. 10	2.060	. 235
New Yor	1	Suburban territory.	4,934	139. 39	17.09	2. 091	. $23 \times$
Do.	5	Mountainous, Catskill region	795	139.30	16. 74	2.074	. 238
Illinois.		Negro population (Egypt).	409	139. 27	16. 39	2.043	. 236
New Jersey.	3	Mountainousarea plus Atlantic Cotnty.	3,195	139. 15	16. 13	2.052	240
Now Hampshire	2	Manufacturing area.	1,575	139.13	17.55	2.081	. 237
New Mexico.	1	Indian populatlon.	293	139.12	18. 49	2.068	239
Do.	3	Noteworthy Mexican element	540	139.01	17.36	2.048	234
New Jersey	2	Plains section, rurai.......	8,968	13¢, 92	17.34	2.078	. 240
South Carolina	3	Peninsular and rural areas	3, 804	138, 90	15. 70	2.060	. 238
Florida.	1	More whlte and marltime	2,846	138, 83	16. 46	2. A50	.237
Massachusetts.	3	Peninsular region.	1,127	13¢. 70	16.76	2. 070	. 237
Now Jersey.....	1	Densely populated	17,795	138. 69	17.59	2.078	. 239
Massachusetts...	1	Mountainous area.	1,373	13<. 52	17. 13	2.070	. 237
New York.	2	Urban area, densely pojulated	46,718	138, 50	18. 29	2.054	239
New Mexleo.	2	Native whlte population.	1,857	13820	16. 42	2. 049	240
Massachusetts.	2	Manufacturing center.	18,447	137. 82	17.25	$\bigcirc 070$. 241
Louisians.	2	Urban area.	3,047	137.62	16. 55	2. 0.36	. 237
Pennsylvania.	,	Urban area	16,045	137. 61	17.48	2.065	. 239
Rhode Island.	Aii.	State undivided.	3,928	136. 44	17.69	2.060	. 241
Florida.	3	Cuban, Spanish. West Indian populatlon.	84	136.23	16. 98	2.026	240

9. MEAN WEIGHT FOR THE DIFFERENT GROUPS.

Tables 35, Section A, gives the absolute distribution of frequency of weights of men found in the 22 groups. The ratios per 1,000 are given in Table 35, Section B. The tables show that the lowest average weights are found in those sections containing 10 per cent or more of French Canadians (group 19) and in the eastern manufacturing group (group 5) and commater group (group 6).

The higher weights, on the other hand, of 180 pounds or more, are found especially in the group (group 20) containing 10 per cent or more of Germans and Scandinavians, in group 17 containing 10 per cent or more of Scandinavians alone, in group 18, containing 10 per cent or more of Finns, in the sparsely settled and Mexican groups (group 8 and group 14), and in those containing 20 per cent or more of Germans and Austrians (group 21). The largest proportion of extremely heavy men is found in the sections with 10 per cent or more of Germans and Scandinavians and 20 per cent or more of Germans and Austrians. If we compare now the southern white agricultural and Negro agricultural groups, we find relatively little difference except that the white group contains proportionately fewer men under 115 pounds and over 140 pounds. Of these men, however, there is an excess in the white agricultural groups with a weight of 185 pounds and over. Apparently obese Negroes are less common than obese whites.

If we compare the northern native white agricultural groups with those of mixed population, we find an excess of underweight or low weight in the former and a slight excess of heavy weights in the latter. However, of extremely obese men, 190 pounds or over, there is an excess in the native white group.

Comparing the eastern manufacturing with the commuter groups we find an excess of thin men in the former and of men of 155 pounds and more in the latter. There is, however, a very slight excess of extremely obese men in the eastern manufacturing over the commuter groups. Comparing the mountain whites with inhabitants of other mountainous areas, there is an excess of thin men in the mountain whites and a deficiency of heavy men. The native whites of Scotch origin show a slight excess of low-weight men, and a corresponding deficiency of heavy men. And the French Canadian group, as might be expected, shows a very large excess of slight men and a corresponding deficiency of heavy men.

Table 34 gives the mean weights and standard deviations for the groups as well as relative stature and chest between them. It may be worth while to consider the significance of certain extremes in the standard deviations. Thus in weight, we find the highest standard deviation, or the greatest variability, in the sections containing 20 per cent or more of Germans and Austrians. Such sections are characterized by a mixture of strains dissimilar in weight. The smallest standard deviation in weight is that of the mountain whites, obviously a homogeneous people. Other high standard deviations, 17.70 or over, are found in the eastern manufacturing group and in the commuter group, of which the significance has already been discussed; also in the group containing Germans and Austrians, 15 per cent. Of groups with small standard deviations, 16.90 or under, we have the sections occupied by 10 per cent or more of Finns, mountain populations aside from the southern Alleghenies, the mining sections, the southern white agricultural sections, the maritime sections, and the Negro agricultural sections. These are more homogeneous in their racial characteristics than the other groups.

The relation between the distribution of weights in the populations of the different groups, or sections, as compared with their distribution in recruits in general is shown in the graphs of Plates VIII and IX. A study of these
curves reveals the following facts: Groups containing over 10 per cent of Scandinavians have a population of men strikingly heavier than recruits at large. Thus there is a deficiency of men under 140 pounds and an excess of men over 140 pounds in weight. The modal weight of Scandinavian groups is 5 pounds above that of recruits in general. This is, of course, associated with the excess height of Scandinavians.
The groups of sections having 10 per cent or more of Finns reveals a population that is much heavier than the average. There is a deficiency of men under 135 pounds and an excess of men weighing 140 pounds or more, and this despite the fact that in these same sections the distribution of statures is essentially that of the whole population of recruits. This shows then that in those sections which are characterized by an excess of Finns we have men of exceptionally robust build, and it is well known from other sources of information that the Finns, like most races of the extreme north, tend to put on weight and are of heavy build.

On the other hand, the groups containing 10 per cent or more of French Canadians are characterized by a great excess of men with a weight under 135 pounds and a deficiency of men above 135 pounds. The mode is indeed shifted from 137 pounds to about 132 pounds. This low weight of the groups with a large proportion of French Canadians is associated with the small stature of the population of these groups. These groups therefore contain an excess of population of small size.

The populations of the groups containing native whites of Scotch origin are peculiar in this, that they have an excess of men under average weight, while at the same time they have an excess of men over average stature. Thus, as the graphs in Plate IX show, the modal weight is clearly below that of the population of recruits in general and the group is less variable than that of recruits in general, which suggests that we have to do here with a racial characteristic. We may say then that; from the evidence of these graphs, the Scotch groups are characterized by an excess of tall, gaunt men.

The remaining groups show less striking deviations from the average of all recruits. The groups with an excess of Austrians and Germans are somewhat heavier than the average and the same is true of the groups containing 10 per cent or more of Russians. The groups containing nearly half Negroes are slightly above the average in weight, much more than the southern agricultural groups containing a larger proportion of native whites. Thus the Negro groups appear better nourished than those groups that contain an excess of native whites. This is possibly due to the greater resistance on the part of the Negroes to those parasites that tend to keep down the weight.

 fine line curve denotes average for u.s.

fine line curve denotes average for U.S.
Plate ix.

Table 34.-Mean weight by groups of sections; groups arranged in order of standing with proportional weight for each inch of height and chest circumference (expiration), for each pound of weight; also the standard deviation for each weight; first million draft recruits.
[From Table V, p. 434.]

Group No.	Description.	Number of men meas ured.	Mean weight.	$\begin{gathered} \text { Standard } \\ \text { devia- } \\ \text { tion } \\ \text { (weight). } \end{gathered}$	Mean weight. Mean height.	Mean chest. Mean weight.	Mean weight. Mean chest.
	A verage for the United States.	868,445	Pounds. 141.54	Pounds. 17.42	Pounds. 2.097	Inch. 0.284	Pounds. 4.260
20	German and Scandinavian, over 10 per cent.	28,095	146.66	17.00	2.15	. 230	4.350
17	Scandinavian, 10 per cent.........	51,009	146. 13	16.99	2.15	. 230	4.343
18	Finn, 10 per cent.	5,864	145. 76	16.86	2.16	. 232	4.311
8	Sparsely settled, not more than 3 per square mile.	16,165	144.84	16.93	2.13	. 232	4.320
21	Germanand Austrian, over 20 per cent	38,962	143.27	18.05	2.13	. 233	4.287
11	Mountain............................	17, 103	142.97	16.76	2.11	. 233	4. 290
2	Agricultural, mixed foreign, native white.	97,340	142.79	17.28	2.11	. 234	4.27
22	German and Austrian, over 15 per cent	126,994	142.31	17.73	2.12	. 234	4.271
16	Russian, 10 per cent plus.	12,076	142.30	17.21	2.12	. 235	4.264
14	Mexican, sparsely settled	10,779	142.18	17.36	2.09	. 234	4.283
7	Mining......	35,730	142.25	16. 86	2.11	. 234	4.282
9	Desert.	6, 121	142.08	17.23	2.09	. 235	4.256
13	Indian, sparsely settled................	10,038	141.89	16.91	2.08	. 234	4.283
4	Agricuitural Negroes, 45 per cent plus.	49,503	141.61	16. 64	2.09	. 234	4. 266
3 1	Agricultural, native white, South....	117, 548	141.44	16.83	2.07	. 234	4.274
1	Agricultural, North, native white over 73 per cent.	66,885	141.32	17. 45	2.09	. 234	4.270
10	Maritime..	6,161	140.38	16.86	2.09	. 23.5	4. 255
12	Mountain whites	21,254	140.24	16.05	2.05	. 237	4.225
15	Native whites of Scotch origin	13,522	140.26	16. 77	2.06	. 236	4.260
6	Commuter.	29,032	139.79	17.66	2.09	. 238	4.205
5	Eastern manufacturing................	81,718	139.48	17.71	2.09	. 238	4.204
19	French Canadian, 10 per cent.........	25, 862	137.88	17.38	2.07	. 240	4.172

Table 35．－Weight distribution shown by groups of sections，first million draft recruits．

旡家	
息玉	
家迷	\％ivis
䀄区	
定名	Kixicrich
EE	
发	
헝․․	
）景家	あ \％＂ay
豆药	
$\begin{array}{ll} \text { a } \\ \text { 点 } \\ \text { eq } \end{array}$	
$\stackrel{\text { 方 }}{\text { ¢ }}$	
家通	
包	
¢	
年辺	
旁	
did	प్ర్రీ
¢	
¢\％	
敛宛	

SECTION B：RATIOS PER 1，000．

感		\％
	 	\％
	\％	${ }_{0}^{\circ}$
宮		$\stackrel{8}{4}$
安家		\％
		${ }^{\circ}$
家す		\％
穴矿	இ\％刃r 	$\stackrel{8}{8}$
		\％
or		－
衰家		$\stackrel{9}{3}$
	¢0\％	
¢		¢
198	Fmmor	${ }^{\circ}$
（6）－－	¢	®
		＋
$\stackrel{\circ}{a}$		\％
$\begin{aligned} & E \\ & \stackrel{y}{s} \end{aligned}$		＋
	\＃15	국
\because	¢ipixigigizu	
鱼弱		$\stackrel{\square}{6}$
¢．		
¢¢⿹్ర		¢
¢్ర．		
㐭产		－
¢ ${ }_{\text {did }}$		\％
		न
		＋
ごき	万 	皆
家8		$\stackrel{\text { c }}{\text {－}}$
		\％
\％		
¢\％		\bigcirc
	 	㫛
	－	

10. COMPARISON OF WEIGHT in EIGilt Eurol'ean races of men at demoBILIZATION.

For the sake of completion there are added here the results of weights taken at demobilization, 1919, in the case of eight European races. 'Table 37 gives the proportional distribution of different classes of weight. The order of weight is as follows:

Table 36.-Mean weight and standard deviation in each of eight European races.

	Race.	Number measured.	Mean weight.		Standard deviation.	
			Kilos.	Pounds.	kilos.	Pounds.
German.		6,767	67.22	148. 20	7.72	17.02
Polish.		2,223	66.05	145.62	6. 95	15.29
Scotch...		3,608 1,821	65.76 65.74	14.98	7.88	17.35 17.41
Irish		4,907	64.84	142.96	7.75	17.0s
French.		746	64.48	142.16	7.27	16.03
Italian...		3, 075	62.59	137.99	7.03	15. 49
Hebrew..		1,531	62.53	137. 85	7.27	16.03

Table 37.-Comparative frequency distribution of weight in each of eight races, demobilization.
SECTION A: ABSOLUTE NUMBERS.

Race.	Total.	Weight, in pounds.										
		100-109	110-119	120-129	130-139	140-149	150-159	160-169	170-179	150-189	190-199	200 and over.
English.	3,608	24	158	538	790	808	618	377	178	74		12
Irish...	1,821	${ }_{34}$	79	254	1436	$1{ }^{404}$	308	175			19	8
German.	6, 767	16	183	678	1,406	1, 589	1,351	867	399	177	55	4
French............	746	7	39	123	181	183	-122	59	19	5	5	
Italian.	3,075	44	274	664	845	631	362	154	65	30	5	
Polish.	2,225	4	64	245	518	599	444	212	88	36	12	3
Hebrew	1,531	24	144	341	402	325	168	71	34	11	5	
Number measured.	24, 650	165	1,200	3,639	5,811	3,690	4,073	2, 322	1, 047	459	167	10%
Total.	28, 670											

SECTION B: PROPORTIONAL RATIOS PER $1,000$.

It is seen that the Germans have the highest mean weight, although they are not the tallest of the eight races. It appears also that the Hebrews are lighter in weight than the Italians, although slightly taller.

The standard deviation in weight is greatest in the Seoteh, despite their average extreme stature. They show a fairly large proportion of men under 120 pounds, also they are exceeded by only two other races in the proportion of men weighing over 200 pounds. This large proportion of the extreme elasses is responsible for the high standard deviation. The next highest standard deviation is seen in the English group and the third in the Irish group. The reason in the case of the Irish is fairly elear from the fact that this group contains in its composition two or more races, one of which, the Scoteh-Irish, is tall and spare, and the other of whieh, the Celtic-Irish, is short and stocky. The least variability is found in the Polish group and next to the lowest in the Italian group. The Hebrew and French groups show the same variability despite the marked difference in average weight.

Table 38.-Mean weight in five color races with the standard deviation for the white and Negro troops, demobilization, 1919.

Race.	$\begin{gathered} \text { Number } \\ \text { exam. } \\ \text { ined. } \end{gathered}$	Mean weight.		Standard deviation.	
		Kilos.	Pounds.	Kilos.	Pounds.
White.	$\begin{array}{r} 79,706 \\ 3,39 \\ 103 \\ 18 \\ 18 \\ 24 \end{array}$	$\begin{aligned} & 65.62 \\ & 67 \\ & 68.83 \\ & 67.10 \\ & 67.56 \\ & 65.73 \end{aligned}$	$\begin{aligned} & 144.67 \\ & 119.53 \\ & 110.13 \\ & 1489.94 \\ & 144.92 \end{aligned}$	$\begin{aligned} & 7.67 \pm 0.02 \\ & 8.00 \pm .07 \end{aligned}$	$\begin{aligned} & 16.92 \pm 0.04 \\ & 17.53 \pm .15 \end{aligned}$
Indian.					
Japanese.					

11. COMPARISON OF THE WEIGHT OF THE COLOR RACES.

A comparison of mean weights of the five color races measured at demobilization is afforded by the accompanying Table 38 taken from Tables 103, 104, and 107. It gives for the different color races the mean weight in kilograms and pounds. It appears that, though the white and Negro troops have almost exactly the same average stature, the Negro troops exceed the white in weight by about 5 pounds, and the weight is slightly more variable in the Negro troops. The Indians are on the average still heavier than the Negro troops, although from the small numbers it is probable that they are a highly selected lot. The Chinese eome next in weight and the Japanese lowest with a weight of almost 145 pounds, a trifle in excess of that of the white troops.

Iv. CHEST CIRCUMFERENCE.

1. GENERAL DISCUSSION.

This dimension is of both military and anthropological importance. It is of medico-military importance, first, because it may be used to measure lung capacity and, second, because it is an index of certain diseases. It is used, as will be shown later, in obtaining the index of robustness, an index whieh is believed to give a fair measure of vital resistance.

The medieal importance of chest circumference is indicated in Section II of this work, which discusses the relation of chest circumferences to the different diseases. For example, from the summaries given there, it appears that chest eircumference is small in men with pulmonary tuberculosis, and also in persons with various heart disorders. It is exceptionally large in one group of asthmat-
ics, doubtless due to the exercise of the chest muscles in the forced brenthing which is a symptom of this disease.

The Army has long laid stress upon the difference between chest circumference at expiration and full inflation. This difference is called mobility. The minimum mobility for Army purposes is usually set at 2 to 3 inches for men under 6 feet (180 centimeters) and 3 to 4 inches for men over 6 feet. (See Table 138, p. 297.) Into mobility there enters a large nervous and mental factor; not infrequently the examiners find that the subject is unable to expand the chest, not through small lung capacity but through an inability to exercise a voluntary control over the muscles of the chest. Such control may, however, usually be secured by practice. Dr. O. L. Williamson, of Mariana, Ark. (Hoffman, ${ }^{16}$ p. 5), stated at the Conference of Physical Examination under the Selective Service (held in Chicago, June 13, 1918) : "Many physically fit Negroes have not a chest mobility of 2 inches and they do not know how to expand the chest."

The occupational and racial significance of chest circumferences must not be overlooked whenever an attempt is made to draw inferences from the measurements. A comparison of our soldiers before and after training indicated how responsive chest circumference is to such training, for it increases with severe exercise of the arms and chest and diminishes in the sedentary. Thus Livi finds (Martin, ${ }^{5}$ p. 278), that in Italy farmers have the largest chest circumference, and tailors, barbers, and students have the smallest. However, it must be recognized that natural feebleness of muscular development may be one of the causes that leads some men to abandon the farm and become barbers, students, etc.

The chest circumference is particularly important in relation to the general size of the individual, as measured by his stature. Relative chest circumference is, where possible, to be considered; i. e., chest circumference divided by total stature.

2. Methods of measurement.

The measurement of chest circumference requires attention to a few technical details. The graduated tape is passed around the chest (subject's arms lifted) until it lies under armpits, over the nipples, and perpendicular to the axis of the trunk at this level. Since the axis of the trunk is rarely vertical, the tape will rarely lie horizontal. Pressure is not to be applied so as markedly to indent the flesh. The subject's arms are lowered to his sides and the reading is taken.

Differences in technique are used by different anthropometrists. The method recommended by Martin ${ }^{5}$, (pp. 149-150) may be translated as follows:
61. Circumference of the chest in quiet breathing (Brustumfang wahrend der Atempause oder in sogenannter Normalstellung; périmètre ou circonférence thoracique; girth of chest):

The individual to be measured stands upright, holding his arms at first laterally up to the level of the shoulders. The tape is placed high in the axilla at the level of the mesosterna! (above the nipples), horizontally about the thorax, and the two ends, passing each other, are held firmly with the ends upon the chest wall. The arms are then dropped and lie quiet at the side of the body. It is necessary to take care that the tape lies horizontally everywhere, even at the back, in contact with the body, without cutting into the skin. The part of the back lying between the two scapulx will usually not be in contact with the tape, but will be bridged over by it. It is usual in most individuals to pass over the lower angle of the scapule. One observes the change in the position
of the tape caused by the light breathing movements for about half a minute and notes the middle position.

In many examinations, among others the military, the tape is placed about the chest just below the nipples and the lower angle of the scapulæ. Other authors measure without regard to the mesosternal and nipples, as high as possible in the axillæ. By others the level of the processus ensiformis is recommended.

3. MEAN Chest Circumference at expiration.

The average circumference of the deflated chest for the whole United States for 873,159 recruits is 33.22 inches, or 84.38 centimeters. The mean circumference for the uninflated chest of 95,867 troops at demobilization is 34.94 inches, or 88.74 centimeters. This gives a difference of 1.72 inches, or 4.36 centimeters, in the two sets of measurements. In comparing the means for recruits and men at demobilization, it is to be kept in mind that recruits were encouraged to deflate the chest as much as possible, since there was sought not merely the chest circumference but also the chest mobility. In the measurements of men at demobilization, instructions were that the chest should be in a quiescent condition, that is, neither inflated nor uninflated, as far as possible. However, since the difference in circumference of the quiescent chest and that from which the air has been driven as far as possible is usually between $\frac{1}{2}$ and $1 \frac{1}{2}$ inches and averages about $\frac{3}{4}$ inch, only about 1 inch of the added chest girth is to be ascribed to the intensive training which the troops have received. This tended on the one hand to develop the lung capacity and on the other to develop the muscles of the chest and particularly those attached to the scapulæ.

The foregoing measurements of chest circumference are absolute. One may reduce them to relative measurements by dividing the average chest circumference by the average stature, both for men at mobilization and at demobilization. The relative chest circumference obtained in this way gives for men (deflated chest) at mobilization 49.2 per cent, and for men at demobilization (quiescent chest) 51.6 per cent.

The relation between the distribution of chest circumference of men of different statures and that of the whole population of recruits is shown graphically in Plate XIII. As is to be expected, the chest circumference for the shorter statures is below the distributions for the statures $67-68$ inches, which are close to the average. For statures above this they are clearly above the average. The curve of distribution of chest circumference of men 62 inches tall is seen to be highly unsymmetrical owing to the fact that chest circumferences which were 3 or more inches below the average in the case of short men were rejected, whereas chest circumferences 3 or more inches up to 8 inches above the average for any stature were accepted. This elimination of the extremes results in a high mode for men with short statures. They form a less rariable group than the men with mediocre or taller statures.

4. COMPARISON WITH CIVIL WAR DATA.

The Civil War statistics, obtained by Gould ${ }^{2}$ (p. 280), give a mean circumference of chest at expiration, for white soldiers, of 34.49 inches. The mean girth at expiration of chest of recruits, according to Baxter ${ }^{1}$ (Vol. I, p. 32), was 33.53 inches, or 85.17 centimeters, a very great discrepancy, which is doubtless
due to the fact that Gould's measurements were made at demobilization, whereas Baxter's statistics were of 500,000 drafted men taken from n population grently depleted by volunteers Thus Baxter's and Gould's measurements largely stand to each other as do ours of recruits and men at demobilization. In both cases the increase of circumferences after training is about one inch.

Comparing the recruits of Civil War times and 55 years later, we see a decrease of .3 inches in the latter group. Comparing men at demobilization, there is an increase of about one-half inch in the latter group, which difference is accounted for by the measurement at rest, rather than at expiration. Chest circumference has probably not diminished as much as stature.

5. COMPARISON WITH OTHER COUNTRIES.

For comparing the chest circumferences of our recruits with those of other countries, the following measurements will be of interest, probably all taken on the chest at rest, mostly from Martin ${ }^{5}$ (p. 278): Russians, 81 centimeters; Serbs, 80 centimeters; Bulgarians, 81 centimeters; English, 88.9 centimeters; Chinese, 77.5 centimeters; French, 88.7 centimeters; Bavarians (Ammon, ${ }^{18}$ p. 247), 87 centimeters.

Thus the chest circumference of our troops at demobilization exceeds, with a single exception, all the averages of different races as given. For the other races the dimensions lie either between those of our recruits and those of our veterans or else below the circumference of the recruits.

The relative chest circumference is more important in its racial variation than the absolute chest circumference. The following relative chest circumferences are given by Martin ${ }^{5}$ (p. 279): Russian Jews, 49.7; Belgians, 52.8: French, 53.7; Letts, 56.

Thus in the series given of the relative chest circumferences of European races all (except one) exceed that of our recruits and are equal to those of our veterans.

Table 39.-Frequency and proportional distribution of chest circumferences (expiration) at mobilization, 1917-1918, and of chest circumference (rest) at demobilization, 1919.

Chest circumference, in inches.	Mobilization.		Demobilization.							
			Whites only.				White and colored.			
	Number of men ured.	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & \mathbf{1 , 0 0 0} . \end{aligned}$	Chest cir- cumfer- ence in cen- time- ters.	Chest clrcumference, in inches, approx. mate.		$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & \text { 1,000. } \end{aligned}$	Chest cir-cumference, In cen-timeters.	Chest cur- cumfer- ence, in inches.	Nummen meas- ured.	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & 1,000 . \end{aligned}$
23 and under			63-73	27-28	195	2.04		26.77-30. 32	731	8.80
29.	18,093	20.74	74-75		165	1.72	78-81	30.71-31. $\times 9$	4,399	52.99
30.	49,090	56.22	76-77	30	484	5. 05	82-85	32. $24-33.46$	16,3*3	197.32
31	103, 294	118.30	78-79	31	1,354	14.12	$86-89$	33. $86-35$. 04	26,745	32. 13
32		182.54	80-81 $82-83$	31	1,743 7,259	${ }^{39}{ }^{39} .08$	90-93	35. $13-36.61$	30, 498	231.71 117.64
33.	175,858	201. 42	8t-85	33	11,688	121.92	9\%-101	38.01-3. 19	9, 3,131	117.61
	152,663	174. 85	86-87	34	14, 576	152.05	102 and over.	40. 16 and over.	${ }_{971}$	11. 70
35.	103, 414	118. 42	82-89	35	16, 172	163, 69				
36.			90-91	35	13,702	$1+2.93$				
37.	28, 175	32.27	91-95	37	7,057	${ }_{73.61}$				
38.	13, 151	15.06	96-97	38	4,184	43.65				
39.	11,027	12.63	98-99	39	2,522	28.31				
40 and			100-117	40 and over.	2,210	23. 05				
Total measured.	\$73, 159				95, 867				3, 025	1,000,00

Table 39.-Frequency and proportional distribution of chest circumferences (expiration) at mobilization, 191\%-1918, and of chest circumference (rest) at demobilization, 1919-Continued.

-	Mean chest circumference-			
	At mobilization (deflated).		At demobilization (at rest).	
	Inches.	Centimeters.	Inches.	Centimeters.
Mean chest circumference, white and colored.	33.22	84.38	34.94	88. 74
Standard deviation: White and colored.......	2.01	5.11		
White.			2.04	5.09
Negro..			1.87	4.76

6. DISTRIBUTION OF FREQUENCIES OF VARIOUS CLASSES OF CHEST CIRCUMFERENCE.

Table 39 gives for recruits and veterans the distribution of frequencies of the different classes of chest circurnference in inches or in centimeters. The frequency is given in absolute numbers of men measured and also in the ratio per thousand. It is to be recalled that about three-fourths of an inch has to be added to the chest circumference at mobilization to make the measurements comparable with those taken at demobilization. Even after making this correction the great superiority of veterans over recruits is strikingly apparent. The mode for white veterans is at 35 inches instead of 33 plus; 23 per mille were found at 40 and over instead of practically none at all. Only 5 per mille of white veterans had a chest circumference of 30 inches; while 20 per mille of recruits had a circumference of 29 inches.

Also the standard deviation of the recruits (deflated chest) was 2.01 inches, and that of the white veterans 5.093 centimeters, or 2.04 inches. The coefficients of variation are respectively 6.05 and 5.86 . That is, the chest circumferences of the veterans were much less variable than those of the recruitsdoubtless due to the greater uniformity of conditions under which they had been trained.

There is given for comparison, extracted from Table XCIX, the distribution of chest circumference for 95,867 white men measured at demobilization. In this case the classes are in centimeters and here also is given the nearest corresponding English measure.

7. THE FREQUENCY DISTRIBUTION OF CHEST CIRCUMFERENCE, BY STATES.

Table 40 gives the mean chest circumference for recruits from each of the States, arranged in descending order of size of chest. In this table, North Dakota stands at the top with a mean chest circumference of 33.76 inches, over half an inch above the average. This great size of chest is associated with a robustness which is higher for this State than for any other of the United States proper. Next on the list stands Nevada, a State which has a high, though not extremely high, relative chest circumference. This is followed by Idaho, of which the relative chest circumference falls at the bottom of the upper third.

People from these States are therefore not especially stout, but have an absolutely large chest circumference, which is due probably to a combination of muscular activity, especially of the arms, and the rarified air of these States of high altitude. The inhabitants of Nevada and Idaho are largely miners, and no doubt that part of the population which is engaged in mining has acquired especially large chest circumference. At the same time these men, especially of Idaho, are above the average in stature and consequently have a high absolute chest circumference. Among the other States and Territories at the top of the list are Alaska, 33.65 ; Minnesota, Wisconsin, and North Dakota, which include men of exceptional robustness. These are followed by other States of the Northwest-Oregon, Montana, and Washington. At the bottom of the list lies the District of Columbia, the most urban of all of the States and Territories listed. Indeed, the District falls in a class by itself. The small chest circumference is no doubt due largely to the comparative lack of use of the muscles of the chest by an urban population, especially one in which the males are so largely engaged in clerical occupations. Next above comes Rhode Island, the second most urban of all of the States and one which stands at the bottom both in height and weight of its drafted men. The chest circumference in relation to stature is not extremely low; the small chest circumference is therefore due primarily to the small size of the inhabitants. Next come the States of Tennessee and Kentucky, with tall men of low weight and of extraordinarily small chest circumference. In fact, at the bottom of the table one finds a group of Southern States, including Alabama, Florida, Louisiana, Mississippi, and Missouri, the inhabitants of which are characterized by lankiness of form, which shows itself also in their low average chest circumference. The question arises how far this small chest circumference is influenced by the Negro population. From a set of measurements made at demobilization, it appears that the Negro troops have indeed a smaller chest circumference than white troops, as 34.64 to 34.96. These averages are, to be sure, very much higher than those obtained by local boards, but this is due to the training which the returned soldiers had undergone in the preceding months. There is no reason for thinking that the Negro troops were less active than the whites, and yet their mean chest circumference is 0.32 inch less than that of the whites. We may conclude therefore that the Negro population has a lower chest circumference than the white population; and since, in the Southern States, the Negro forms a relatively large proportion of the population, the low average chest circumference of men from the Gulf States is to be partly attributed to the presence in them of smallchested colored men. Among the States occupying a relatively low position for chest circumference is Colorado, the State which stood near the top in the number of rejections for tuberculosis of the lungs. The figures suggest that the well-known small chest circumference of the tuberculous has been influential in reducing the average chest circumference of men from Colorado. The small chest circumference of men from Massachusetts is largely due to their small size, since the relative chest circumference is high in them.

Table 40.-Mean chest circumference (expiration), by States; States arranged in order of standing, with proportional chest circumference at expiration in inches for each inch of height and each pound of weighl; also the proportional weight in pounds for each inch of chest circumference; first million draft recruits.

State.	Number of men measured.	Mean chest.	Mean chest.	Mean chest.	Mean welght.
			Mean height.	Mean weight.	Mean chest.
North Dakota.	6,444	Inches. 33.76	Inch. 0.497	Inch. 0.230	Pounds. 4.353
Nevada.......	1,441	33.75	. 497	. 232	4.307
Idaho.	4,031	33. 74	. 495	. 232	1.307
Alaska.	106	33.65	. 493	. 223	4.472
Minnesota.	27,341	33. 63	. 494	. 230	4.354
Wisconsin.	18, 433	33.55	. 496	. 232	4. 307
South Dakota.	3,892	33.54	. 493	. 2228	4. 382
Oregon.......	2,748	33.51	. 492	. 2228	4. 368
Montana.	11,648	33. 47	. 492	. 2228	4. 372
Washington.	11, 316	33. 46	. 492	. 230	4. 347
Connectieut	13, 585	33.43	. 501	. 239	4. 182
Vermont.	2,077	33. 43	. 498	. 238	4. 198
Iowa...	19,537	33. 41	. 491	. 230	4. 332
Maine.	3,315	33.41	. 497	. 237	4. 221
Callfornia.	35, 461	33. 39	. 493	. 231	4. 312
Wyoming	1,927	33.38	. 492	. 231	4. 332
Miehigan.	41, 872	33.35	. 496	. 235	4. 258
New Jersey	29,958	33. 29	. 498	. 239	4.170
West Virginia.	12,367	33. 29	. 490	. 235	4. 251
Illinols.......	69,491	33. 28	. 493	. 234	4. 260
Kansas.	9,571	33. 28	. 487	. 231	4. 319
Arlzona.......	3,850	33. 26	. 488	. 232	4. 301
North Carolina.	14,668 10,774	33.25	. 487	. 2325	4. 255
New York.	107, 818	33.24	.497	. 2238	4.304 4.200
Georgia.	20,305	33.21	. 488	. 235	4.241
New Hampshire	2,240	33. 20	. 495	. 236	4. 227
Vircinla........	17,616	33. 18	. 489	. 236	4. 230
Arkansas..	10,111	33.17	. 486	. 234	4. 259
Oklahoma	19,429	33.16	. 485	. 232	4.293
Indiana.	23,194	33.14	. 489	. 233	4. 274
New Mexieo..	2,690	33.14	. 491	. 239	4.178
Utah.	4,568	33. 14	. 488	. 231	4. 319
Ohio.	52,814	33. 12	. 491	. 234	4. 268
Delaware.	1,891	33.11	. 492	. 237	4.212
Maryland.	9,192	33.11	. 494	. 236	4. 240
Massaehusetts.	29,534	33.10	. 496	. 239	4.281
South Carolina	9,343	33.10	. 489	. 235	4. 244
Pennsylvania	77,186	33.10	. 496	. 236	4. 221
Missouri...	24,964	33.08	. 486	. 233	4.275
Mississippt	8,543	33.08	. 485	. 231	4.330
Loulsiana.	12,356	33.08	. 489	. 236	4. 221
Colorado.	6,635	33.07	. 485	. 234	4. 265
Florida.	5,895	33.06	. 489	. 237	4. 214
Alabama	15,988	33.03	. 485	. 233	4. 277
Texas.	34,531	33.02	. 483	. 232	4.307
Kentueky.	15,502	32.98	. 484	. 235	4.245
Tennessee.	14, 426	32.97	. 483	. 235	4.249
Rhode Island.	3,928	32. 83	. 494	. 241	4. 156
District of Columbia.	4,486	32.66	. 482	. 232	4. 303

Table 41.-Chest circumference (expiration) of native American white draft recruits of Civil War.
[From Baxter, ${ }^{1}$ Vol. I, p. 32, rearranyed.]

State.	Inches.	Centimeters.	State.	Inches.	Centlmeters.
Nevada.	34.38	87.33	Illinois.	33.65	85.48
Delaware.	34.25	86.98	New Hampshire.	33. 60	85.34
California.	34.11	86.63	Wisconsin.	33.51	85.10
Minnesota.	34.02	86.41	Miehigan..	33.50	85.08
Kansas.	33.99	86.34	Pennsylvania	33.49	85.07
Kentueky	33.98	86.30	Vermont...	33.38	84.77
Missourl..	33.90	86.11	West Virginia	33.07	83.99
Maryland	33.90	86.10	New York.	32.91	83.59
Iowa.....	33.87	86.02	Connecticut.	32.57	82.74
Maine.	33. 81	85. 87	New Jersey.	32.33	82.11
Indiana.	33.70	85,59	Rhode Island.	32.27	81.97
Ohlo.......	33. 66	85.50	Massaehusetts.	31.99	81.25
Distriet of Columbia.	33.66	85.49			

In Table 42 the different States are arranged in order of the relative chest circumference obtained by dividing the mean chest circumference of each State by the mean height of men from that State. In this table the State showing the lighest ratio of chest circumference to mean height is Connecticut. This is partly due to the small stature of the men of Connecticut and partly to the large chest circumference they show. This large chest circumference is more striking for men of the agricultural part of Connecticut than of the manufacturing area. It appears that Connecticut stands at the top of the list for relative chest circumference because it contains so many small men who are engaged in agricultural occupations and others involving exercise of the upper appendages and upper trunk. Vermont comes second in the list, again an agricultural State, comprising many persons of small size. New Jersey and Maine come next and their position is to be explained in similar fashion. Next in order comes North Dakota. Here, despite the great average stature of the inhabitants, the chest circumference is relatively large, again associnted with the agricultural activity of this magnificently proportioned population. This is followed by a mixture of mining and agricultural States in which the population is largely engaged in occupations involving use of the upper part of the body.

At the other extreme of the table stands first the District of Columbia for reasons already put forward in accounting for the small absolute chest circumference of its population. Next come certain States containing very tall men, such as Tennessee, Texas, Kentucky, in which the chest circumference has not increased in proportion to the great stature. The ratio is small, partly because it is very small in the mountain-white sections of these States. Possibly hookworm has an important influence in keeping down the rehative chest circumference. In the lower part of the table lie also Alabama, Mississippi, Missouri, Arkansas, North Carolina, and other Southern States, probably largely because of the admixture of Negroes who, as we have seen, have a relatively smaller chest circumference and about the same average stature as the whites.

The relative small chest circumference of the draft recruits from the Southern States is due in part to the fact, as shown in Plate XIV, figure 1, that the proportion of the chest circumference (expiration) to the stature increases as the stature ${ }^{\prime}$ decreases.

$$
386: 36^{\circ}-21-10
$$

Table 42.-Relative chest circumference (mean chest circumference divided by mean stature), by States, arranged in order of standing, first million draft reeruits.

8. MEAN CHEST CIRCUMFERENCE BY SECTIONS.

Table 43 gives the chest circumference for each of the sections into which the country has been divided, arranged in order of size of chest circumference, the largest being placed first. The average for the whole United States is 33.22 inches. We find that more than half of the sections have a chest circumference above the mean. At the top of the table stand three rural districts of Minnesota, comprising a large proportion of Scandinavians. That Minnesota as a whole does not occupy the first position is due to the reduction in stature of men from her large cities. Next comes North Dakota 2, largely Scandinavians, and next the mining area of California 2. The mining States of Nevada 1 and Idaho 1, as already shown, have a high average chest girth, as has also South Dakota 3, containing a large proportion of Indians. Next comes Wisconsin 4, containing a large proportion of Germans. The mountainous region of New Hampshire 1 comes next and this is followed by three sections containing Scandinavian and rural Russian population. The foregoing sections have a mean chest circumference about 0.5 inch above the average. These are followed by a number of sections among which the mountain areas are strikingly prevalent, followed by several agricultural areas more largely of native white population. In the middle of the list stand many sections with a large Negro population. At the very bottom of the list stands New Orleans (Louisiana 2), in which the chest circumference is 32.63 -less than the men from the District of Columbia. The ratio of mean chest to stature, however, is greater than in the District of Columbia. Next to the bottom of the table lies New Mexico 3, with its noteworthy Mexican element, in which not only the stature but also the relative chest circumference is small. This is followed by the District of Columbia and
by the Key West Section (Florida 3), containing many Italians and Cubans. The district around Mobile (Alabama 5) affords a population with chest circumference of only 32.82 , and indeed many southern sections, especially those containing few Negroes, are found in the lower part of the table. Rather striking is the position, toward the bottom, of Denver (Colorado 5), (associated with a large number of rejections for tuberculosis) and Philadelphia (Pennsylvania 1), Cincinnati (Ohio 4), St. Louis (Missouri 4), Baltimore (Maryland 1), Los Angeles (California 4), Boston (Massachusetts 4), and even New York city (New York 2), (mean chest girth, 33.14). It is clear that the inhabitants of cities tend to have reduced chest girth, possibly due to a smaller amount of exercise of the upper appendages and to the small races that congregate in them. This is illustrated by comparing the twin cities of Minnesota with the rest of the State. The men of the former have a chest circumference about 0.75 inch less than the latter.

Table 43.- Mean chest circumference (expiration) by sections; sections arranged in order of standing with proportional chest circumference (expiration) in inches for each inch of height and each pound of weight; also standard deviation for each chest circumference; first million draft recruits.

Table 43.-Mean chest circumference (expiration) by sections; sections arranged in order of standing with proportional chest circumference (expiration) in inches for each inch of height and each pound of weight; also standard deviation for each chest circumference; first million draft recruits-'ontd.

State.	Seetion.	Charaeteristics of sections.	Number of men measured.	Mean chest.	Standard deviation (chest).	Mean chest. Mean height.	Mean chest. Mean weight.
Illinois	2			Inches. 3340	Inches.	Inch. ${ }^{\text {P }}$	Inch. ${ }_{0}$
New Jer	2	Plains section, rural.			2.		
Texas.	3	German and Negro pop	1,415	33.40 33.40	2.12 2.09	. 4988	231
Maryland	3	Large white population.	2,675	33. 39	1. 99	496	237
Illinois.	1	Densely populated.	7, 803	33, 38	2.02	495	233
Wyoming	1	State undivided, sparsely populated	1,927	33. 38	1. 89	. 492	231
Texas.	5	Large Negro population..'.	1,346	33.36	2.05	. 487	231
Virginia.	3	Native rural region	3, 866	33. 36	1.94	. 489	237
New York	6	Urban area...	6,544	33.35	2.08	. 498	234
Connecticut	2	Manufacturing a	8,70s	33.34	2.20	. 499	238
New York.	8	Mountainous, Adir	2,9^6	33.34	2.00	. 497	237
Virginia.	4	Mountain, white.	5,499	33.33	1.87	. 489	. 238
Georgia.	2	Large Negro population	10,070	33. 33	1.91	. 490	. 236
llinois.	7	Agricultural area.	5,442	33.33	1.98	. 491	. 234
Wisconsim.	3	Urban and foreign stock.	4,513	33.33	2.11	. 497	237
New York	3	Eastern manufaeturing reg	5,131	33. 32	2.07	. 498	. 238
Pennsylvan	3	Mining area.	7,293	33.32	2.10	. 500	. 236
California.	5	Urban area.	7,189	33.32	2.09	. 495	. 231
Colorado.	1	Large native white population	1,053	33.32	1.77	. 489	. 235
Montana	1	Mining area, foreign population	5,117	33.31	1.93	. 491	. 229
Colorado	2	Russian population......	1,093	33.30	1.75	. 490	. 234
Missouri	3	Native white, Ozark region.	1,138	33.30	1.76	. 485	. 234
Arkansas	2	Large native white population, hill country.	1,559	33.29	1. 80	. 484	. 236
Louisiana.	1	Mississippi bottoms and upland, large Negro population.	4, 072	33.29	1.97	. 491	. 236
Pennsylvania		Rural area.	8,616	33.29	1.98	. 494	. 235
Kansas.	2	Native and German population	8, $50 \overline{3}$	33.28	1.99	. 488	. 231
Arizona	1	Large Indian population, sparsely settled.	1,027	33.28	1.91	. 489	. 232
Alabama	2	Large Negro population.	3,327	33.27	1. 90	. 489	. 233
New Mex	2	Native white population	1,851	33.26	1. 84	. 493	. 240
Arizona	2	Chiefly white population	2,821	33.25	1. 99	. 487	. 232
Illinois.	5	Urban area......	33,905	33. 25	2.12	. 495	. 236
New Mexi	1	Indian population	290	33. 25	1. 84	. 491	. 239
Texas	1	Large Mexiean population	6,676	33.24	1. 98	. 487	. 234
Kansas	1	Russian population.	1,066	33.24	2.68	. 486	. 229
North Carol	5	Island and peninsular area	254	33.24	1.84	. 491	235
Mississippi	,	Rural area, large Negro population	5,149	33. 24	1. 88	. 488	. 231
New York	4	Western manufacturing region.	14,222	33. 23	2.13	. 495	. 236
Oklahom	2	Chiefly white population:	10,958	33. 22	1. 95	. 485	. 232
Maine.	3	French Canadian populatio	1,247	33.22	1. 93	. 495	. 238
Colorad	3	English population.	380	33.21	1. 86	. 487	. 233
South	2	Large Negro population	3,976	33.20	1.85	. 490	. 234
Iowa.		Native white.....	7,404	33.20	1. 92	. 488	. 231
Ohio.	1	Dense foreign population	17, 208	33. 20	2.08	. 495	. 234
West Virginia	1	Mountainous area.......	1,506	33. 20	1.87	. 488	. 236
Kentueky.	1	Mountainous area, na	4,029	33. 19	1.80	. 486	237
New Jersey	1	Densely populated.	17,772	33. 19	2.12	. 497	. 239
Arkansas.	1	Negro, Mississippi bottom	4,933	33. 18	1.95	. 487	. 233
Florida	4	Peninsular	2,339	33. 18	1.95	. 491	237
Do.	2	Negro and rural populatio	995	33. 18	2.02	. 490	236
Michigan.		Urban area.........	17,751	33. 18	2.08	. 496	235
Minnesota.	4	Urban area, "Twin Cities"	9,757	33. 18	2.01	. 489	230
North Carolina	2	Intermediate.	4,309	33. 18	1. 80	. 486	. 235
Pennsylvania.	2	Rural area, nativestock	14,218	33. 18	2.02	. 497	. 237
Nebraska..		German and Irish, foreign stocks	7,621	33. 17	1. 93	. 488	. 230
New York	5	Mountainous, Catskill region.	795	33.17	2.01	. 493	. 235
Louisian	3	Rural, chiefly white population	5,227	33.17	1.87	. 488	. 236
Texas.	4	Coastal native population..............	2,722	33.16	1. 99	. 487	. 233
Alabama.	4	Large Negro population.	665	33. 16	1. 84	. 486	229
New Yotk	1	Suburban teritory.	4,919	33. 16	2.08	. 497	. 233
N orth Carolin	3	Native white of Seotch ori	2,050	33. 16	1.82	. 485	. 234
Do.		Remainder of State..	744	33.16	1.85	. 489	. 235
Massachusetts.	2	Manufacturing eenter	18,352	33.15	2.04	. 497	241
North Carolina	4	Large Negro population	4,558	33.15	1.91	. 489	233
Pennsylvania.	5	Coal mining.	4,813	33.15	2.00	. 496	. 235
Do.	5	Mianufacturing.	8,892	33. 15	1.98	. 497	235
Michigan.	5	Dutch and other foreign population.	2,889	33.14	1. 96	. 491	235
New York	2	Urban area, densely populated........	46,651	33. 14	2.15	. 498	239
Colorado.	4	Prevailing agricultural......	1,222	33. 14	1. 88	. 456	233
Ohio.	3	Agricultural area.	17,548	33. 13	2.00	. 489	234
Missouri	1	Native white, agricultural.	13, 571	33.11	1.90	. 456	. 234
	2	Mississippi bottoms, considerable Negro population.	3,448	33.11	1.89	. 486	. 233
Dclaware.	1	State undivided........	1,891	33.11	1.97	. 492	. 237
Georgia.	1	Mixed population, native white prodominating.	10,235	33.10	1. 88	. 486	. 235

Table 43.- Mean chest circumfercnce (expiration) by sections; sections arranged in order of standing with proportional chest circumfcrence (expiration) in inches for each inch of heighi and each pound of ucight; also standard deviation for each chest circumference; first million draft recruits-contd.

Stato.	Sectlon.	Characteristles of sectious.	Number of men measured.	Mean chest.	Standard doviation. (ehest).	Mean chest. Mcan helght.	Mean chest. Mean weight.
				Inches.	Inchex.	Inch.	Inch.
Arkansas.	3	Large native white population.	3, 549	33.10	1.78	0.485	0.235
Oklahoma	1	Marked Indlan and Negro population.	8,471	33. 09	1. 87	485	233
Virginla.	2	large Negro population...............	5,339	33. 07	1. 89	490	236
Alabama	3	Large natlve white population	2,666	33.07	1.80	484	235
1linols	3	Agrieultural area, native.	8,900	33.07	1.94	. 487	232
ludians	3	Agrlcuitural area, native sto	18,725	33.06	2.00	.487	233
Ohlo.	2	Intermedlate...............	14,443	33. 06	1.98	. 491	234
Massacliuse	4	Urban area.	8, 503	33.03	2.14	. 494	237
South Carolina.	3	P'eniusular and rural area	3,795	33.05	1.85	. 491	. 238
Californla.	4	Urban area.	7,428	33.04	2.02	. 457	.334
Tennessee.	2	Aprieultural region.	6,305	33.02	1. 85	. 484	237
Pennsylvania.	7	Allegheny County plus a small rural area.	17,238	33.01	2.08	.495	236
Maryiand	2	Peninsular area.	1,066	33.00	1.88	. 490	. 236
Do.	,	Urban area.	5,420	32.99	2.08	. 493	. 233
New Hampshlre..	2	Manufacturing area.	1,581	32.98	2.00	. 493	. 237
South Carollna..	1	Native white....	1,563	32.97	1. 83	. 484	. 235
Missouri.	4	Urban area.	6,784	32.96	2.07	. 489	23]
Ohlo.	4do.	3, 504	32.96	2.09	. 489	232
Tonnessee	3	Mountainous region	5,898	32. 93	1. 85	. 481	.331
Alabama	1	Minlng aud manufacturiug area	8, 833	32. 93	1.84	. 484	. 233
Florida.	1	Largely whito and maritime.	2,477	32.92	1. 83	$.4 \times 6$. 237
Pennsylvania.	1	Urban area..	16,0.3	32. 91	2.02	. 494	. 239
Massaehusetts.	1	Mountainous area	1,373	32.90	2.09	. 492	. 237
Kentucky........	2	Agricultural area.	11, 419	32.90	1.91	. 484	. 231
Tennessee........	1	Negroes, Mississippl bottoms.	2,217	32,90	1.84	.483	332
Texas	2	Sparsely settied, white	22,372	32.90	1.95	.480	. 231
Utah.	2	More densely populated	2,781	32. 89	1. 88	. 485	. 230
Massachus	3	Peninsular region.	1,123	32, 88	2.12	. 491	. 237
Colorado.	5	Urban populatlon.	1,640	32.88	1. 3	. 485	. 234
Illinois.	6	Negro popuiation (Egypt)	409	32.87	1. 95	. 482	. 236
Vlrginla	1	Penlnsuiar reglon and east shore.	2, $\times 14$	32.84	2.05	. 457	. 233
Mississippl	2	Rural area, large native white populatlon.	3,387	32. 3	1.86	.480	231
Rhode Island	1	State undivided........................	3,925	32. 83	2.11	. 494	241
Alsbama	5	Urban and suburban ares.	479	32. 82	1.96	.445	. 234
Colorado		Austrian and ltalian population.......	1,224	32. 79	1. 89	.484	. 235
Florlda.	3	Cuban, Spanish, West Indian popıiatlon.	8	32.74	1.99	. 487	. 240
Dis. of Colnmbia.	1	District undivlded.	4,486	32.66	2.00	. 482	. 232
New Mexleo......	3	Noteworthy Mexican element	540	32. 63	1.85	. 4×0	. 234
Loulsiana.	2	Urban area.	3,040	32.63	2.09	. 457	. 237

9. Standard deviations of chest circumference by sections.

Table 44 shows the variations in the standard deviations of chest circumference for the various sections. For the United States as a whole the standard deviation is close to 2 inches. In western Kansas it is 2.6 S inches, a high variability associated with the mixture of Germans and large Scandinavians, on the one hand, and of smaller Russians on the other. In manufacturing Connecticut, in New York City, Boston, Chicago, suburban New Jersey, and Rhode Island, the standard deviation is also high. In general, the eastern cities attract both extremes in body size. Greater uniformity (smaller standard deviation) is found in the Southern States. Extremely low variability is found in South Dakota 3, with 87 per cent Indians; Colorado 2; and Missouri 3, the Ozark Mountains, 94 per cent native whites and mostly big men.

Table 44.-The standard deviation of chest circumference (expiration), by sections, arranged in order of standing, first million draft recruits.

Statc.	Section.	Standard deviation.	State.	Section.	Standard deviation.
United States. .		2.01	Florida.	4	1.95
Kansas.	1	2.68	Maine...	2	1.95
Connecticut	2	2.68 2.20	Oklahoma....	12	1.95 1.95
New York.	2	2.15	Texas....	2	1.95
Massachusetts.	4	2.14	Nebraska.	2	1.95
New York.	4	2.13	Illinois.	6	1. 95
Illinois.	5	2.12	Arkansas.	1	1.95
New Jersey	2	3.12	Illinois.	3	1.94
Indiana....	1	2.12	Virginia.	3	1.94
New Jersey.	1	2.12	Alaska.	Ali.	1.94
Massachusetts.	3	2.12	Minnesota	2	1.93
Rhode Island..	All.	2.11	lowa.	1	1.93
Wisconsin..	3	2.11	Montana	1	1.93
Connecticut	1	2.10	Maine..	3	1.93
Oregon..	1	2.10	Nebraska	1	1.93
Pennsylvania	3	2.10	Iowa.	2	1.92
Louisiana.	2	2.09	Kentucky.	2	1.91
Massachusetts	1	2.09	North Carolina.	4	1.91
Onio.....	4	2.09	Arizona.	1	1.91
New Hampshire.	1	2.09	North 1)akota.	1	1.91
Michigan.........	3	2.09	Oregon..	2	1.91
Texas.....	3	2.09	Georgia.	2	1.91
California.	5	2.09	Vermont.	Ali.	1. 90
New York	6	2.08	Alabama.	2	1.90
Nevada.	1	2.08	North Carolina	2	1.90
Ohio.	1	2.08	Missouri.......	1	1.90
Michigan.	4	2.08	Do.	2	1.89
New York.	1	2.08	Virginia.	2	1.89
Pennsylvania.	7	2.08	Wisconsin	1	1.89
Maryland.....	1	2.08	Wyoming	1	1.89
Missouri..	4	2.07	Colorado.	6	1.89
New York	3	2.07	Georgia.	1	1. 88
California.	1	2.06	Colorado.	4	1.88
New York	7	2.06	Mississippi	1	1.88
Texas..	5	2.05	North Dakota	2	1. 88
Virginia.	1	2.05	Maryland.	2	1. 88
Massachusetts.	2	2.04	Utah.....	2	1.88
Idaho..	1	2.04	California.	2	1. 87
Illinois.	4	2.03	South Dakota	2	1. 87
Do.	2	2.03	Oklahoma..	1	1.87
Do.	1	2.02	Virginia.	1	1. 87
Washington.	1	2.02	West Virginia	1	1.87
New Jersey.	3	2.02	Louisiana....	3	1. 87
Pennsylvania	1	2.02	Maine.	1	1. 86
California....	4	2.02	Minnesota.	1	1. 86
Pennsylvania	2	2.02	North Dakota	3	1. 86
Fiorida....	2	2.02	Colorado.	3	1.86
Wisconsin. Indiana...	4 4 2	2.01	Mississippi	2	1. 86
Minnesola.	4	2.01	South Caroina.	2 3	1.85 1.85
New York.	5	2.01	New Mexico.	3	1.85
Do...	8	2.00	Tennessee...	2	1.85
Pennsylvania.	4	2.00	Do.	3	1. 85
Ohio.........	3	2.00	North Carolina.	6	1. 85
Indiana..	3	2.00	Montana......	2	1.85
New Hampshire.	2	2.00	North Carolina	5	1.84
District of Columbia	All.	2.10	Tennessee.....	1	1. 84
Kansas.	2	1.99	Alabama.	1	1.84
Florida.	3	1.99	Do.	4	1. 84
Arizona.	2	1.99	New Mexico.	1	1.84
Texas..	4	1.99	Do.	2	1.81
Maryland.	3	1.99	Colorado.	5	1. 83
Pennsylvania.	6	1.98	Florida..	1	1. 83
Michigan..	2	1.98	South Carolina.	1	1. 83
Minnesota.	3	1.98	Washington....	3	1. 83
Texas.....	2 1	1.98 1.98	North Carolina	1	1. 82
Pennsylvania.	5	1.98	Utah....	1	1. 82
Illinois........	8	1.98	Alabama.	3	1. 50
Do.	7	1.98	Arkansas..	2	1.80
Delaware..	1	1.97	Kentucky.	1	1. 80
Wisconsin.	2	1.97	Arkansas..	3	1.78
California.	3	1.97	Utah....	3	1.77
Louisiana.	1	1.97	Colorado.	1	1. 77
Alabama..	5	1.96	Missouri.	3	1.76
Michigan.	1	1.96	Colorado.	$\stackrel{2}{2}$	1.75
Do..	5	1. 96	South Dakota.	3	1.74
Washington..	2	1.96			

10. MEAN CHEST CIRCUMFERENCE BY GROUPS OF SECTIONS.

Certain additional points are revealed in Table 45, giving the chest circumference by groups of sections. Of all the groups, group 18 (the two Finnish sections) show the highest absolute chest girth, namely, 33.82 , or 0.60 inch above the average for the United States. Next come the German and Scandinavian sections, followed by the sparsely settled sections with a large sprinkling of Orientals, the German and Austrian, the Russian, the agricultural sections of mixed foreign and native white, and then desert sections, including many large inen, among them many tuberculous patients. Men of the mountain sections have a chest circumference only slightly above the average. The groups of commuter sections, mining, sparsely settled Mexican, eastern manufacturing, and mountain whites are close to the average. At the bottom of the list are the native whites of Scotch origin, whose chest circumference shows up very small, both absolutely and relatively. Next above these are the maritime sections, southern agricultural sections, with a prevalence of whites; French-Canadian sections and agricultural sections, with 45 per cent or more of Negroes. That the Negro agricultural sections of the South have a larger chest circumference than the white agricultural sections, despite the smaller average chest circumference in Negroes, is doubtless due to the fact that in the latter there is a larger proportion of towns and cities in which the chest circumference tends to become reduced. The low chest circumference of French-Canadian sections is due to the small stature of the population in these sections, though relatively the chest girth stands rather high.

Table 46 shows that the sections with 10 per cent Finns, among the most northern of the sections of the United States, have the largest relative chest girth, and that for all other groups it is less than half the stature. According to the table of Martin ${ }^{5}$ (p.279) the measure of chest girth of Europeans gives for most races an excess of half the stature, and one is led to inquire if there has been a relative disuse of the arms and chest for severe manual labor in the United States, possibly due to replacement of manual by machine labor.

Next in order come the sections containing 10 per cent or more of agricultural Russians with a relative chest girth of 49.8 per cent. Sections containing a large proportion of French Canadians have a relative chest girth of 49.7. All these sections are engaged primarily in agriculture. Then come the eastern manufacturing and commuter groups, in which the high relative chest circumference must be largely ascribed to racial stock. These are followed by a series of northern, chiefly agricultural, areas, containing Austrians, Scandinavians, and Germans in large proportions. At the end of the series come the Scotch sections, with a chest relative circumference of 48.4 , a result which is largely due to the excessive stature of the men from these sections, which is not completely equalized by the incrensed chest circumference.

Table 45.- Mean chest circumfercnce (expiration) by groups of sections; groups arranged in order of standing with proportional chest circumference (expiration) in inches for each inch of height and each pound of weight; also the standard deviation for each chest circumference; first million draft recruits.
[From Table VI, p. 440.]

$\begin{aligned} & \text { (r roup } \\ & \text { No. } \end{aligned}$	1)escription.	Number of men measured.	Mcan chest.	Standard deviation (chest).	Mean chest. Mcan height.	Mcan chest. Mean weight.	Mean wclght. Meanchest.
$\begin{aligned} & 18 \\ & 20 \end{aligned}$	Average for the United States....	873, 159	33.22	Inches. 2.01	Inch. 0.492	Inch. 0.234	Pounds. 4. 260
	Finn, 10 per cent................... German and Scandinavian, over 10	5,855	33.82	1.99	. 5016	. 232	4.311
	per cent...........................	28, 056	33.72	1.95	. 4951	. 230	4.350
17	Scandinavian, 10 per cent.	50, 953	33.65	1.95	. 4952	. 230	4.343
	Sparscly settled, not more than 3 per square mile.	16, 151	33.53	1.92	. 4929	. 232	4. 320
21	German and Austrian, over 20 per cent	3x, 911	33. 42	2.07	. 4955	. 233	4. 2×7
162	Russian, 10 per cent plus.............	12,064	33.39	2.01	. 4976	. 235	4.264
	Agricnitura, mixed, foreign native	97,319	33.38	2.00	. 4934	. 234	4.277
9	Descrt.................................	6,109	33. 38	1.99	. 4917	. 235	4. $2: 56$
22	Germanand Austrian, over 15 percent	126, 895	33. 33	2.06	. 4954	. 234	4. 271
11	Mountain.	17, 103	33. 33	1. 96	. 4921	. 233	4. 290
6	Commutcr	28,980	33. 25	2.09	. 4970	. 238	4. 205
7	Mining.-....	35, 691	33. 23	1.97	. 4929	. 234	4. 2×2
14	Mexican, sparsely settled	11, 064	33. 22	1.99	. 4874	. 234	4.283
5	Eastern manufacturing.	81, 598	33. 20	2.08	. 4970	. 238	4. 204
12	Mountain whites.....................	21, 254	33. 20	1.87	. 4862	. 237	4.225
1	Agricultural Negroes, 45 per cent plus. Agricultural, North, native white	49,465	33.19	1.91	. 4894	. 234	4. 266
	over 73 per cent	66,836	33.13	1.99	. 4900	. 234	4. 270
13	Indian, sparsely settled.	10, 038	33.13	1.89	. 4864	. 234	4. 2×3
19	French-Canadian, 10 per cent	25,787	33.11	2.07	. 4966	. 240	4.164
3	Agricultural, native white, South	117,890	33. 09	1. 91	. 4854	. 240	4. 164
10	Maritime...................	6,157	33. 00	2.04	. 4903	. 235	4. 255
15	Native whites of Scotch origin	13,473	32.95	1.90	. 4844	. 235	4. 260

Next above come the agricultural areas of the South with a prevailingly white population. The mountain whites have also a relatively low chest circumference. The southern agricultural sections with 45 per cent Negroes have a mean relative chest circumference of 48.9, slightly in excess of that of the agricultural areas of the South predominantly white, because the southern white man is lanker than the southern Negro.

Table 46.-Relative chest crrcumference, by groups cf sections (chest circumference divided by stature), first million draft recruits. ${ }^{19}$

The relation between the distribution of chest circumference at expiration for each of the principal groups of sections and that of the whole population of recruits is shown graphically in Plate \mathbf{X}. The inspection of these curves
shows that the groups containing 10 per cent or more of Finns have the greatest excess of chest girth. This is in accord with what we have already found regarding the robustuess of the men of these sections.

Similarly the groups of sections characterized by having 10 per cent of Scandinavians are characterized by harge chest girth and this is associated with what we have found in regard to the great stature and heavy build of men in this group of sections. Also the groups with 10 per cent or more of Russians are characterized by a slight excess of chest girth. On the other hand, the groups of sections containing a large proportion of men of Scotch origin are characterized by a deficiency of chest girth. This agrees with what we have already found concerning the lankness of form of the men of this group.

The graphs show, moreover, that the chest circumference of sections comprising half, or more, Negroes are on the average larger than those sections of the South containing a smaller proportion of Negroes. The sections containing 10 per cent or more of French Canadians are characterized by a deficiency of chest circumference.

Table 47.-Distribution of chest circumference (expiration) shown by !roups of sections, first million draft recruits.

SECTION A: ABSOLUTE NUMBERS.

$\begin{gathered} \text { Group } \\ \text { No. } \end{gathered}$	Descriptlion.	Number measured.	Chest, in inches.										
			2)	30	31	32	33	34	35	36	37	38	39
1	Agricultural, North, native white over 73 per cent.	66,795	1,451	3,944	8,483	12,715	13,752	11,371	7,455	4,025	1,870	842	1
2	Foreign and native white...	97,338	1,693	4,696	10,247	16, 749	19, 807	17, 229	12,632	7,363	3,541	1,576	1,205
3	Agricultural, native white, South	117, 890	2,421	6,776	14,684	22,478	25,217	21,006	13, 163	6,924	2,884	1,324	1,013
4	Agricultural, Negroes, 45 per cont plus.	49,447		2,591	5,673	9,162	10,378	9,227	5,917	3,247	1,381	638	40
5	Eastern manulacturing........	81,569	2,047	5,018	10, 234	14,920	15,799	13,552	9,209	5, 43 s	2,725	1,371	1,256
6	Commute	28,934	737	1,771	3,542	5,072	5,594	4,539	3,425	2, 059	1,026	, 493	+ 436
7	Mining.	35,646	731	1,835	4,089	6,404	7,221	6,452	4,395	2,522	1,136	504	397
8	Sparsely settled, not more than 3 per square mile...	16,143	157	606	1,456	2,704	3,348	3,228	2,325			249	175
9	Desert...	6,110	99	265	644	1,09\%	1,279	1,098	784	449	221	94	80
10	Maritlme	6,157	214	395	797	1,186	1,270	984	60%	394	176	82	72
11	Mountaln	17, 101	259	800	1,849	3,060	3,541	3,234	2,127	1,251	575	226	179
12	Mountain whltes	21,233	328	1,001	2,384	4,082	4,661	3,926	2,571	1,353	546	215	162
- 13	Indian, sparsely settled.	10,035	178	468	1,260	1,979	2,144	1,829	1,151	616	201	129	N0
14	Mexican, sparsely settled.....	11,064	221	586	1,271	2,029	2,373	1,911	1,327	718	347	159	122
	Native whites of scotch orlgln.		303	826	1,855	2,811	2,904	2,213	1,315	730	270	129	113
16	Russlan, 10 percent plu	12,057	228	527	1,305	2,075	2,390	2,215	1,570	973	421	205	148
17	Scandlnavian, 10 per cen	50,951	501	1,699	4,286	7,987	10,296	10, 221	7,548	4,544	2,258	984	627
18	Finn, 10 percent.	5,855	49	163	-421	915	1,145	1,123	869	614	322	149	85
19	French Canadian, 10 percent.	25, 772	645	1,597	3,340	5,016	5,065	4,189	2,786	1,605	3	395	381
$21)$	German and Scandinavlan, 10 percent and over.	28,051	241	829	2,240	4,220	5,666	5,752	4,305	2,551	1,313	56	371
21	German and Austrlan, over												
22	20 percent..................	38	723	1,934	4,147	6,582	7,662	7,112	4,924	3,023	1,499	703	631
	10 per cent.	126, 8 \%	2,639	6, 839	14,168	21,909	24,971	22,624	15,871	9,374	4,616	2,14i	1,726
	Total.	867,547	16,718	45, 166	98, 379	155, 152	76, 483	55, 835	06, 276	61, 135	23, 660	3, 157	10,4*6

Table 47.-Distribution of chest circumference (expiration) shown by groups of sections, first million draft recruits-Continued.

SECTION 13: RATIOS PER 1,000 .

Group No.	1)escription.		Chest, in inches.											To-
			29	30	31	32	33	34	35	36	37	38	39	
1	Agricultural, North, nativewhite over 73 per cent.	66, 795	21.72	59.05	127.00	190.36	205. 88	170.24	111.61	60.26	28.00	12.61	13.28	1,000
2	Foreign and native white.........	97,338	17.39	48.24	105.27	172.07	203.49	183.17	129.77	75.64	36. 38	16. 19	12.38	1,000
3	Agricultural, natlve white, South	117,890	20.54	57.48	124. 56	190.67	213. 90	178.18	111.65	58.73	24.46	11.23	8. 59	1,000
4	Agricultural, Negroes, 45 per cent plus. \qquad					185.29	209.88					12.90		
5	Eastern manufacturing............	81,569	25.10	61.52	125.46	182.91	193.69	166. 14	112.90	66.67	33.41	16. 81	15.40	1,000
6	Commuter.	2x,994	25.42	61.08	122. 16	174.93	192.94	166.90	118.13	71.01	35. 39	17.00	15.04	1,000
7	Mining.	35, 686	20.48	51.42	114.58	179.45	202. 35	180.80	123. 16	70.67	31.83	14. 12	11. 12	1,000
8	Sparsely settled, not more than 3 per square mile.				90.19	167. 50	207. 40			81.52	35. 87	15. 42		
9	Desert...............................	6,110	16. 20	43. 37	105. 40	179. 54	209.33	179. 71	128.31	73.49	36.17	15.38	13.09	1,000
10	Maritime	6,157	34. 76	64. 15	129. 45	192.63	206. 27	159. 82	98.59	63.99	28.59	10. 07	11.69	1,000
11	Mountain	17,101	15. 15	46. 78	108.12	178.94	207.06	189.11	124.38	73.15	33.62	13. 22	10.47	1,000
12	Mountain white	21, 233	15.45	47.14	112.47	192.25	219.52	184.90	121.09	63.72	25. 71	10. 13	7.63	1,000
13	Indian, sparselysettled	10,035	17.74	46.64	125.56	197.21	213.65	182.26	114.70	61.39	20.03	12.86	7.97	1,000
14	Mexican,sparsely settled	11,064	19.97	52. 96	114.88	183. 39	214.48	172.72	119.94	64.90	,31.36	14. 37		1,000
15	Native whites of Scotch or	13, 469	22.50	61. 33	137.72	208.70	215.61	164.30	97.63	54.20	20.05	9.58		1,000
16	Russian, 10 per cent plus.	12,057	1891	43. 71	108.24	172.10	198.23	183.71	130.21	80.70	34.92	17.00	12.28	1,000
17	Scandinavian, 10 percen	50,951	9.83	33.35	84.12	156.76	202.08	200.60	148. 14	89.18	44.32	19.31	12. 31	1,000
18	Finn 10 per cent	5, 855	8.37	27.84	71.90	156.28	195. 56	191. 80	148. 42	104. 87	55.00	25. 45	14. 52	1,000
19	French Canadian, 10 per cent ... ${ }^{\text {a }}$	25,772	25.03,	61.97	129.60	194.63	196.53	162.54	108. 10	62.28	29.22	15.33		1,000
20	German and scandinavian, 10 per cent and over.	28,051	8.59	29.55	79.85	150.44	201.99	205. 06	153.47	90.94	46.81	20.07	13.2	1,000
21	German and Austrian 20 per cent and over.	38,943	18.57	49.66	106. 49	169.02	196. 75	182.63	126. 44	77.70	38. 49	18.05		1,000
22	Germanand Austrian over 10 per cent.	126,887	20.80,				196. 80	178.30	125.08	73.90	36.38	16.92		1,000
	Total.	*67, 547	19.27	52.06	113. 40	178.84	203. 43	179.74	122.50	70.47	33.04	15.17	12.09	1,000

11. MEAN CIIEST CIRCLMFERENCE OF THE EIGHT ELROPEAN RACES OF MEN AT DEMOBHLIZATION.

Table 49 gives the absolute and proportional frequencies of the different classes of chest circumference for men of the eight European races as taken at demobilization. These are summarized in Table 48. The second column of Table 48 gives the average chest circumference at rest. The greatest average chest circumference, 90.42 , is found among the Poles, the next among the Germans, followed by Italians and Irish. The smallest chest circumference, 87.53, is found among the Hebrews; markedly above stand the English, followed by the French and Scotch. Our measurements correspond rather closely with Gould's. We may, therefore, compare his measurements (after reduction to centimeters) on page 280 "after expiration" with those of the present work. Thus, for the measurements in 1866 of the English, Gould gets 87.12 centimeters, about 1 centimeter less than the English troops measured half a century later. Gould's figures are: Chest circumference of the Scotch, 88.06, as contrasted with $88.57,50$ years later; of men from Ireland, 89.28 , as contrasted with 88.67 , which shows a reduction of 0.5 centimeter; of the French, etc., 87.12, as contrasted with our figure of 88.49 , showing a marked increase; of the Germans 88.19 , as contrasted with our average of 89.52 , showing a marked increase. In general, excepting the Irish, the mean chest circumference for our races is greater than for those of Gould. This is largely due to the fact that in Gould's measurements, the circumference of the chest was taken at full inspiration, whereas in the present series it was taken of the chest at rest.
CHEST (EXP.) DISTRIBUTION BY GROUPS OF SECTIONS (P)
mumans AGRIC., NATIIE ${ }^{\text {3 }}$ WHITE, SOUTH

fine line curve denotes average for u.s.
Plate X.

The middle column of Table 48 gives the standard deviation or index of variability for the chest circumference of the eight races. From this column it appears that the Irish are the most variable in respect to chest circumference, which may be due to the combination in that rubric of tall Scotch-Irish and the more thickset Celtic-Irish. Next in order come the Scotch, then the Hebrews and Germans. The lowest index of variability, 4.94 , is found among the Italians, followed by the English, French, and Polish.

The second column from the right shows the proportion of chest circumference to total stature for each of the races. From this column it appears that in relation to stature the Italians have the largest chest circumference, followed by the Poles, French, and Hebrews. The English have the smallest relative chest circumference, 51.24 , followed by the Scotch, Irish, and Germans. Thus it appears that the Mediterrancan races, Poles, and Hebrews are relatively larger chested than the Nordics. Since chest circumference is not very closely correlated with stature, this difference in relative chest circumference is largely dependent upon the varying size of the divisors (stature) used in finding the quotients. Rather more to the point would be the relation of chest circumference to weight of the body and these quotients have been calculated and are given in the last column to the right of Table 48. According to the last column we find the greatest chest in relation to weight among the Italians, 0.644 ; next largest among the Hebrews and then the French and Polish. The smallest relation of chest to weight is found among the Germans, 0.604 , next larger English, 0.608; Scotch, 0.611; and Irish, 0.620. This result runs somewhat parallel to the preceding column and justifies the general conclusion that whether in relation to the stature or in relation to weight the Mediterranean races and the Hebrews have a larger relative chest girth than the Nordic races.

Table 48.-Absolute and relative chest circumference (rest) of eight European races, with standard deviation and the coefficient of variation for each, demobilization, 1919.

Race.	\square	Number measured.	Absolute chest cir-cumference.	Standard deviation.	Coefficient of variation.	Relative chest cir-cumference to stature.	Relative chest cir-cumference to weight.
			Centimeters.	Centimeters.	Per cent.	Per cent.	Percent.
English		4,205 2,067	88.18		5. 670 5.928	51.24 51.33	
1 rish .		6,142	88. 67	5. 31	5. 989	51.74	0.620
German.		7,070	89.52	5. 17	5. 774	52.03	0.604
French.		1,450	88.49	5.08	5. 741	52.49	0.623
Italian.		3,524	88. 87	4.94	5. 538	53.80	0.644
Polish.		2,4)9	91.42	5.11	5. 651	53.37	0.621
Hebrew.		1,691	87.53	5.19	5. 929	52.44	0.635

12. CHEST CIICUMFERENCE OF MEN OF TIIE COLOR RACES.

The following table, derived from Tables. 103 and 104, gives the means of comparing the two principal color races measured at demobilization. It will be recalled that no distinction of color races was made in the original schedules for recording measurements of drafted men.

Table 50.-Mean and relatice chest circumference (rest), white and Negro troops, demobilization, 1919.

The table indicates that the chest circumference of the white troops exceeds that of the Negro troops by 8 millimeters. In relation to height the chest circumference of the Negro troops is slightly less than that of the white troops.
Table 51.-Various heights, weights, and chest circumferences (expiration) shoun for the L'nited States, with ratio per 1,000 of each, first million draft recruits.

Height to weight (Table I).						Height to chest (Tabie II).						Weight to chest (Tabie III).					
Height.	Number of men meas- ured.	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & \text { pero } \end{aligned}$	Weight.	Number of men ured meas-	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & \text { 1,000. } \end{aligned}$	Height.	Number or men ured.	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & 1,000 . \end{aligned}$	Chest.	Number meas ured.	$\begin{aligned} & \text { Ratio } \\ & \text { ner } \\ & 1,000 . \end{aligned}$	Weight.	Number of men ured ured.	$\begin{aligned} & \text { Ratio } \\ & \text { ner } \\ & 1,0000 . \end{aligned}$	Chest.	Number of men meas uren.	$\begin{aligned} & \text { Ratio } \\ & \text { per } \\ & \text { 1,ono. } \end{aligned}$
Es and			92			58 andunder.			${ }^{2}$ Sand under.			92	213	2.24	2 Sandunder		
for	2, ${ }^{3} 57$	${ }_{3.32}$	102	2,356	${ }_{2.71}^{0.21}$		3,921	${ }_{3.35}^{3.53}$		${ }_{\text {19,093 }}^{49}$	20.74	97	2,313	2.65		17,933	${ }_{56.23}^{20.56}$
61	7,477	8.61	107	7,435	8.56		7,5\%2	8. 67	31	103,294	118.30	107	21,352	24.51	31	103, 277	118.38
62	15, 644	18.01	112	21, 388	24.63	62	15, 8.48	18.15	32	159, 379	182.54	112	41,665	47.76	32	159,456	152.77
63	30, 935	35. 62	117	41,503	47.79	63	31, 207	35.74	33	175,858	201.42	117	63, $\times 66$	73.21	33	175,770	201.47
84.	52,547	60.51	122	63,567	73.20	64	52,923	60.61	34	152,663	174.85	122	85,0;2	97.51	34.	152,535	174.86
65	81,904	94.31	127	84, 726	97.56	65	82, 426	94.40	35	103, 414	11 S .42	127	100,715	115. 44	35	103,381	118.50
66	109,964	126.62	132	100,084	115.24		110, 16	126.92	36	59,015	67.60	132	107,129	122.80	38	58, $\mathbf{4 6 7}$	67.48
67	127,844	147.21	137	106,889	123.08		128,291	146.92	37	28, 175	32.27	137	101,040	115. s^{2}	3-	2s, 121	32.23
$6 \times$	129,987	149.68	142	100,607	115.85	68	130,624	149.60		13,151	15.06	142	88, 316	101.23	38	13,065	14.98
69	110,508	127.25	147	88, 057	101.40	69	111, 123	127.38		11, 027	12.63	147	72,618	83.24		5, 228	6.68
70	83, 702	96.38	152	72,362	83.32	70	83, 830	96.07	40 and over..			152	53,688	61.54	40 an	5,110	5.86
71	54,357	62.59	157	53, 431	61.53	71	54,609	62.55				157	39,998	45.5			
72	31,370	36.12	162	39,797	45. 82	72	31,523	36.10				162	29, 141	33.40			
73.	15, 198	17.50	167	29,063	33.47	73	15,234	17.50				167	19,032	21.84			
74.	6,391	7.36	172	18,034	21.83	74	6,411	7.34				172	12,692	14.25			
75	2,620	3.02	177	12,629	14.54	75	2,620	3.00				177	8,310	9.53			
76	1,071	1.23	182	8,385	9.66	'0.	1,080	1.24				182	5,566	6.38			
7.	360	. 41	187	5,467	6.30	77	361	. 41				187	3, 853	4.42			
78.	259	. 30	192	3,907	4.50	78	256	. 29				192	2,967	3.40			
89.	296	. 34	197	2,966	3.42		298	. 34				197	5,432	6.23			
\$0			202	4, 688	5.40	* and over.						202					
Total.	868, 445	1,000.00		868, 443	1,000. 00		873, 159	1,000.00		873, 159	1,000.00		872,419	1,000.00		872,419	1,000.00

Table 52.-Height and weight classes-Mean weight and the stardard deviution for each height; also mean height and the standard deviation for cach weight; derived from summation of sections (Table I); first million Drafi Recruits.

11 eight.	Number of men measired.	Меаи weight.	Standard deviation.	Weight.	Number of men measured.	Mean height.	Standard deviation.
Inches.		Pounds.	Pounds.	Pounds.		Inches.	Inches.
60.	3, 124	135.98	18.95 20.30		2. 184	62.38	
61.	7,477	124. 80	19.29	107	7,435	64.02	2. 34
62.	15, 644	125. 24	17.66	112	21,388	64. 51	2.20
63.	30, 935	127. 49	16. 46	117.	41, 503	65. 16	2.17
61.	52, 547	130.21	15.41	122.	63,567	65.79	2.20
65.	81, 90-4	133.11	14.87	127.	84, 726	66.34	2. 23
66.	109, 964	136. 24	14. 72	132.	100, 084	66.86	2.26
67.	127, 844	139.46	15. 18	137.	106, 8.89	67.33	2.28
68.	129,987	142.82	16. 13	142	100, 607	67.80	2.33
69.	140,508	146.25	17.63	147.	88,057	68.17	2.35
70.	83, 702	149.49	19.28	152	72,362	68.56	2.41
71.	54, 357	153. 26	21.55	157.	53, 431	68.88	2. 46
72.	31, 370	156.61	23.84	162.	39,797	69.15	2. 50
73.	15, 198	160. 40	26. 52	167..........	29, 063	69.32	2.62
74.	6,391	163.90	29.14	172..........	18,954	69.57	2. 83
75	2, 620	166. 85	31.66	177.	12,629	69.66	2.68
76.	1,071	167.30	32.48	182.	8,385	69.76	2.76
77.	360	166. 05	33.41	187.	5,467	69.70	2. 73
\% 5	259	161. 89	31.08	192.	3,907	69.65	2.82
79 and over	296	158.05	30.58	197.	2,966	69. 38	3.20
				232 and over	4,688	70. 16	2.78
Total.	868, 445				868, 445		

Mean height: 67.49 inches; standard deviation, 2.71 inches.
Mean weight: 141.54 pounds; standard deviation, 17.42 pounds.
Table 53.-Height and chest circumference (expiration) classes-Mean chest circumference (expiration) and the standard deviation for each height; also the standard deviation for cach chest circumference; derived from summation of sections (Table II); first million Draft Recruits.

1 eight .	$\begin{aligned} & \text { Number } \\ & \text { of men } \\ & \text { mcasured. } \end{aligned}$	Mcan chest.	Standard deviation.	('hest.	$\begin{gathered} \text { Number } \\ \text { of men } \\ \text { measured. } \end{gathered}$	$\begin{aligned} & \text { Mean } \\ & \text { height. } \end{aligned}$	staindard deviation.
59 Inches.		Inches.	Inches.	${ }_{29}$ Inchrs.		Inches.	Inches.
60	${ }_{2}{ }^{3}, 921$	32.49	2.01	30	49,090	66.29	2.54
61.	7, 572	32.28	1.93	31.	103, 294	66.71	2.56
62.	15, 848	32.33	1.91	32.	159, 379	67.12	2.60
63.	31, 207	32.46	1.93	33.	175, 858	67.51	2.63
64.	52,923	32.59	1.95	34.	152, 663	67.85	2.60
65.	82, 426	32.77	1,96		- 103, 414	68.11	2.70
66.	110, 816	32.92	1.98	36.	59, 015	68.36	2.73
67.	128, 291	33.10	1.96	37.	28,175	68.47	2.76
68.	130, 624	33. 29	1.96	38.	13,151	68. 51	2. 75
69.	111, 123	33. 49	1.96	39 and ove	11, 027	68.59	2.76
70.	83, 880	33.68	1.95				
71.	54, 609	33.86	1.95				
72.	31, 523	34.06	1.96				
73.	15, 284	34.28	1.93				
74.	6, 411	34.46	1.94				
75.	2,620	34. 65	1.96				
76.	1,080	34. 57	1.98				
77.	361	34. 60	2.00				
79,.....	256 298	$\begin{aligned} & 34.48 \\ & 34.30 \end{aligned}$	1.98				
Totai.	\$73, 591				873,591		

Height: Mean, 67.49 inches; standard deviation, 2.72 inches.
Chest circumference (expiration): Mcan, 33.22 inches; standard deviation, 2.01 inches.
WEIGHT DISTRIBUTION BY HEIGHT (P_{1})
1000
muneas
180

WEIGHT DISTRIBUTION BY HEIGHT (P_{1})

 ve denotes average for u. S .
plate xif.

\section*{| $\left(P_{1}\right)$ |
| :---: |
| |
| muonas |
| 200 |
| 200 |
| 160 |
| 120 |
| 20 |
| 40 |
| 29 |
 CHEST (EXP). DISTRIBUTION BY HEIGHT
 }

fine line curve denotes average for u.s.
plate Nili.

Table 54. Weight and chest circumference (expiration) classes.- Mean chest circumference (expirution) and the standard deviation for each weight; also the mean weight and the standard deviation for each chest circumference; derived from summation of sections (Table III); first million draft recruits. ${ }^{19}$

Weight: Mean, 141.59 pounds; standard deviation, 17.49 pounds.
Chest circumference (expiration): Mean, 33.23 inches; standard deviation, 2.03 inches.

V. BUILD.

It is clear that the absolute weight and chest circumference are relatively unimportant in giving an idea of the build of man, unless we know something about his stature. It is customary, therefore, to consider not only these absolute measurements, but also these measurements in relation to stature. Weight considered in relation to stature gives us an index of build. A formula which will combine in proper fashion the weight, stature, and chest circumference will give us an index of robustness. The latter will be considered in another section.

1. IMPORTANCE OF THE INDEX OF BUILD.

Important as stature and weight are for military and medico-military purposes, they are hardly as important as the index of build, which tells us something about the physical constitution of a man, and, by implication and as a result of experience, also something about his ability to withstand the stress of warfare. The relativeness of weight to height has been long recognized in the Army, where the tables indicate the limitations of weight for men of respective height. Such is shown in Table 138. In fact, it is not too much to say that the principal reason for taking weight in connection with height is to secure a numerical statement of the build as a first means of deciding upon the acceptance or rejection of the recruit for military service.

2. METHOD OF DETERMINING.

The best method of expressing the index of build is not easily determined. The simplest method and that used by Army, Life Insurance examiners, etc., is that of dividing the weight by the stature, recognizing that in tall (large) persons the absolute increment per inch is greater than in short (small) persons. This method would be without objection if the body of men were cylinders of equal diameter but of varying height. In such a case the index would be constant, since the differences in weight would correspond to the differences in stature. It is clear, however, that the form of the body departs somewhat from this assumption.

If the body were a cube or sphere then body weight would vary as the cube of any one of the diameters, and the index of build would be most properly given by dividing the weight by the cube of any one of the diameters; but the body does not fulfill these conditions. Finally, it has been pointed out that inasmuch as the form of the body lies between the two hypothetical conditions just mentioned a more suitable index of build would be obtained by dividing the weight by the second power of the stature. Such a method was indeed discussed by Gould ${ }^{a}$ and it was shown by him to meet very satisfactorily the requirements of the index of build.

To decide between the foregoing methods of measuring the index of build, comparative tables have been made, Tables 55 and 56 , giving the result of applying the three formulæ. That series must be regarded as the most satisfactory which gives a fairly constant quotient when applied to figures from different parts of the general correlation table of stature and weight on page 417. By comparing columns 3, 4, and 5, which give respectively the index obtained by the three methods described, it is to be noted that column 4 (weight in pounds $\times 1,000 \div$ by the square of the height) is the most constant, but that the index falls somewhat from the short stature of 61 inches to the tall stature of 74 inches. There is indeed some reason to believe that the weight of short men does not diminish pro rata with the stature and, therefore, this decrease in the size of the index obtained in column 4 agrees with the apparent facts. Column 3 tells a different story from column 4. It shows how sections of the body an inch thick weigh absolutely more in tall men than in short ones. The ratio of column 5 is of the same order as that of column 4 , but shows a still more marked decrease in build, passing from 61 to 74 inches. The matter of choice between these three methods has been fully discussed elsewhere. Here may be given only the conclusion that in accordance with the findings of Gould and, before him, Quetelet, the ratio of weight divided by the second power of the height seems to be the most satisfactory index of build, and is one which we shall largely use in this section.

[^10]Table 55.-Index of build calculated by three methods (based on Table 1, first million draft recruits.
modal weight.

Height.	Modal weight.	Weight in pounds $(\times 10)$ Height in inches.	Weight $(\times$ $1,000)$. Height (sq.).	Weight $(X$ $100,000)$. Height (cubed).
Inches.	Pounds.			
61 62	117 117	19. 18	31.44 30.44	51.55 49.09
63	122	19.37	30. 74	48. 79
64	127	19.84	31.01	48, 45
65	127	19.54	30.06	46.24
66	132	20.00	30.30	45. 91
67	137	20.45	30.52	45. 55
68	137	20.15	29. 63	43. 57
69	142	20.58	29.83	43.23
70	147	21.00	30.00	42. 81
71	152	21.41	30.15	42.47
72	152	21.11	29.32	40.72
73	157	21.51	29. 46	40.36
74	157	21.22	28.67	33. 74

Table 56.-Index of build calculated by three methods (based on Tabte 1, first million draft recruits).
AVERAGE WEIGHT.

3. INDEX OF BUILD FOR MEAN STATURE AND WEIGHT.

If we divide the mean weight $(\times 1,000)$ of the whole population by the square of the mean height, we shall obtain by probably the most accurate method an average index of build of the whole population. The following brief table gives the average index of build thus obtained:

> Recruits, World War. 39 Men at demobilization, $1919 . ~$
4. THE INDEX OF BUILD OF CIVIL AND WORLD WAR VETERANS FOR EACH INCH OF STATURE.

Table 57 gives the index of build of veterans of the World War and Civil War. It appears that while men 70 inches tall or less were more robust in 1919, those from 71 to 75 inches were less robust in 1919 than in 1865. This is largely because the later figures contain many Southerners of slender build, who were absent from the earlier Civil War series. In the figures for the

World War veterans, the Negro troops are included. However, as the number of them was small they probably affect the average but slightly.

Table 57.-Indrx of build of Civil Har reteransa (white troops) and Horld Har irtoransb (white and Nrgro troops).

Stature ciasses.	Clvil War.		World War.	
	Weight.	$\frac{\text { Weight }(\times 1,000)}{\text { Height }(\text { sq. })}$	Weight.	$\frac{\text { Weight }(\times 1,000)}{\text { Helght }(\mathrm{sq}-)}$
	Pounds. 111.79	31.05	Pounds. 123.00	34. 17
61.	117.60	31. 60	125.66	33.77
62.	120.77	31.42	127.10	33.06
63.	122.95	30. 98	129.78	32. 69
64.	128,43 132.12	31.25 31.27	131.84 135.20	32.19 32.00
66.	136.08	31.24	139. 26	${ }_{31.97}$
67.	140.77	31.36	142.71	31.79
6.	144.92	31.34	145. 52	31.47
69.	149.04	31.30	149.39	31.38
70.	153.19	31.26	153.30	31. 29
71.	153. 21	31.38	156.91	31. 13
72.	162.48	31.34	159.84	30.83
73.	166. 39	31.22	164. 03	30.78
74.	168.99	30.86	163.54	29.87
75.	170. 39	30.29	168,00	29.87

${ }^{a}$ Calculated from Gould, p. 408, Table IX.
o Calculated from Table No. LXXiv.
5. DISTRIBUTION OF INDEX OF BUILD, BY STATES.

Table 58 gives the distribution of the index of build at mobilization by States. In this table there are four columns. The first two give the index of build (mean weight divided by the square of the mean stature of recruits) and the last two columns give for the successive States another index of build obtained by dividing the mean weight by the first power of the mean stature. By squaring the stature, differences in stature are exaggerated and consequently the range of the first two columns seems more significant and the order of the States is, therefore, more important in this case. Of all States and Territories, Alaska stands first in robustness of its drafted men. This is followed by North Dakota, South Dakota, Montana, Minnesota, Wisconsin, Nevada, and Oregon. The men of the Northwest are tall men, but they are relatively so heavy that there is in those States a high index of build. In other words, they are large men. However, in the case of Wisconsin the high index of build is partly due to the relatively short stature (although above the average) of its drafted men. Examining now the bottom of the table, we find that, using the second power of stature as the divisor, the drafted men from Tennessee and Kentucky lie at the very bottom of the list. Men from these States have practically the same mean weight, but the men from Tennessee are taller. Accordingly, their index of build is much less than that of men from Kentucky. Indeed, they are the least robust of those of any State. The low rank of these States is due especially to mountain sections, although the men of Tennessee seem to be of the tall, slender type throughout the State. Next in order comes Colorado with an index of build of 30.37 . The men from this State are not only tall but they are below the average in weight, a condition which is probably associated with the immigration of tuberculous patients to that State.

By any method of calculating build, the Southern States tend to lie toward the bottom of the list. Thus in column 1, Arkansas, Texas, Georgia, North Carolina, Florida, Virginia, Alabama, Louisiana, South Carolina, and Mississippi occupy relatively low positions. This low position is due both to the great stature of the men of these States and also to their relatively low mean weight. On account of the prevalence of malaria in these Southern States, as well as hookworm in many of them, it seems probable that the low index of build is due in part to the combination of these parasitic diseases. In addition, the low position of New Mexico is doubtless to be ascribed to the large amount of tuberculosis in the population. The low index of build of the men of Oklahoma is due to their great stature combined with only an average weight.

In the second list of States in Table 58, calculated by using as divisor the first power of the weight, the same general statement made above concerning the build of men from various parts of the country holds, though the order of the States is somewhat shifted.

Table 58.-Index of build at mobilization, by States, 1917-1918.

State.	$\frac{\text { Weight } \times 1,000 .}{(\text { Height }(\text { sq. })}$	State.	$\begin{aligned} & \text { Weight. } \\ & \hline \text { Height. } \end{aligned}$
United States.	31.07	United States.	2.097
Alaska.	32.41	Alaska	2. 208
North Dakota.	31.85	North Dakota.	2. 163
South Dakota.	31. 73	South Dakota.	2.159
Montana.	31.64	Montana.	2.151
Wisconsin.	31.63 31.62	Oregon....	2. 150
Nevada.	31. 59	Nevada.	2. 150 2.143
Oregon.	31.57	Washington.	2.140
Washington.	31.48	Wiseonsin.	2.137
W yoming.	31.47	1daho.	2. 133
California.	31.44	W yoming.	2. 130
Connecticut	31.42	Nebraska	2. 126
Michigan.	31.41	Iowa.	2. 126
Pennsylvania	31.38	California	2.127
New York.	31.31	Michigan.	2.110
Idaho.	31.33	Utah..	2. 109
New Hampshire.	31.29	Kansas.	2. 107
Iowa..	31.26	llinois.	2. 103
Nebraska.	31.22	Mississippi	2. 100
1llinois.	31.21	Maine.	2.100
Maryland	31.20	Arizona	2.099
Vermont.	31.16	Ohio.	2.098
Maine.	31.15	New Hampshire	2.095
Ohio.	31.14	Connecticut.	2.095
New Jersey	31.14	Pennsylvania	2.094
Utah.......	31.09	Vermont.	2.091
Massachusetts.	31.05	New York	2.091
Rhode 1sland.	30.95	Indiana.	2.090
Kansas...	30.90	Maryland	2.090
Delaware.	30.89	West Virginia.	2. 085
Indiana.	30.86	Oklahoma.	2.084
Arizona.	30.81	Missouri.	2.081
West Virginia..	30.73	Texas.	2. 079
District of Columbia	30.72	New Jersey	2.079
Mississippi.	30.72	Alabama..	2. 077
South Carolina.	30.70	Distriet of Columbia	2.077
Missouri.	30.63	South Carolina.	2.077
Louisiana.	30.55	North Carolina.	2.076
Alabama.	30.55	Delaware.	2.075
Virginia..	30.53	Arkansas.	2.071
Oklahoma.	30. 53	Georgia.	2.071
Florida..	30.51	Virginia.	2.070
North Carolina.	30.47	Massachusetts.	2. 070
Georgia..	30. 46	Colorado.	2.069
Texas...	30. 40	Louisiana.	2.065
New Mexico.	30.39	Florida.	2. 061
Arkansas.	30.37	Rhode Island	2. 060
Colorado.	30.37	Kcntueky.	20.8
Kentucky.	30.26	Tennessee.	2. 052
Teunessee.	30.06	New Mexico	2.051

Table: 59.-Index of build at demobilization, by States, 1919.

State.	$\frac{\text { Welght } \times 1,000}{\text { Stature (sq.). }}$	State.	Weight. Stature.
Alaska	33. 60	Alaska.	2,333
North Dakota.	32.67	South Dakota.	2.225
South Dakota.	32. 54	North Dakota.	2.220
Minnesota. .	32.44	Mlnnesota.	2.216
Nevada.	32.42	Idaho.	2.212
Idaho.	32. 40	Montana.	2,211
Montana	32.34	Nebraska.	2.210
Nebraska	32.29	Nevada.	2.201
Iowa.	32.19	Iowa..	2. 198
Wisconslt	32.18	Kansas.	2.194
Utah..	32.10	Utah......	2.189
Kansas..	32.06	Wisconsin.	2. 181
Michigan.	32.01	Wyoming.	2.178
Wyoming.	31.95	Arizona...	2.171
Louisiana.	31.79	Washingtor.	2.170
Jllinols.	31.77	Oklahoma.	2.169
Arizona.	31.77	Oregon..	2. 169
Colorado.	31.75	Colorado.	2. 163
Washington.	31.73	Louisiana.	2.158
Pennsylvania	31.73	Michigan..	2.155
Oregon.	31.72	Mississippl.	2. 150
Ohio.	31.72	West Virginia.	2.150
Oklahoma	31.70	Illinois..	2.150
Malne. R .	31.69 31.66	Texas.	2.148
Rhode Islan	31.66 31.61	Virginia. Arkausas	2. 147
Virminla.	31.61 31.58	Arkainsas ...i..	2.146
Virginla.	31.58 31.56	North Carolina.	2.143
Missouri.	31.53	Ohio.	2.141
West Virginia.	31.52	California.	2.140
California.	31.52	Indiana.	2.138
Delaware.	31. 44	Maine.	2. 128
North Carolina	31.41	Pennsylvania	2. 126
Maryland.	31.40	Vermont.	2. 123
Arkansas.	31.37	New Mexico	2.123
New York.	31.36	Tennessec.	2.121
Massachusetts.	31.35	South Carolina.	2.121
Connectlcut	31. 34	Kentucky.	2.121
Mississippl.	31. 34	Delaware.	2.114
Texas.....	31.31	Alabama.	2.112
New Jersey	31.31	Maryland.	2.110
New Mexico	31.30	Rhode Island.	2.107
Kentucky.	31.13	Connecticut.	2. 103
South Carolina	31.04	Georgia.	2.101
Tennessee.	30.92	New York.	2.098
District of Columbla	30.81	New Jersey	2.096
Alabama...	30.79	Massachusetts.	2.093
New llampshire.	30.69	District of Columbla	2.083
Georgia.	30.66	Florida.	2.074
Florida.	30.40	New Ilampshire.	2.000

Table 60.-Increase in index of build at demobilization, 1919, over mobitization, 1917-18.

State.	$\frac{\text { Weight } \times 1,000}{\text { Height }(\mathrm{sq} .)}$	Per cent of increase or decrease.	State.	$\begin{aligned} & \text { Weight. } \\ & \hline \text { Height. } \end{aligned}$	Per cent of increase or decrease.
United States.	0.51	1.6	United States..	0. 043	
Colorado.	1.38	4.3	Alaska	. 125	5.7
Louisiana.	1.24	3.9	Colorado.	. 094	4.5
Alaska.	1.19	3.5	Louisiana.	. 093	4.5
Kansas.....	1.17 1.16	3.7	Oansas....	.087	4.1
Idaho..	1. 07	3.3	Nebraska.	. 084	3.9
Nebraska	1.07	3.3	Utah.	. 080	3.7
Virginia.	1.05	3.3	Idaho.	. 079	3.7
Utah..	1.01	3.2	Virginia.	. 077	3.7
Arkansas.	1.00	3.2	Arkansas.	. 075	-3.6
Arizona.	. 96	3.0	New Mexico	. 072	3.5
North Carolina.	. 94	3.0	lowa....	. 072	3.4
Iows.	. 93	2.9	Arizona.	. 072	3.4
Texas.	. 91	2.9	Tenuessee.	. 069	3.3
New Mexico	. 91	2.9	Texas.	. 069	3.3
Missouri.	. 90	2.9	North Carolina.	. 067	3.2
Kentucky.	. 87	2.8	Minnesota.	. 066	3.1
Tennessee.	. 86	2.8	South Dakota.	. 066	3.1
Nevada.	. 83	2.6	West Virginia.	. 065	3.1
North Dakota.	. 82	2.5	Kentucky....	. 063	3.1
South Dakota.	. 81	2.5	Missouri.	. 062	2.9
Minnesota.	. 81	2.5	Montana	. 060	2.8
West Virginia	. 79	2.6	Nevada.	. 058	2.7
Rhode Island	. 71	2.2	North Dakota.	. 057	2.6
Montana.	. 70	2.2	Mississippi.	. 050	2.3
Indiana.	. 70	2.2	Indiana....	. 048	2.2
Mississippi	. 62	2.0	Wyoming.	. 048	2.2
Michigan..	. 60	1.9	Rhode Island	. 047	2.2
Ohio....	. 58	1.8	Illinois.	. 047	2.2
Illinois.	. 56	1.8	Michigan.	. 045	2.1
Wisconsin.	. 56	1.7	Wiseonsin.	. 044	2.1
Delaware	. 55	1.7	South Carolina.	. 044	2.1
Maine..	. 54	1.7	Ohio...	. 043	2.0
Wyoming	. 48	1.5	Delaware.	. 039	1.8
Vermont.	. 45	1.4	Alabama.	. 035	1.6
Pennsylvania.	. 35	1.1	Pennsylvania.	. 032	1.5
South Carolina.	. 34	1.1	Vermont..	. 032	1.5
Massachusetts.	. 30	. 9	Washington.	. 030	1.0
Washington..	. 25	.8	Georgia.....	. 030	1.0
Alabama...	. 24	. 8	Maine.	. 028	1.3
Georgia.	. 20	. 7	Massachusetts.	. 023	1.1
Maryland.	. 20	- 6	Maryland.	. 020	1.0
New Jersey	.17	.5	Oregon.....	. 019	. 9
Oregon....	. 15	. 5	New Jersey	. 017	. 8
District of Columbia	. 09	. 3	California	. 013	. 6
California.........	. 08	. 3	Florida.	. 013	. 6
New York.	-. 02	. 6	Connecticut.	. 008	- 4
Connecticut Florida	-.08 -.11	-. 3	New York D - ${ }^{\text {district of }}$.007 .006	. 3
New Hampshire	-. 60	-1.9	New Hampshire.	-.045	-2.1

6. COMPARISON OF INDEX OF BUILD IN RECRUITS OF 1917-1918 AND IN VETERANS OF 1919 AND 1864-1865.

Table 59 gives the index of build at demobilization by States. Here, as in Table 58, Alaska and the Dakotas stand at the top. But the other States following them differ a good deal from the mobilization series. Kentucky and Tennessee no longer stand at the bottom, but Florida and Georgia do, though even these States show an increase in robustness.

Table 60 shows the percentage of increase of the index of build of demobilization over mobilization. For the United States as a whole the increase in the index of build amounted to 0.51 , or about 1.6 per cent. In the table the State that stands at the top is Colorado, with an increase of 1.38 , or 4.3 per cent. Since Colorado men were among the least robust of the recruits, there was the greatest room for improvement. It was suggested that their average lack of robustness on entering the Army was due to the presence of a large
number of persons of tuberculous strains. If so, Army life and exercise in the open air produced a vast improvement in robustness. The increase may have been due to a general improvement or to the selective weeding out of men who were accepted for the Army and subsequently discharged for disability on account of tuberculosis. The second State from the top is Louisiana, in which the recruits also stand relatively low in index of build, 30.55. They had, therefore, a great opportunity for improvement in this respect. Men from Louisiana show the greatest increase in weight of all of the United States proper, while the increase in stature was only medium. This high position of Louisiana in order of increase in index of build is thus due to the increase in average weight of men at demobilization, which is probably due to improved sanitary conditions, whether on the part of white or colored.

The next state in order is Alaska, which showed the greatest increase in weight and also the greatest increase in height. The number of men involved, however, is small. Next follow the States of Oklahoma, Kansas, Idaho, and Nebraska. The Southern States in which the increase in index of build is over 0.75 are Virginia, 1.05; Arkansas, 1; North Carolina, 0.94; Texas, 0.91 ; Kentucky, 0.87; Tennessee, 0.86; West Virginia, 0.79. In a number of Southern States, however, the increase in index of build of the troops was very slight, as in South Carolina, 0.34; Alabama, 0.24; Georgia, 0.20; Florida, - 0.11 .

Among the States that lie at the bottom of the list are New Hampshire, with a decrease of 0.60 in the index of build. This agrees with what we have found in respect to the marked decrease in weight and stature in men from this State, a result that probably is due to selection and to the small numbers considered, It is noteworthy that men from Florida on the average showed a decrease in the index of build. The numbers are not large, only 140 men, and these may have been in some way selected, such as being exclusively white or colored troops or from an organization drawn from some particular part of the State.

Next comes Connecticut, which shows practically no change in robustness between mobilization and demobilization, namely -0.08 . In this case the numbers are fairly large and the fact suggests that men from this State who are of less than average stature and already above the average in robustness on mobilization had little opportunity to change in this respect. The same remarks may throw light on the low position of New York and the District of Columbia. The lower half of the table includes many of the manufacturing States of the East, such as New Jersey, Maryland, Massachusetts, and Pennsylvania. Rhode Island, which gave a median position in the index of robustness of recruits, retains that position at demobilization.

It will be of interest to compare the index of build by groups of States of veterans of 1865 and 1919. Tables 61 and 62 give the means for such a comparison. By either method of calculating the index of build it appears that the build of veterans is greater in the eastern sections in 1919 than it was in 1865 , but less in some western sections.

Table 61.-Comparison of index of build of men at demobilization in 1865 and 1919 (ueight divided by first power of height).

Table 62.-Comparison of index of build of men at demobilization in 186.5 and 1919 (ueight multiplied by 1,000 , divided by square of height).

7. INDEX OF BUILD BY SECTIONS.

Table 63 gives the index of build of the 156 sections into which the country has been divided, arranged in order of size, the highest index being at the top of the list. This index is obtained by dividing the mean weight $\times 1,000$ of the men in each section by the square of their mean stature. The range is from 32.41 for men from Alaska to 29.88 for men from the hill country of Arkansas, inhabited chiefly by native whites. Considering the table in more detail, we find that of the United States proper, Michigan 1, with a large Scandinavian and Finnish populaton (only 12 per cent native whites) stands at
the top with an index of 32.15 . The position, at the head, of men of Alaska and of a Finnish and Scandinavian section, indicates that people living in the north or derived from northern countries tend to have excessive weight in relation to their height. Thus among the European peoples the Scandinavians are characterized in Table 2 S , by a weight of 66 kilos, the greatest weight given in the table.

Returning to Table 63, we find next in order California 1. , This comprises the agricultural area of centrnl California, whose population is about half whites of mative parentage and about 5 per cent Indian, Chinese, and Japanese. The well-known robustness of form of the Orientals may have influenced the result.

Next in order come North Dakota 3, including a large proportion of agricultural Russians and Scandinavians, and Minnesota 3, chiefly Scandinavians and Finns. These are followed by Arizona 1, in which Indians are the prevailing element of the population. It is well known that Indians have an exceptionally robust form; their average body weight being greater than that of any other peoples, according to Martin's table ${ }^{3}$ (p.238), which gives (from Gould ${ }^{2}$) the average weight of the Iroquois Indian as 73.8 kilos.

Next in order come South Dakota 3 (Indian) and 2 (characterized again by agricultural Russians, Scandinavians, and Germans). Next are North Dakota 1 with 24 per cent Scandinavians in its population and California 2 , a mining area of the middle Sierras, with a population consisting of men selected for their robustness and their ability to withstand rigors of life among the gold diggers. The following sections comprise parts of the States of Minnesota, Wisconsin, North Dakota, South Dakota, Montana, and Oregon, all sections characterized by a high proportion of Scandinavians. This part of the table includes also San Francisco with its 5 per cent of orientals, and Buffalo, N. Y., and vicinity, where have settled many of the lumber and lake men and their descendants. This table brings out vividly the striking robustness of the population of our Northwest.

The sections at the bottom of the table present a great contrast not only in index of build but in geographical and racial elements. At the bottom lies Arkansas 2 , a rural hill country with 97 per cent native whites of native parentage. Next comes the mountain region of Tennessee; then, following closely, is the agricultural region of the same State. Next comes a mountainous area of North Carolina. Next comes Illinois 6, including the Negro colony that occupies the territory at the junction of the Ohio and Mississippi Rivers. This population is very tall but decidedly underweight, possibly due to the malaria of the river bottoms. Next come the mountain whites of Kentucky, then the Key West section of Florida, with its mixture of Spanish and West Indian blood, next the mountain whites of Virginia, and next New Mexico 3, a desert region containing many tuberculous whites of native stock and about 14 per cent Mexicans. Next in order come the mountain region of South Carolinn, the mountain region of Alabama, and the hill country of Arkansas with 94 per cent native white population. The other sections lying in the lower part of the table are of Missouri, Mississippi, North Carolina, Florida, Georgia, Texas, Kentucky, and Virginia, all of which occupy a low position in the table of the States. Of interest is the low index of robustness of Colorado 6 (30.46). This is the region south of Denver and no doubt contains a considerable tuberculous population.

Other points of interest will be revealed by a comparison of sections from different parts of the table. For example, New York 2, including the most densely populated part of the Western Hemisphere, falls in the upper half of the table with an index of build of 31.36 . This high position is in part determined by the small height and stockiness of the population, which comprises a large proportion of south Italians, Greeks, and Polish Jews. Illinois 5, Chicago, with an index of 31.30 , lies somewhat below New York, because of the high proportion of men of tall stature, descendants of the pioneers of the West. Pennsylvania 1 (Philadelphia) lies at about the middle of the table, with an index of 31.01 . This is due to the lower mean weight of the population of Philadelphia as compared with New York, though the average stature is slightly greater. Again, Massachusetts 4, including Boston, is intermediate between New York and Philadelphia, with a rate of 31.15 . Colorado 5, comprising Denver, the section with perhaps the largest number of rejects for tuberculosis, lies near the middle of the list, with an index of 31.01 . The cities of Minneapolis and St. Paul (Minnesota 4) have an index of robustness of 31.34 , almost exactly equal that of New York City. The average stature is much greater, but the average weight has increased in proportion.

Table 63.-Index of build of recruits, by sections, 1917-1918 (Weight $\times 1,0000)$.

State.	Section.	1ndex.	State.	Section.	Index.	State.	Sec tion.	Index.
Alaska.		32.41	New York	3	31.29	Ohio.	3	30.78
Michigan	1	32.15	Do.	4	31.38	West Virginia	2	30.76
North Dak	,	32. 01	Wisconsin	1	31.26	Arizona.	2	30.76
Minnesota	3	31.99	Ohio..	4	31.23	New Mexi	1	30.75
South Dakota	3	31.94	Nebraska	1	31.20	Indiana.	3	30. 73
Do.	2	31.91	New York	8	31.18	Louisian	2	30.72
North Dak	1	31.91	Pennsylvania	6	31.15	Florida.	4	30.69
California.	2	31.83	New Jersey.	3	31.15	Texas.	4	30.68
Minnesota	2	31.79	Massachuse	4	31.15	Colorado	4	30.67
Wisconsin	4	31.78	Vermont.	All.	31.15	North Carolina.	6	30.66
California	5	31.77	New Jersey	1	31.15	South Carolina.	3	30.64
New York	6	31.76	Ohio......	2	31.14	Tennessee.	1	30.64
North Dakota	2	31.75	Illinois.	8	31.14	Missouri.	2	30.64
Penusylvania.	5	31.74	New Hampshir	2	31.13	Colorado	3	30.63
South Dakota.	1	31.68	Indiana.	2	31.13	Arkansas.	1	30.62
Montana.	1	31.67	Maryland	3	31.11	Louisiana	1	30.62
Minnesota	1	31.65	New Jersey	2	31.11	Georgia.	2	30.59
Oregon.	1	31.63	New York	7	31.11	Florida.	2	30. 58
Michigan.	4	31.63	Kansas.	1	31.07	Colorado.	1	30.58
Pennsylvania	3	31.63	Utah.	2	31.06	Oklahoma	2	30. 58
Do......	4	31.59	Maine.	3	31.06	Missouri	1	30.56
Montana	2	31.59	Michigan	2	31.05	Texas.	1	30.51
Nevada.	All.	31.59	Virginia.	1	31.05	Alabama	1	30.48
California.	1	31.55	Mississippi	1	31.04	Oklahoma	1	30.48
Washingto	2	31.53	Alabama.	4	31.04	Alabama	5	30.48
Wisconsin	2	31.51	California	3	31.03	Colorado	6	30.46
Ohio...	1	31.49	Pennsylvania	1	31.01	West Virginia	1	30.45
Illinois.	1	31. 49	Utah...	1	31.01	Louisiana.	3	30.40
Wyoming	All.	31.47	California	4	31.01	North Carolina	3	30. 40
Washingto	1	31.46	Colorado.		31.01	New Mexico.	2	30.39
Indiana.	1	31.44	Massachuse	2	31.01	Virginia.	,	30. 34
Utah.	3	31.43	Do.	1	31.00	Georgia.	1	30.33
Connect	1	31.42	Michigan.	5	30.99	Kentucky	2	30.33
Iowa..		31.42	Massachus	3	30.99	Texas.	2	30.33
Connectic	2	31.42	Iowa.	2	30.99	Georgia.	1	30. 32
Oregon.	2	31.41	Arizona.	1	30.97	Florida.	1	30. 30
Washington	3	31.41	South Carolina.	2	30.97	North Carolina	2	30.28
Pennsylvani	2	31.40	Rhode 1sland.	All.	30.95	Mississippi.	2	30.28
Do.	7	31.39	North Carolina	4	30.94	Missouri.	3	30.25
New Yor	1	$31.3{ }^{4}$	Maine.	2	30.94	Arkansas.	3	30.25
Maine.		31.37	Delaware.	All.	30.89	Alabama	3	30.21
New York.	2	31.36	New Yor	5	30.89	South Carolina		30.20
Minnnesota.	4	31.34	Kansas.	2	30.88	New Mexico.	3	30.16
Wisconsin.	3	31.33	Alabama	2	30.88	Virginia.	,	30.16
ldaho.	All.	31.33	Colorado.	2	30.87	Florida.	3	30.16
New Hamp	1	31.32	Texas.	5	30.87	Kentucky		30.07
Maryland.	1	31.31	lllinois.	3	30.86	1llinois..	6	29.98
Nebraska.	2	31.31	Maryland	2	30.85	North Carolina	1	29.94
Illinois.	4	31.31	Illinois..	7	30. 84	Tennessce.	2	29.91
Michigan	5	31.31	North Carolina.	5	30. 83	Do.	3	29.90
Illinois.	5	31.30 31.29	Missouri.	4 3 4	30.83 30.81	Arkansas	2	29. 88

8. INDEX OF BUILD IBY GROUPS OF SECTIONS.

Table 64 gives the index of build for the groups of sections arranged in diminishing order of the index, the largest at the top of the table. From this table it appears that the sections containing 10 per cent or more Finns include the most robust population of the United States. It must be remembered, however, that these sections contain a large proportion of Scandinavians and that they are among the northernmost sections of the United States. The index for this group is only slightly less than that of the Alaskan section. Next come two groups of sections containing a large proportion of Germans and Scandinavians. This is followed by the group containing sections with 10 per cent or more of agricultural Russians (31.59). Then follow two groups characterized by 20 per cent and 15 per cent, respectively, Germans and Austrians. Next comes the sparsely settled group containing a considerable sprinkling of Orientals, who are known to be robust. This is followed by the eastern manufacturing and the commuter groups containing a large proportion of short, stocky people.

At the bottom of the list stand the mountain whites, with an index of 30.07 . Just above is the group of native white of Scotch origin. Then come the southern agricultural groups, including $\&$ large proportion of native white population. The sections including a large proportion of Negroes stand decidedly above this group. The sparsely settled section containing Indians, that containing Mexicans, and the desert group lie in the lower half of the list, the index of build being depressed, no doubt, by the resort to these regions of the southwest by many tuberculous persons.

Table 64.-Index of build by groups of sections, 1917-18 (Weight $\times 1,000)$.

Groups.	Index of build.	Groups.	Index of build.
Finns, 10 per cent.	32.06	Mountain.	31.17
Scandiuavians, 10 per cent	31.64	French Canadians.	31.02
Germans and Scandinavians, 10 per cent plus...	31.61	Maritime.	30.98
Russians, 10 per cent plus.........................	31.59	A grieultural, native white, North.	30.92
Germans and Austrians, 20 per cent plus........	31.53	Desert.........	30.85
Germans and Austrians, 15 per cent plus........	31.45	Agricultural, Negro.	30.78
Sparsely settled.......	31.32	Mexican, sparsely settled	30.59
Eostern manufacturing area	31. 29	Indian, sparsely settled.	30.58
Agricultural, mixed foreign and wh	31.23	Native white, Scoteh origin.	30.42 30.33
Mining.............................	31.23	Mountain whites..	30.07

9. The mean index of build of eight european races of men at demoBILIZATION.

Table 65 gives the index of build of representatives of eight European races as recorded at demobilization. According to this table, the Poles were the most robust people, 32.73. Following them in turn are the Italians, Germans, French, Hebrews, English, Scotch, and Irish. This series indicates that the Mediterranean peoples are more robust than the Nordics. In fact, this difference of build constitutes a striking racial feature.

Table 6テ̈. -Index of build of eight European races $\left(\frac{\text { Weight } \times 1,000}{\text { Height }(8 q .)}\right)$.

	Race.	Index of build.		Race.	Index of build.
English.		31.59	French.		32. $2 \times$
Srotch..		31.41	Italian..		32.63
Irish..		31.41	Polish.		32.73
German.		32.31	Hebrew.		31.93

10. THE MEAN INDEX OF BUILD OF COLOR RACES.

Finally the index of build has been calculated for white, Negro-mulatto, Chinese, Japanese, and Indian. In order we have:

Table 66.-Index of build of color races $\left(\frac{\text { Weight } \times 1,000}{\text { Height }(s q .)}\right)$.

Race.	Index of build.	Race.	Index of build.
Indian.	32.93	Japanese.	32.100
Chinese.	32. 82	White....	31.56

Here, again, a striking likeness appears between the Indian and Chinese. The Japanese resemble, in build, more the whites than the Chinese.

11. EXPLANATION OF PLATES XIV-XIX.

An attempt is made in Plate XIV to show the interrelation of stature, weight, and chest circumference (expiration) in the general population of the first million draft recruits. In the left figure the stature is taken as the controlling factor, the range being from 79 down to 59 inches. The mean stature, 67.49 inches, for the first million draft recruits is shown by the upper heavy horizontal line. Passing downward, the second horizontal line shows the quotient of the average weight in pounds divided by the average stature in inches, which is 2.097 pounds. The corresponding quotient for each class of statures is shown by the vertical divided bars. It is apparent that for the statures from 75 down to 62 inches, the corresponding average weights diminish with the statures closely. However, for the statures 79 to 76 inches, there is a very marked diminution in the proportional weight, for the men with such tall statures are unduly slender. On the other hand, for statures of 61 to 59 inches there is a marked increase in the proportional weight, which is more marked as the stature diminishes. This increase is probably due at least in part to the fact that the local boards sent to the camps only men of such short stature as were unusually robust.
In the third of the horizontal lines, there is shown the quotient of the average chest circumference (expiration) by the average stature in inches. For each stature the corresponding proportional average chest circumference (expiration) is shown by the vertical heavy bars. It is apparent at once that the proportional average chest circumference (expiration) increases as the stature decreases. This increase is due at least in part to the fact that the range of the stature measurements is from 79 to 59 inches, or a total of 21 inches, whereas that of the chest circumference (expiration) is from only 39 to 29 inches, or a total of 11 inches; thus the range of the chest measurements is about 50 per cent of that of the stature measurements, and consequently the quotient of the chest circumference (expiration) divided by the stature increases as the stature decreases. The small chested short men were rejected. The proportional increase of the chest circumference (expiration) to the height is also due in part to the racial increase of robustness of the men of short stature.

In figure 2 which is drawn up in similar manner as figure 1 , the weight is taken as the controlling factor with the quotient of the weight divided by the height, and the weight divided by the chest circumference (expiration) shown in the second and third sections below. One sees in a general way the decrease in both parallels the decrease in the weight, but that the quotient of the weight divided by the chest circumference (expiration) follows the downward trend of the weight more closely than does the quotient of the weight divided by the height.

In figure 3 the chest circumference (expiration) is taken as the controlling factor with the quotient of the chest circumference (expiration) divided by the stature, and the weight divided by the chest circumference (expiration) shown in the second and third sections below. It is seen here again that the decrease in both sets of proportional figures parallels fairly closely the downward trend of the chest circumference (expiration), but that the quotient of the weight divided by the chest circumference (expiration) more closely approximates it than that of the chest circumference divided by the stature. In other words, as shown elsewhere, the weight and chest circumference (expiration) are more closely correlated measurements than are the stature and chest circumference (expiration) or stature and weight.

Plate XV is drawn up in a similar manner to Plate XIV, figure 1. There is shown here the interrelation of stature, weight, and chest circumference (expiration) for the men included in the first million draft recruits, distributed by the various States from which they were drafted. It is seen at once that from a number of the States the stature is above the average, but that for many of them the proportional weight and chest circumference (expiration) are below the average. Thus the men from Texas have the greatest average stature, but their proportional weight and chest circumference (expiration) is considerably below the average of the recruits in general. On the other hand, the men from Idaho, South Dakota, Minnesota, and North Dakota not only have great stature, but have also high proportional weight and chest circumference (expiration). The highest proportional weight is found in the men from North Dakota, the lowest proportional chest circumference (expiration) in the men from the District of Columbia, and the highest proportional chest circumference (expiration) in men from Connecticut. The high proportional chest circumference (expiration) in the men from Connecticut, who were much below the average in stature, is due to the fact, as shown in connection with Plate XIV, figure 1, page 177, that the proportion of chest circumference (expiration) to stature increases, as the stature decreases. The lowest average stature is found in men from Rhode Island, next in the men from Connecticut, and then in those from Pennsylvania and New York.

In Plate XVI, as in Plate XIV, figure 2, the weight is taken as the controlling factor. One sees at once that the highest average weights are found in some of the States of the Northwest-South Dakota, North Dakota, Minnesota, Oregon, Montana, and Washington. These States have also high proportional weights to the stature and proportional weights to the chest circumference (expiration). At the extreme left stand Rhode Island and Massachusetts with their large percentage of southern European immigrants. Not
only is the average for these two States below the average, but the proportional weight to the height, and the weight to the chest circumference (expiration) are also below the average.

In Plate XVII, as in Plate XIV, figure 3, the chest circumference (expiration) is taken as the controlling factor. Here, as in Plate XIII, it is some of the States of the Northwest that stand at the extreme right-namely, North Dakota, Nevada, Idaho, Minnesota, Wisconsin, and South Dakota. These States also have higher proportional chest circumference (expiration) to stature, and weight to chest circumference (expiration). The high average of stature, weight, and chest circuinference (expiration) of the men from the States of the north central and northwest sections as well as the variations in these measurements found in the men from the other States is, as has been shown elsewhere, the result of racial factors more than of environmental ones.

In Plate XVIII there is shown the interrelation of stature, weight, and chest circumference (expiration) associated with the occupational, physiographic, and population groups of sections. This plate is drawn up in a similar manner to Plate XIV. For figure 1, where the stature is taken as the controlling factor, certain interesting facts are apparent. It is seen at a glance that certain of the "groups" have a stature above the average for the first million draft recruits. However, the proportional weight and chest circumference (expiration) for these "groups" with great statures varies above and below the average. Thus it is seen that the "group" of the mountain whites of the Appalachian Mountains has the greatest stature of all, but that it has a low proportional weight and chest circumference (expiration). The same is also true, though not so markedly so, for the "group" of agricultural native whites of the South. On the contrary, it is apparent that for the German and Scandinavian "groups," while the stature is above the average, their proportional weight and chest circumference (expiration) are likewise so. The "group" composed of the native whites of Scotch origin has a stature greater than the average, with a low proportional weight and a very low proportional chest circumference (expiration). The "group" of Finns, for which people the stature is below the average, has the greatest proportional chest and weight. The lowest average stature is found among the commuters, eastern manufacfacturing, and French-Canadian "groups." The first two named have average proportional weights, with proportional chest above the average. For the French-Canadians the proportional chest circumference (expiration) is also above the average, but the proportional weight is below it. This high proportional chest circumference (expiration) for these latter three "groups" is due at least in part to the fact that the proportion of the chest circumference (expiration) to the stature increases as the stature decreases (see Plate XIV, fig. 1, p. 177).

In figure 2 the weight is taken as the controlling factor, with the quotient of the weight divided by the stature and the weight divided by the chest circumference (expiration) shown in the second and third sections below. The points that were apparent in figure 1 are, further strengthened by the evidence here. Thus the German-Scandinavian, Scandinavian, and Finn "groups" have the greatest mean weight and have also the highest proportional weight

TOTAL AND PROPORTIONATE MEASUREMENTS BY STATES (P)

height with relative weight and chest (EXP.)

PLATE XV.

TOTAL AND PROPORTIONATE MEASUREMENTS BY STATES (\mathbf{P})

Weight with relative height and chest (exp.)

TOTAL AND PROPORTIONATE MEASUREMENTS BY STATES (P)
Chest (exp.) with relative height and weight

TOTAL AND PROPORTIONATE MEASUREMENTS, GROUPS OF SECTIONS (P)

\% 01 тviavivs mรตระย
แกพทต แมมระร
 wwo wacoss 'su Lumatym 17ABM wrumnom 1mLixy
 3evelav pixvi olumn - \% st "รราขอรา "भบา wทiom 4yssed
ตyวxex
$\%$ ol 'myissmy
 Lima zve : vos "รuyv IVLMnow
 อราม178 A15sw
havmewvos อ1 owy

TOTAL AND PROPORTIONATE MEASUREMENTS BY EACH SECTION (P)

TOTAL AND PROPORTIONATE MEASUREMENTS BY EACH SECTION (R), (CONTD.) height with relative weight and chest (exp.)

DISTRIBUTION, HEIGHT, WEIGHT \& CHEST MEAS. States of nativity

LINES OF EQUAL INDEX OF CHEST CIR.

MEAN WT. \div MEAN HT. = LBS.

MEAN WT. \div MEAN CH. (EXP) $=$ LBS.

6
MEAN CH. $(E X P)+$ MEAN HT. $=I N$.

LINES OF EQUAL HEIGHT (IN)

plate NA.
divided by the height and the weight divided by the chest circumference (expiration). French-Canadian groups stand at the extreme left of the figure with low absolute and proportional measurements.

In figure 3 the chest circumference (expiration) is taken as the controlling factor. Here again the three "groups" that stood first for mean weight again stand first, but with the order somewhat reversed, it being here Finns, GermanScandinavians, and Scandinavians. In the second and third sections below, which show the quotient of the chest circumference (expiration) divided by the height and the weight divided by the chest circumference (expiration), the superiority of the physique of the Finns is again apparent. At the extreme left stands the "groups" composed of native whites of Scotch origin. They not only have the lowest mean chest circumference (expiration), but also the lowest proportional chest circumference (expiration) to height. The fact that the proportional chest circumference (expiration) to weight reaches the average line is to be accounted for by the exceptionally small divisor, the mean chest circumference (expiration). A further study of Plate XVIII will reveal many interesting facts showing the interrelation of stature, weight, and chest circumference (expiration) associated with the 22 groups of recruits.

Plate XIX, figures 1 and 2, is drawn up in a similar manner to Plate XIV, figure 1. There is shown here the interrelation of stature, weight, and chest circumference (expiration) for the 156 sections into which the United States has been divided for this study, and for that of "Defects Found in Drafted Men." It is seen at once that the statures for recruits from many of the sections are above the average of the statures obtained for the first million draft recruits. At the extreme left of figure 1, with the highest average stature, there are found certain sections of the South where there is a very high percentage of nativeborn whites of native origin, many of whom are of Scotch descent. The highest average is found in North Carolina, section 1, and this is followed quite closely by Arkansas 2, Missouri 3, Texas 2, 5, and 3. It is seen from this plate that the relative weight and chest circumference (expiration) varies above and below the average. Thus for the first four of the sections named the relative weight and chest circumference (expiration) are markedly below the average, and the men are tall, slender, and small-chested. The greatest proportional weight is found in Minnesota 1, and North Dakota 3. North Dakota 3, moreover, has the greatest proportional chest circumference (expiration). At the extreme right of the list are found the States whose average stature has been materially reduced by immigration from southern Europe. Reading from the right toward the left, we find Rhode Island (all), New York 2, Pennsylvania 3, Pennsylvania 1, New York 1, Pennsylvania 5, Pennsylvania 7, and Massachusetts 2. The majority of these sections show a proportional weight, either average or slightly above the average, but all of them have a proportional chest circumference (expiration) above the average. Thus again it is made clear, as in Plate XIV, figure 1, that the proportional chest circumference (expiration) to the stature increases as the stature decreases.

VI. PIGNET'S INDEX OF ROBUSTNESS.

This index of the constitution or robustness of individuals depends upon certain relation of stature, weight, and chest circumference (Pignet, ${ }^{20}$). The index is calculated according to the following formula: Stature in centimeters (chest circumference in centimeters + weight in kilograms). Pignet offers the following table of standards, by which one can interpret the results obtained by this formula :

$$
\begin{aligned}
& \text { Class. } \\
& \text { A.-Under 10: A very powerful constitution. } \\
& \text { B. }-11-20: \text { Good constitution. } \\
& \text { C. }-21-25: \text { Mediocre constitution. } \\
& \text { D. } 26-30: \text { Weak constitution. } \\
& \text { E.-31-35: Very weak constitution. } \\
& \text { F.-Over 36: Bad constitution. }
\end{aligned}
$$

It will be of interest to see how the selection of medical examiners at demobilization boards was influenced by the constitution or index of robustness as determined by the Pignet formula. ${ }^{a}$

In an appreciative account of Pignet's formula, Butza ${ }^{21}$ calls it "the criterion of constitution."

It will be observed that Pignet employs the chest "perimeter." It is clear that the chest girth at rest is used: consequently our chest girths of recruits taken at expiration are too small. To use them in Pignet's formula, it is necessary to add certain constants, and those adopted are as follows:

> Chest girth under 32 inches, add 0.50 inch.
> Chest girth 32-34.9 inches (inclusive), add 0.75 inch.
> Chest girth 35-37.9 inches (inclusive), add 1 inch.
> Chest girth 38 and over, add 1.5 inches.

In Table 67 there is considered in classes of stature separated by 2 or 3 inches, the weight in pounds with the number of men measured, circumference of the chest with the number of men measured. In the following columns the stature, chest circumference, and weight are transformed into the metric equivalent. In the last column is given the index of robustness. Under each unit of stature the population is divided into classes containing, respectively, the 5 per cent lightest, the following 10 per cent of greater weight, then the 20 per cent of still greater weight, the 30 per cent of mediocre weight, followed by the 20 per cent of still higher weight, followed by the upper 15 per cent divided into the two classes that include 10 per cent and 5 per cent of the very heaviest men.

Taking first the class of men 59 inches tall, we find that the classes established vary in average weight from 47.4 to 85.6 kilograms, and the corresponding chest circumference increases from 74.9 to 101.3 centimeters. For the 5 per cent shortest men of the smallest weight and chest circumference the index of

[^11]robustness is 27.5 , which belongs to the category of weak men of Pignet's classification. In the next higher 10 per cent the index of robustness is 20.31, which belongs to Pignet's median group. The next higher 20 per cent give an index of 13.2 , which also belongs to Pignet's good group. The middle 30 per cent, with an index of 3.1 , belong to Pignet's class of very good constitution, and the heavier men with larger chest belong to extremely superior members of this category. It appears, then, that camp examiners accepted very few inen of the stature of 59 inches who fell into a category below the medium, and indeed all but about 15 per cent belong to the category of good or very good men. This is, of course, to have been expected, as the Army regulations required the elimination of all men under 60 inches. Indeed, we should probably expect no men under 60 inches who did not belong to the category of the exceptionally robust.

Of the men 62 inches (157 centimeters) tall, we find that nearly 5 per cent fall into the category of very weak constitution and an additional 30 per cent into the category of the weak or median. The middle 30 per cent fall into the category of good, whereas the remainder are of strong or very strong constitution.

In the group of men 65 inches in stature (165 centimeters), we find that the average of the lower 15 per cent belong to Pignet's bad category, the next 20 per cent to the weak, and the median 30 per cent to the category of the good. As we pass now to the taller statures, the proportion of men of bad constitution increases until the group of men with a stature of 77 inches, 35 per cent were of bad constitution and only about 35 per cent were better than of median constitution.

Naturally Pignet's index is purely an empirical one and the results have to be interpreted with caution. The formula and the standards established by Pignet do, however, point out the very practical matter, that stature should be considered with weight and chest circumference, and that a satisfactory rating of robustness can be determined only by considering the three together.

In connection with the matter of robustness and military efficiency the statement made by Gould seems important. It is generally held by line officers that men below 60 inches in height are not capable of standing the severe service required in the Army, especially in carrying weight on the back. He says concerning our experiences in the Civil War, "The testimony is overwhelming that very tall men do not bear the fatigues of a campaign so well as persons of ordinary stature; that they are less capable of performing long marches and are more frequently on the sick list at other times." On the whole, the Army ideals of selecting men of medium stature for Army service is justified. In connection with the draft of 1917, efforts were made on more than one occasion to raise the minimum stature to 63 inches. This was due to failure to recognize that there was in this country a great number of short men belonging to the Mediterranean races and to the group of Polish Jews in whom the mean stature is only slightly above 63 inches. Experience in the Italian army indicated that even short men, if they are not too far removed from the standard of their race, are capable of performing excellent military service. In case it ever again becomes necessary to institute a selective draft in this country it should not be forgotten that this country has a great popu-
lation of short men and that it includes many thousands for whom a stature of 60 inches is not a greater departure from the average than a stature of 65 inches is in men of the Nordic races.

Table 67.-Comparison of Pignet's index for men of various heights with average chest and weight for certain per cents of the men of each height.

Per-centage of height.	$\begin{gathered} \text { Height, } \\ \text { int } \\ \text { inches. } \end{gathered}$	$\underset{\substack{\text { Mean } \\ \text { weight, } \\ \text { in }}}{ }$ pounds.	Number		Correction, in inches.	Mean chest (expira- tion), in inches (cor- rected to "rest").	Number of men.	Height, in centimeters.	Weight, in kilos.	Chest measurement, in centi-(corrected to "rest").	Pignct's
5	59	104. 50	194	29.00	0.50	29. 50	128	149.86	47.40	74.93	27.53
10	59	114. 82	460	30.00	. 50	30.50	241	149.86	52.08	77.47	20.31
20	59	124.85	585	31.00	. 50	31.50	365	149.86	56.67	80.01	13.18
30	59	137.38	931	32.48	. 75	33.23	1,208	149.86	62.32	S4. 40	3.14
20	59	151.26	60.5	34.41	. 75	35. 16	811	149.86	68.63	89.31	-8.08
10	59	166.30	272	36.31	1.00	37.31	248	149.86	75.44	94.77	-20.35
5	59	188, 62	77	38.38	1.50	39.88	84	149.86	85.55	101.30	-36.99
5	62	105.40	1,362	29.00	. 50	29.50	850	157. 48	47.81	74. 93	34.74
10	62	112.00	2,081	30.00	. 50	30.50	1,822	157.48	50.80	77.47	29.21
20	62	117.00	2,557	31.00	. 50	31.50	2,884	157.48	53.07	80.01	24.40
30	62	124.33	4, 774	32.44	. 75	33. 19	6,313	157.48	56.39	84.30	16.79
20	62	134.01	2,805	34.73	. 75	35. 48	3,046	157.48	60.79	90.12	6.57
10	62	145. 54	1,455	36.00	75	36.75	541	157.48	66.00	93.35	-1.87
5	62	166.68	610	37.61	1.00	38.61	392	157.48	75.62	98. 07	-16.21
5	65	105.92	1,438	29.00	. 50	29.50	2,759	165.10	48.03	74.93	42.14
10	65	115.34	11, 770	30.00	. 50	30.50	6,757	165. 10	52. 30	77.47	35.33
20	65	124.36	23,055	31.00	. 50	31.50	12,514	165.10	56.43	80.01	28.66
30	65	135. 20	22, 710	32.97	. 75	33.72	33, 275	16.5. 10	61.33	85.65	18.12
20	65	145. 72	16,741	34.00	. 75	34.75	12,347	165.10	66.09	88.27	10.74
10	65	161.92	5,067	35. 00	75	35. 75	7,618	165. 10	73. 43	90.81	86
5	65	184.76	1,123	36.75	1.00	37.75	7,156	165.10	83.81	95.89	-14.60
	67	110.50	2,523	29.00	. 50	29. 50	2,583	170.18	50.13	74.93	45. 12
10	67	120.25	15,679	30.00	. 50	30.50	7,5<9	170.18	54.55	77.47	38. 16
20	67	129.76	33, 194	31.21	. 50	${ }^{31.71}$	41,234	170.18	58.83	80.54	30.81
30	67 67	${ }_{149}^{1396}$	35, 483	${ }^{33.00}$. 75	33.75		170.18	63.23	85. 73	21.22
10	67	149.09 160.64	13, 27.973	34.00	. 75	${ }_{35.75}^{34.75}$	22,018	170.18 170.18	67.63 72.86	${ }_{90}^{88} 81$	14.28
5	67	182.87	4,924	36.66	1.00	37.66	14,294	170.18	82.96	${ }_{95.66}$	-8.44
	69	115.14	2,032	29.77	. 50	30.27	5,585	175. 26	52.20	76.89	46.17
10	69	125. 40	11,470	31.00	. 50	31.50	10,779	175. 26	56.88	80.01	38.37
20	69	134.77	26,043	32.00	. 50	32.50	18,997	175.26	61.15	\$2. 55	31.56
30	69	144.42	29,999	33.00	. 75	33.75	23,133	175. 26	65. 50	85.73	24.03
20	69	154.09	21,468	34.00	. 75	34.75	21,393	175.26	69. 89	88.27	17. 10
10	69	165.64	14,051	35.37	. 75	36.12	23,622	175.26	75.12	91.74	8.40
	69	185.68	5,445	37.68	1.00	38.68	7,614	175. 26	84.24	98.25	- 7.23
5	71	124.06	2,289	29.79	. 50	30.29	1,712	180.34	56.30	76.94	47.10
10	71	132.00	3,016	31.00	. 50	31.50	3, 791	180.34	59. 87	80. 01	4.4.46
20 30	71	139.87 151.86	11,368 20,945	32.00 33.52	. 75	32.50 34.27	7,731 $\mathbf{2 2 , 3 5 1}$	180.34 180.34	63.46 60	82.55 87.05	34.33 24
${ }_{20}$	71	164.87	-	${ }_{35 .} 00$. 75	${ }_{35.75}$	22, ${ }^{2} 642$	180.34	74.48	90.81	15.05
10	71	175.67	5,470	36.33	1.00	37.33	7,960	150.34	79.66	94.82	5.86
5	71	194. 15	2,295	38. 42	1. 50	39.92	2,317	180.34	88.09	101.40	-9.15
	73	128. 11	510	29.65	. 50	30.15	980	185.42	58, 15	76.58	50.69
10	73	140. 20	1,852	32. 00	. 50	32.50	1,652	185. 42	63.59	82.55	39.28
20	73	149.73	3,516	33.00	-. 75	33. 75	2,798	185. 42	67.87	85.73	31.82
30	73	159.43	3,755	34. 00	. 75	34.75	3,203	185.42	72.30	88.27	24.85
20	7_{73}	170.99	3,711	35.40	. 75	36.15	4,758	185.42	77.52	${ }_{96}^{91.52}$	16.08 4.70
10 5	73 73	185.57 200.30	1,237	37.00 38	1.00	38.00 39.98	995 898	185.42 185.42	84.20 97.79	96.52 101.55	4.70 -13.92
10	75	145. 13	259	32. 00	. 50	${ }_{32.50}^{31.07}$	${ }_{223}^{124}$	190.50	$\begin{aligned} & 58.21 \\ & 65.86 \end{aligned}$	78.92 8255	33.37 42.09
20	75	154. 87	550	33.58	. 75	34.33	907	190. 50	70.26	87.20	33.04
30	75	166.86	911	35.00	. 75	35. 75	516	190. 50	75.71	90.81	23.98
20	75	179.24	406	36.00	. 75	36.75	409	190, 50	81.33	93. 35	15. 82
10	75	190.76	271	37. 00	1.00	3. 00	271	190.50	86. 55	96. 52	7.43
5	75	202.00	127	38. 42	1.50	39.92	127	190. 50	91.63	101. 40	- 2.53
	77	119.06	17		. 50	31.10		195. 58		78.99	62.56
10	77	138. 28	39	32.00	. 50	32. 50	29	195. 58	62.74	82.55	50.29
20	77	151.80	76	33.00	. 75	33. 75	61	195. 58	68.85	85, 73	40.99
30	77	167.88	102	34. 48	. 75	35. 23	132	195. 58	76.12	89.48	29.98
20	77	181.09	75	36. 00	. 75	36.75	61 32	193.58	${ }_{88}^{82.15}$	${ }_{96,52}^{93,}$	20.08 10.74
10 5	777	194.69	${ }_{25}^{26}$	37. 61	1.00	38.00 40.11	32 26	195.58	${ }_{91.63}$	101. 88	207
			25		1.50		20	193. 58	91.63		

D. SPECIAL ANTHROPOLOGICAL MEASUREMENTS.

1. SITTING HEIGHT.

(a) General discussion.-This is the vertical distance from the surface of the bench on which the subject sits to the vertex of his head. It measures the length of trunk, neck, and head, as this length might be measured on a horse. This measurement is readily taken by the same method as standing height, only the zero point is not the floor but the bench level.

This dimension is important because the trunk alone constitutes the most important part of it, so much so that it is sometimes (erroneously) spoken of as the trunk length. From a medical point of view it gives, combined with chest circumference, a better index to trunk robustness than stature and chest. For the purposes of measuring for uniforms it is next in importance to chest circumference in designing blouse pattern of different sizes.

The proportion of sitting height to total stature varies with sex. It is greater in adult females than males, due (in part) to the slightly longer trunk of the former. It diminishes greatly with the changing age from about 66 per cent of stature at birth to 51 per cent at maturity (15 years). It varies with race, being about 51 per cent to 53.1 per cent of total stature in adult Europeans. 49 in Masai of South Africa, 53 in Chinese and North American Indians, up to 55 in Aino. As for Europeans the proportion of sitting height to stature is given for male Ukrainian Jews as 51.4; French, 52; Belgians, 52.2; English, 52.4; and Scandinavians, 53.
(b) Mean sitting height.-The mean sitting height of 96,239 white troops is 90.39 centimeters. (See Table LXXXIII). Since the mean stature of white troops is 171.99 centimeters, the relative mean sitting height is 52.55 per cent of stature. This is about the average of adult Europeans. The distribution of frequency of mean sitting height is given in Table LXXXIII, from which it appears that the range in sitting height is between 70 and 107 centimeters, and the mode lies in class $90-91$ centimeters.

Thus it appears that sitting height is roughly equal to or slightly in excess of half of the total stature on the average, but this is not true by any means for all individuals. Thus in Table LXXXIII there are five individuals with a sitting height of, say, 76 centimeters and 182 centimeters total stature. For these individuals the relative sitting height is 41.76; that is, in such individuals the sitting height was about two-fifths of the whole stature. In the same table are two individuals of, say, 98 centimeters sitting height and 148 total stature. For such individuals the relative sitting height is 66.51 , or two-thirds of the total stature. Such persons have clearly very short legs and might properly be placed in the category of achondroplastic dwarfs, since their legs were only two-thirds of the normal proportional stature. Caution should be observed in making use of such extreme data, for these measurements were possibly inaccurately made or recorded.
(c) Standard deviation.-The standard deviation of sitting height as given in Table LXXXIII is 3.51 centimeters. 'This is over 5 per cent grenter than half of the standard deviation of total stature, although the average of sitting height is only $2 \frac{1}{2}$ per cent greater than half of the average stature. This indicates that sitting height is a more variable dimension than total stature, and this is partly because the length of the neck and height of the head are both highly variable elements of total stature and they are both included in sitting height. They constitute less important fractions of total height than they do of sitting height.
(d) Comparison of eight European races.-The distribution of absolute and proportional frequencies in different classes of sitting height is given for eight European races in Table 69. Table 68 summarizes their constants.

Table 68.-Absolute and relative sitting heights and standard detintions with coefficient of variations in eight European races, demobilization, 1919.
[Sitting helght in centlmeters.]

	Race.	$\begin{gathered} \text { Number } \\ \text { meas- } \\ \text { mred. } \end{gathered}$	Sitting height.	Relative sitting height.		Coefth clent of Varia- tion.
Scotch.			Centi- meters. 90.75	Per cent.	Centimeters. 3.47	Per cent.
English		4,199	90.63	52.67	3.45	3.8
Irish..		6,137	90.46	52.79	3. 31	3.7
German		7,051	90.36	52.52	3.54	3.9
French.		1,455	89.47	53.07	3.24	3.6
Pollish.		2,404	89. 42	52.78	${ }_{3}^{3.37}$	3.8
Hebrew		1,684 3,506	88.06 87.76	52.76 53.13	3.32 3.33	3.8 3.8
Itainan.		3,:100	87.76	53.13	3.33	3.8

From these comparisons it appears that the Scotch have the tallest sitting height and the Italians the shortest absolute sitting height, but this is because the Scotch and Italians are, respectively, tall and short races. The Germans are the most variable in their sitting height and have the highest coefficient of variation. The French are the least variable although they are by no means the shortest of the races.

The Italians have the greatest relative sitting height, which means that they have the shortest legs, while the Germans have the shortest relative sitting height, which means they have relatively the longest legs. In general, the difference between the relative sitting height and 100 gives the measure of the relative length of legs.

From the foregoing tables it appears that the Nordic races have relatively shorter sitting height, which means relatively longer legs. Since they have as a whole a relatively shorter span than the other peoples, Nordics would seem to have increased length of leg and diminished length of arm; in so far they depart further than any other race from the condition of the anthropoid apes which have short legs and long arms.

$$
38636^{\circ}-\because 1-13
$$

Table 69．－Comparative frequency distribution of sitting height in each of eight European races，demobilization， 1919.
SECTION A：ABSOLUTE NUMBERS．

Race．	Total．	Sitting height，in centimeters．																			
		70－71	72－73	74－75	76－77	78－79	s0－81	82－83	84－85	86－87	88－89	90－91	92－93	94－95	96－97	98－99	100－101	102－103	104－105	106－107	105－109
English ．	4，199		，	1			22	59	190	412	801	1，046	867	500	206	65	20	5			
Irish．．．	2，074 6,137	${ }_{4}^{1}$	${ }_{2}^{3}$	${ }_{2}^{1}$	1	${ }_{1}^{2}$	10 29	20 74	78 260	206 663	371 1,267	1，522	451 1,258	267 662	96 260	${ }_{84}^{35}$	7 9	1 2	1	2	
German．	7，051	1	6	5	4	6	48	107	365	795	1,415	1， 735	1， 336	761	323	125	15	1	，	．．．．．．	2
French．	1，455	1		1		4	2	27	104	236	， 377	${ }^{341}$	213	106	29	10	4				
Italian．	3， 506	1	3	2	4	13	60	228	539	778	876	577	278	106	31	6	4				
Polish．．	2，404	1	1	2		1	20	67	172	390	562	578	364	165	59	18	4				
Hebrew	1，684		1		2		22	96	219	381	435	288	152	57	21	5					
Number measured Not measured．．	28， 510	11	20	14	11	－ 31	213	678	1，927	3， 861	6，104	6，646	4，918	2，624	1，025	348	63	9	3	2	2
Total．	2x， 670																				

SECTION B：PROPORTIONAL RATIOS PER 1,000 ．

		 ージデージデーデージ	\％	
	8		$\stackrel{5}{6}$	\vdots
	$\begin{aligned} & \frac{6}{6} \\ & 0 \end{aligned}$	促	$\stackrel{5}{\square}$	\vdots
	$\begin{gathered} 0 \\ \frac{1}{9} \end{gathered}$		\＃	！
		으주ํํ․	लें	
	$\begin{aligned} & \overline{0} \\ & \frac{1}{8} \end{aligned}$		A	
	$\begin{aligned} & 8 \\ & \stackrel{8}{6} \\ & \hline \end{aligned}$		疗	
	$\begin{aligned} & \text { 合 } \\ & \text { B } \end{aligned}$	 		
	\％	 		
	$\begin{aligned} & \text { 第 } \\ & \text { ָ } \end{aligned}$	 	$\begin{aligned} & \mathrm{S} \\ & \text { N } \end{aligned}$	
	$\begin{aligned} & \bar{\circ} \\ & \frac{1}{3} \end{aligned}$	$=\$ 8 \text { 우우ㅇㅝㅗ }$ 	च	
	$\begin{aligned} & \frac{8}{8} \\ & \frac{1}{\infty} \end{aligned}$		枵	
	告	 	少京	
	$\frac{1}{\infty}$	 		
	\％ \％ \％		$\begin{array}{\|l\|} \hline \infty \\ \text { n } \\ \text { \& } \\ \hline \end{array}$	
	著		年	
	$\stackrel{8}{0}$	 	｜8	
	E	㤩：	解	，
	等		9	
	N	Sip	앙	
	E	xisoㅗ웅	हो	\vdots
$\begin{aligned} & \text { ij } \\ & \stackrel{0}{0} \\ & \text { kn } \end{aligned}$		 		荗
$\underset{\dddot{\sim}}{\stackrel{\text { ® }}{4}}$				\vdots \vdots \vdots \vdots ¢ ¢ ¢

(e) Comparison of color races.-The mean sitting height of Negro troops is 87.35 centimeters, which is 3.04 centimeters less than the mean sitting height of white troops, and this despite the fact that the mean stature of the corresponding troops, as shown in Tables LXXXIII and LXXXVII, is the same to tenths of a millimeter. This tells us that the Negro troops had shorter trunk, head and neck and longer legs than white troops of the same size. The standard deviation of sitting height is 3.48 for Negro troops, as contrasted with 3.51 for whites, indicating that, just as the average is less, so the variability is smaller. The coefficient of variability of the Negro troops is 39.8 per cent, while that of the white troops is 38.8 per cent. Thus the Negro troops show themselves in respect to sitting height to be slightly more variable than the white troops.
The table below, based on Tables 103, 104, and 107, gives the absolute and relative sitting heights for the five color races.

Table 70.-Absolute and relative sitting height in five color races, demobilization, 1919.
[Sitting height in centimeters.]

	Race.	Number measured.	Mean sitting helght.	Relative sitting height.
White.		96, 239	90.39	52. 56
Negro.		6, 433	87.35	50.79
Indian.		105	90.10	52.53
Chinese.		22	89.05	52.04
Japanese		32	87.85	51.41

Indians and the Oriental races are intermediate in sitting height between the white and the Negro, and the Indian approaches very close to the white in relative sitting height.
2. SPAN.
(a) General discussion.-It is a popular assertion that one's span is equal to one's stature. This is seen to be nearly true, on the average, for the Irish and Scotch. But it does not hold for the individual. Thus among the white troops (Table LXXXIV) we find a span of 152 centimeters associated with a stature of 177 centiemters, giving a relative span of 0.86 . Also, there is a span of 192 centimeters associated with a stature of 168 , or 1.14 . The most extreme ratios in Table LXXXIV are 79 and 131, respectively; the latter ratio approaches that of the gorilla. There is the possibility that some of these remote extremes are due to errors in measurement; so too much stress must not be laid on them.
(b) Mean span.-The mean span for 96,596 white troops at demobilization (1919) is 175.58 centimeters. This is to be compared with the mean stature of the corresponding white troops of 171.99 centimeters (Table LXXXIV). The span is 3.59 centimeters greater than the stature and the relative span is 102.1.
(c) The comparison of eight European races.-The absolute mean span and relative spans for the different European races is given in Table 71, based on Table 72.

Table 71.-Absolute and relative span with the standard deriation in eight European races. demobilization, 1919.
[Span in centimeters.]

From these comparisons it appears that the Germans of our data have the greatest and the Italians the least absolute span; that the Germans are most variable in this respect and the Hebrews least; that the Polish have the greatest relative span and the Irish the least. Except for the Hebrews, the inhabitants of the British Isles have the shortest relative span. While the central Europeans have the shortest relative span of our recruits, it is in general lower than that given by Martin for the corresponding European races, possibly because the stature of each separate race is greater in the United States than in Europe, due to a selective immigration of tall persons.

(d) Comparison of the color races.-The mean span of the Negro troops is 180.76. This is to be compared with the mean stature of the corresponding Negro troops of 171.97 (Table LXXXIX). It exceeds that of the white troops by 5.18 centimeters, or about 2 inches. Thus the span is 8.79 centimeters greater than the stature of the Negro troops; or the relative span is 105.2, a striking increase from the white race of 102.1 . This great relative span has been noticed by all observers.

Also the span is decidedly more variable in the colored (8.59) than in the white troops (7.95), and this difference is greater than would be expected, merely from the absolute difference in average span, for the coefficient of variation is 4.75 in Negroes and 4.53 in whites. Since in infants the relative span is about 92 per cent of height, it appears that in the Negro the development of the span has progressed farther beyond the infantile condition than in the whites.

Table 73.-Mean absolute and relative spans in the fire color races, demobilization, 1919.
[Span in centimeters.]

	Race.	Number measured.	Mean span.	Relative span.
White.		96,596	175. 58	102.1
Negro.		6,441	180.76	105.2
Chinese.		23	176.41	103.1
Japanese		32	177.25	103.7
Indian..		106	176. 86	103.1

The two Oriental races and the Indians are intermediate between the whites and Negro.

3. HEIGHT OF STERNAL NOTCH.

(a) General discussion.-The sternal notch, which marks the upper end of the sternum, marks also essentially the upper limit of the trunk. It corresponds closely to the level of cross section No. 22 of trunk in Eycleshymer and Shoemaker's "Cross-section Anatomy." ${ }^{22}$ The principal viscera that rise above this level are the apices of the lungs and certain large blood vessels. Taken in connection with height of pubis it is useful in measuring the length of the trunk, a measure which is essential for estimating the volume of the trunk, which in turn is a matter of medico-military importance.

The method of measuring the height of the sternal notch is either direct with an anthropometer, or by the use of a plumb bob and cord falling from the end of a pencil or tongue depressor held horizontal at level of the notch. The anthropometer is read direct, the plumb line by reference to the vertical scale on the wall.

The sitting height of the sternal notch is a useful measure because it gives length of trunk direct and is easily made by the anthropometer, of which one end is placed on the bench on which the subject is sitting and the movable arm is brought to the level of the sternal notch. This latter measure ranges in the male and in relation to total height from 30 per cent among the Cochin Chinese through 33 per cent in the French to 35 per cent in certain Negro tribes.
(b) Mean height of sternal notch.-The mean height of sternal notch for white troops as shown in Table LXXXV is 141.18 centimeters, which is 82.09 per cent of the mean height (171.99); that is to say, the height of the man from the floor to the sternal notch constitutes over four-fifths of the total stature. Neck and head constitute something less than one-fifth. The relation between sternal notch and total stature, however, is far from constant. Thus in Table LXXXV there are 16 cases of men with a height of, say, 182 centimeters and sternal notch of 138 . In these cases the sternal notch height was 75.8 per cent of the total stature. In 27 cases men 166 centimeters tall had a height of sternal notch of 148 centimeters, or 89.2 per cent of the total stature. ${ }^{a}$
(c) Comparison of eight European races.-The absolute and proportional distributions of sternal notch in eight European races are given in Table 75. A summary table is given in Table 74.

Table 74.-Absolute and relative height of sternal notch in eight European races, demobilization, 1919.

From this table it appears that the Irish have relatively the highest stermal notch, whereas, on the other hand, the French have relatively the lowest sternal notch and proportionately the longest head and neck. The English have the greatest variability in respect to the height of the sternal notch, just as they have in many other physical characters. They are greater in degree of variability than the Irish, Scotch, and German. Italians show the least variability, followed by the Polish, Hebrew, and Frencl. Thus the distributions of the relative height of sternal notch and of variability are somewhat irregular in the races of Europe, one outstanding feature being the high sternal notch with the short head and neck among the Irish.

[^12]Table 75.-Comparative frequency distribution of height of sternal notch in each of eight European races, demobilization. SECTION A: ABSOLUTE NUMBERS.

(d) Comparison of color races.-For the Negro troops (Table LXXXIX) the mean height of sternal notch is 142.39 centimeters, which is 82.8 per cent of the total stature. The relative height of the sternal notch is therefore greater in Negroes than in whites, indicating that they have a shorter neck and head, but not as short as the Irish.
A comparison of the height of sternal notch in various color races is given in Table 107. The results of this comparison with the measurements of white and Negro troops are given in the following table:

[^13]| - | Rame. | Number measured. | Mean measure. | Relatlve sternal notel. |
| :---: | :---: | :---: | :---: | :---: |
| White. | | 96, 439 | Centimeters. $1+1,15$ | Per cent. |
| Negro | | 6, 454 | 142.39 | 52.80 |
| Chinese. | | 22 | 140.36 | 52.32 |
| Japanese | | 32 | 140.44 | 82. 16 |
| Indian.. | | 107 | 110.97 | 82. 19 |

The relative height of sternal noteh is seen to be slightly greater in Negro than in white troops. In the Indian and Oriental races the relative height of sternal notch is intermediate between that of white and Negro.

4. HEIGHT OF PUBIC ARCH.

(a) General discussion.-This is the vertical distance from the floor to the upper margin of the pelvis at the symphysis of the pubic bones. It is measured by means of an anthropometer of which the movable arm is raised to the required level. The line is sometimes difficult to find, especially in the fat subject, but practically it is readily established, sometimes by following down the front margin of the pelvis from the more lateral position, but also through the practical point that it is the uppermost margin of resistance of the pelvic bone in the middle front line, about $25-30$ millimeters above the root of the penis.
The pubic height is important because it is alnost exactly (perhaps 35 millimeters below) the level of the center of the acetabulum or the axis of the hinge of the femur. Its height is therefore the length of the physiological leg or the line of rotation of the leg; a matter of prime importance in determining the length of step that requires the least effort. Practically, troops march with less fatigue if soldiers with the same physiological length of leg be grouped in one company or platoon.
Pubic height is also important because it has been nearly universally obtained in the measurement of young men, largely through the influence of Dr. Dudley A. Sargent, director of the Harvard Gymnasium. The height of the pubic arch has been found by Dr. Sargent to range in college men, 16 to 24 years of age, from about 76 centimeters to 99 centimeters and from 43.16 to 56.5 per cent of the stature. The ratio of pubic height to total stature is about 50 per cent. According to the table of Martin ${ }^{5}$ (1914, p. 256, made up from various sources) it is in English males about 49.9 per cent; Laplanders, 50; Poles, 50.7; Belgians, 50.7; Cossucks, 51.4; French, 52.2; of Asiatic peoples
the inhabitants of the Samoyedes Peninsula of Siberia have a relative pubic height of 48.6, the lowest of all races measured. In the Japanese this proportion is 49 ; Ainos, 49.9; Mongolians, 50.3. In certain African tribes the relative pubic height varies from 49.8 to 52.9 , the latter relation being found in the Bushmen and being the highest proportion given. This indicates a relatively extraordinarily long-legged race.

The pubic height was determined by Gould ${ }^{2}$ for 1,013 veterans of the Civil War and found to he 33.26 inches, or 84.48 centimeters, slightly less than the average pubic height found by Dr. Sargent for Harvard University students.

The medical importance of pubic height depends upon the medical significance of long legs and short trunk. As is well known, in certain bone-aplasias and defects of secretions of internal glands the legs are relatively short, as in achondroplastic dwarfs and in cretins. While in different normal families the length of leg (as indicated by pubic height) varies, still this possibly may be a measure of the differences in activities of the internally secreting glands which regulate the growth of the legs.
(b) Mean pubic height.-In 91,365 white troops measured at demobilization the height of pubic arch is 86.8 centimeters, which is slightly greater than for Harvard men, owing to the fact that the Harvard men averaged much younger. The relative pubic height is 50.47 per cent of stature.
(c) Standard deviation of height of pubic arch.-The standard deviation of pubic height for white troops is, as shown in Table LXXXVI, 5.05 centimeters. The coefficient of variation of height of pubic arch is obtained by dividing this standard deviation of 5.05 by the mean pubic height of 86.82 . The result is 5.817 per cent, neither a high nor a low coefficient.
(d) Comparison of eight European races.-In the eight European races the mean height of the pubic arch is as indicated in the following table:

Table 77.-Absolute and relative height of pubic arch in eight European races, demobilization, 1919.

Race.	Number measured.	Absolute pubie height.	Relative pubic height.
Scotch.	1,976	Centimeters. 87.30	Per cent. 50. 60
English.	4,051	87.19	50.67
German.	6,688	86.63	50.35
Irish....	5,972	86.55	50.51
French:	1,393	85. 80	50.89
Polish..	2,279	85.27	50.33
Hebrew.	1,650	83.94	50.29
Italian.	3,390	82.81	50.13

Our series confirms the results obtained by others, that the French are relatively the longest legged of the European races; the English are second in this respect, followed by the Scotch and Irish. The lowest relative pubic arch is found among the Italians, followed by the Hebrews, Poles, and Germans. We see then, again, that the Nordics and the French have the longest legs, and the peoples of southern and eastern Europe have relatively short legs. Here we have evidence of the relatively greater contrast in this respect between the primates and the Nordics on the one hand, than between primates and the southern European races on the other.

(e) Comparison of color races.-In 6,220 Negro troops, the height of pubic arch is 89.4 In view of the identical average height of white and colored, this shows that the Negro men had, on the average, 2.6 centimeters, or about 3 per cent, higher pubic arch than the white men.

The standard deviation of pubic height for Negro troops is 5.27 centimeters, which is a greater variability than that shown by the whites (5.05) ; a greater variability which we find in their other dimensions and which is to be explained in part by the greater mean pubic height, but not entirely; and suggests that the mulattoes have had a parentage from diverse races of whites. The coefficient of variability, which is obtained by dividing the standard deviation of the pubic height by the mean pubic height, is in the case of colored troops 5.894 and for the whites 5.817 . The relative height of pubic arch is in the case of white troops 50.5 per cent; in the case of colored, 52.01 per cent of the total stature. The Negro group is a long-legged one.

Table 79.-Absolute and relative height of pubic arch in five color races, demobilization, 1919.

The Chinese were found to be the shortest legged of the five races and the Indians to resemble them closely. The Japanese are intermediate between the whites and Negro.

5. NECK CIRCUMFERENCE.

(a) General discussion.-Instructions for taking measurements stated that the circumference of the neck was to be taken at the level of the laryngeal prominence. The importance of this measurement is partly medical, since any enlargement of the thyroid gland (as in goiter) would be made manifest by any marked deviation of the neck circumference from the normal. Its military importance is merely in relation to the wearing of the military collar. Physical examination standards repeatedly referred to the necessity of rejecting recruits with enlargement of the neck glands sufficient to interfere with the wearing of the military collar.
(b) Mean neck circumference.-Table LXXVIII gives the correlation of neck circumference and chest circumference. According to this table the mean neck circumference for white troops is 35.98 centimeters. Table CV gives the association between the different blouse groups based on chest circumference, sitting height, and neck circumference in the case of white troops. This table shows an extraordinary scattering of large sizes among the small men. The possibility that some of them are due to errors in recording at camps can not be overlooked.
(c) Standard deviation of neck circumference.-The standard deviation of neck circumference for white troops is given in Table LXXVIII as 1.8 centimeters. Dividing this by the mean neck circumference we get the coefficient of variation of 5.003 per cent-a low median one.
(d) Comparison of eight European races.-The data for the neck circumference of the eight European races was not tabulated.
(e) Comparison of color races.-The relation between the neck circumference of white and Negro races is given in the following table:

Table 80.-Absolute and relative neck circumference of u hite and Negro troops, demobilization, 1919.

The neck circumference in Negro troops exceeds that of the white troops by nearly 4 millimeters, or over 1 per cent.

6. BREADTH OF SHOULDER.

(a) General discussion.-This is the horizontal transverse distance between the deltoid muscles of the right and left arms at a distance of about four or five centimeters below the acromial processes, or at about the greatest thickening of the deltoid. This measurement was taken in preference to the distance between the acromial processes because of its greater significance in the fitting of uniforms and because it gives a better index of the physiological breadth of shoulder.

This dimension has a certain medical importance inasmuch as the breadth of shoulder is partly dependent upon the breadth of the chest and partly upon the muscular developinent of the upper part of the arms. Its military importance is probably slight.

The anthropological significance of the breadth of shoulder is considerable, though it must be admitted that anthropologists have more frequently used the distance between the acromial processes than between deltoid muscles as a measure of shoulder breadth. This is partly because this measurement can also be made upon the skeleton. The different measurements of the shoukder breadth as given by Martin, ${ }^{5}$ (p. 141) may be translated as follows:

[^14]In the measurements taken under the direction of Gould ${ }^{2}$ (pp. 239, 260, and 261) on Civil War soldiers at demobilization it was originally provided merely that the breadth of shoulders should be obtained, "whereas it was especially provided in the schedule for the later series that this measure should be taken between the tips of the acromial processes." There were 2,072 measurements of the full breadth of shoulders and 8,796 which gave the distance between the tips of the acromial processes. The mean of the full breadth of shoulder is about 16.35 inches (41.53 centimeters) and ranges between 13 and 19 inches (33 to 48 centimeters). Gould finds that the mean distance between the tips of the acromial processes is 12.73 inches (32.33 centimeters), the individual cases ranging between $9 \frac{1}{2}$ and $16 \frac{1}{2}$ inches (24.13 to 41.91 centimeters). "Among natives of this country, the mean value is decidedly highest for natives of Kentucky and Tennessee, being 13.51 inches (34.3 centimeters)." Gould notes that " the identification of this apophysis is not easy, and some of our examiners seem to have succeeded here but ill."

As Martin remarks, the breadth between the acromial processes in comparison to trunk length is greater in man then in any other mammal. A great shoulder breadth is also found among the anthropoid apes, in which the shoulders are extraordinarily developed on account of their arboreal or semiarboreal life. Thus in relation to the length of the trunk the shoulder breadth in the orang outang is 59.8 ; chimpanzee, 54.6 ; hylobates, 55.5 ; among Parisians, 77; Germans of Bavaria, 75.3; inhabitants of the Admiral Islands, 71.1; Polish Jews, 66.7, a very low rate among humans. The breadth of shoulder (acromial interval) is sometimes expressed in relation to total stature. Thus expressed, the shoulder breadth is found to be very high among the Eskimos, 24.3; Colorado Indians, 22.5. Among Europeans the relative shoulder breadth is given as follows: Belgians, 23.4; Bavarians, 23; Polish Jews, 22.1; French, about 21; Japanese, about 24 ; Chinese, 22-24. The absolute breadth of shoulders is stated to increase up to 50 years of life. Thus it is clearly very responsive to activity of the arms and shoulders. The breadth of shoulders as measured between the deltoid muscles also varies much with the general condition and robustness of the body.
(b) Mean shoulder breadth.-The mean shoulder breadth of the white troops is, as shown in Table CI, 41.81 centimeters. The relative shoulder width is 24.31 per cent. Thus the mean shoulder width is 0.28 centimeter greater than that of Civil War veterans at demobilization. The ratio is greater than that of the European races given above because the breadth of shoulder is measured between different points.
(c) Standard deviation of shoulder breadth.-The standard deviation of shoulder width of. white troops, as shown in Table CI, is 2.408 ± 0.0037 centimeter. The coefficient of variation is then 5.7601 per cent, a rather high coefficient of variation. The mean shoulder width of Negro troops is, as shown in Table CIX, 42.89 centimeters. The standard deviation is 2.154 centimeters. We see, therefore, that the mean shoulder width of the colored troops is over 1 centimeter more than that of the white troops and the index of rariability is relatively considerably less. The coefficient of variation for the colored troops is 5.013 per cent, or much less than for white troops.
(d) Comparison of eight European races.--Table S2 gives the absolute and proportional frequency of occurrence of shoulder breadth in each of the eight races. In Table 81 the third column from the left gives the mean shoulder breadth of the races. It will be recalled that this is the maximum shoulder width and not the space between the acromial processes. Hence the condition of the man plays a considerable rôle in determining the shoulder width. The maximum mean shoulder width, 42.24 centimeters, was found among the Poles; next among the Germans, then follow Scotch, English, and Italims rather close together. The minimum shoulder width, 40.41 centimeters, is found among the French; somewhat greater is the shoulder width of Hebrews and Irish.

Gould found the mean of measurements of "maximum breadth of shoulders" to be about 16.35 inches (41.53 centimeters), which is within 3 millimeters of the mean shoulder width measured in the troops of 1919. In comparison with the figures of 1919, transmuting inches to centimeters, the breadth of shoulders of Civil War veterans from England was 41.17 centimeters, instead of 41.69 , showing an increase in the later series. The Scotch gave 42.27 centimeters instead of 41.70, showing a marked decrease half a century later. The Irish of 1866 were 41.83 centimeters, which, contrasted with the 41.43 of 1919, shows something of a decrease in half a century. Veterans of German origin in 1866 gave 41.76 centimeters as compared with the World War data of 42.19, which shows an increase half a century later. How much of this difference is significant of slightly different racial subgroups included in the two sets of measurements, how much to conditions of life, how much to errors of random sampling, can not be stated. It is probable that no important changes in this dimension have occurred in any race during the half century.

The third column from the right of Table 81 gives the standard deviation of shoulder width for the eight races. The greatest deviation is found among the Scotch, 2.11; the lowest among the French, 1.10.

The last column at the right gives the ratio of mean shoulder width to mean stature for each of the races. This column shows that the greatest relative shoulder width occurs among the Italians, 25.21; next among the Poles, and then the Hebrews, followed by the Germans. The smallest relative width is found among the French, 23.97, followed in increasing proportion by the Scotch, Irish, and English. Thus, in general, the Nordics have a smatler shoulder width than the races of southern Europe. If we regard the Nordics as the most aberrant or extremely developed of the human races, then we may say that evolution has been in the direction of diminished shoulder width. This reduction, however, it is to be pointed out, is largely due to the circumstance that the Scotch and English are of taller build than the Italians and Poles and consequently part of their proportional inferiority of shoulder width is due to proportionately larger division. For a comparison we may take the proportions of Gould, which are for the English, 24.6; Scotch, 24.6; Irish, 24.8; French, etc., 25.5 ; Germans, 25.

Table 81.-Absolute and relative shoulder breadth with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919.

	Race.	Number measured.	Absolute shoulder breadth.	Standard deviation.	Coerficient of variation	Relative shoulder breadth.
English.			Centimeters.	Centimeters.	Per cent.	Per cent.
		2,011	41.70	2.11	5.060	${ }_{24.17}$
Irish		5,988	41. 43	2.10	5. 069	24.18
German.		6,885	42.19	2.06	4.883	24.52
French.		1,419	40.41	1.10	2.722	23.97
Italian		3,458	41.64	2.05	4.923	25.21
Polish.		2,346	42.24	1.98	4.688	24.93
Hebrew		1,653	41.42	2.02	4.877	24. 82

Table 82.-Comparative frequency distribution of shoulder breadth in each of eight European races, demobilization, 1919.
SECTION A: ABSOLUTE NUMBERS.

Race.	Total.	Shoulder breadth, in centimeters.											
		36	37	38	39	40	41	42	43	44	45	46	47
English.	4,088	28	49	160	354	565	779	759	609	403	211	131	40
Scotch.	2,011	18	36	74	156	280	366	388	303	198	113	59	20
Irish.	5,988	40	130	322	572	913	1,143	1,082	810	537	264	128	47
German	6,885	21	56	167	375	775	1, 193	1,317	1,183	865	541	266	126
French.	1,419	1	7	37	222	505	441	171	28	6	1		
Italian.	3,458	19	46	146	289	498	650	676	506	338	171	87	32
Polish.	2,346	5	12	45	125	260	396	445	464	290	180	89	35
Hebrew	1,653	7	31	83	149	262	359	280	231	139	72	25	15
Number ineasur Not measured.	27, 818	139	367	1,034	2,242	4,058	5,327	5,118	4,134	2,776	1,553	785	315
Total.	28,670												

SECTION B: PROPORTIONAL RATIOS PER $1,000$.

(e) Comparison of color races.- -The following table shows the absolute and relative shoulder breadth in the five color races, demobilization, 1919:

TABL: 83.-Absolute and relative shoulder breadth in five color races, demobilization, 1919.

From this table it appears that, as already stated, the Negro troops have a shoulder width that exceeds the whites on the average by about 1 centimeter. The Chinese and Japanese and Indians resemble the Negro troops more than the whites in this respect. The relative shoulder width-that is, shoulder width divided by stature - is also greater in Negro, orientals, and Indians than it is in the whites.

7. TRANSVERSE DLAMETER OF THE CHEST.

(a) General discussion.-This measurement was taken at the level of the nipples by means of sliding wooden calipers. The arms of the calipers were held approximately perpendicularly to the axis of the thorax at this level. The measurers were instructed to permit the movable arm of the calipers to remain in contact with the chest during expiration and inspiration and to take the middlle distance between the extremes.

This dimension accords very closely with Martin's No. 6 (p.142) : "Transversaler Brustdurchmesser (Frontal-Brustweite; largue de la poitrine) direct measurement. Horizontal distance between the two most protuberant ribs at the level of the mesosternale."

This measurement has a certain medical importance, especially when used in connection with the measurement of the antero-posterior chest diameter. The ratio of the transverse to the antero-posterior diameter gives the thoracic index (Thorakalindex) of Martin ${ }^{5}$ (p. 275). This index tends to increase with age; a small one is indicative of an infantile condition of development. Extreme conditions, however, produce the chicken-or pigeon-breasted form, which is a malformation not associated with physical vigor. On the other hand, an extremely low thoracic index (flat chest) should be a warning to observing physicians to look for pulmonary tuberculosis.

The military significance of the chest diameters is largely confined to its medico-military aspect and to its relation to uniforms. In general, however, uniforms are fitted by the chest circumference rather than by the diameter of the chest. The diameters of the chest have a certain anthropological significance. Thus, the transverse diameter for Navajo Indians is given at 27.9 centimeters; for French (with a prevailingly shorter stature than Indians), 26.9. The thoracic index for Hova Indians is 143.5; for Bugu Negroes, 124; for African Negroes in genernl, 138.
(b) Mean transverse chest diameter.-The mean transverse chest diameter of 96,583 white troops is, as shown in Table LXXX, 29.02 centimeters. This is a transverse diameter over 1 centimeter greater than that given for the Navajo Indians and over 2 centimeters greater than that of the French. The relative mean transverse chest diameter is 16.87 per cent of the total stature. In the case of Negro troops the mean transverse chest diameter is 29.05 , or practically the same as that of white troops. The relative transverse diameter is, therefore, apparently the same in the two races.
(c) Standard deviation of transverse chest diameter.-The standard deviation of transverse chest diameter is for the white troops 2.40 centimeters. The coefficient of variation is 8.27 per cent. This is a very high coefficient, and indicates that the diameter of the chest is a very variable dimension. In the case of Negro troops the corresponding coefficient is 7.78 per cent, indicating a slightly smaller variability in the Negro than in the white troops.

As is shown in Tables LXXX and XCVI the standard deviation of the transverse diameter of the chest is markedly greater than that of the antero-posterior diameter. This matter will be discussed when we come to consider the latter dimension.
(d) Comparison of eight European races.-Table 86 (summarized in Table 85) gives for each of eight European races the absolute and relative proportional frequency of occurrence of the different transverse chest diameter classes. The third column from the left of Table 85 gives the mean transverse chest diameter for each of the races. The largest diameter, 29.22 centimeters, is found among the Poles, next larger among the Germans, next among the Scotch and English. The smallest transverse chest diameter is found among the Hebrews, followed in ascending order by the French, Italians, and Irish. It is noteworthy that the transverse chest diameter of the Irish stands fifth in the list, whereas the chest circumference of the Irish stands fourth in that list, the fifth place in chest circumference being taken by the Scotch. This indicates either that the Scotch have a relatively broad chest or that the Irish have an exceptionally narrow one. The relative variability of transverse chest diameters is given in the fourth column from the right. We see that the Scotch and French show the highest standard deviation, 2.35 , followed by the Germans and Hebrews. The smallest standard deviation, 2.17, is found among the Italians, followed by the English, Polish, and Irish. The third column from the right hand in Table 85 gives the transverse chest diameter in relation to height. From this column we see that the Italians have the greatest relative chest diameter, 17.41; these are followed by the Poles, French, Hebrews, and Germans. The smallest relative transverse chest diameter, 16.78, is found among the English, followed by the Irish and Scotch. Thus, in general, in transverse chest diameter the Nordics are relatively inferior to the Mediterranean races.

8. ANTERO-POSTERIOR DIAMETER OF THE CHEST, AND THORACIC INDEX.

(a) General discussion.-The antero-posterior diameter of the chest was taken on the same plane as the transverse diameter, but with the calipers placed antero-posteriorly. The movable arm of the calipers lay over the chest at about the level of the nipples; the fixed arm of the calipers lay on the muscles
of the back, near the top of the scapule. The movable arm was kept in contact with the wall of the chest during its rise and fall in respiration, and the middle reading between the extreme was regarded as the antero-posterior diameter of the chest.

The greatest interest of the antero-posterior diameter of the chest lies in relation of the transverse diameter. The index of the thorax is obtained by dividing the transverse diameter by the antero-posterior. In the case of various races, as tabulated by Martin ${ }^{5}$ (p. 277), the thoracic index is as follows:

Table 8.1.-Thoracic index of various races.

		Thoracic
Hova Indians.		143.5
Navajo Indians		137.5
French.		138.6
African Negro.		138.0
Bugu Negro.		124.0

The antero-posterior diameter varies in different races partly, of course, in relation to the total stature of the individual. In the case of the Navajo Indians this diameter is given as 216 millimeters on the average; in the case of the French 194 millimeters.

A small antero-posterior diameter in relation to the transverse diameter may indicate pulmonary tuberculosis. Its military significance is probably confined to its medico-military significance.
(b) Mean antero-posterior chest diameter.-The mean antero-posterior chest diameter of white troops is, as shown in Table LXXX, 21.58 centimeters. This is markedly less than the transverse chest diameter. The ratio of the larger to the smaller is 134.48 , a ratio of the thoracic index which is less than that of the French as given above. For Negro troops the mean antero-posterior chest diameter is 21.21 , or slightly less than that of the whites, and the index of 136.96, a ratiostill below that of the French given above, though greater than that of the whites. It has been stated by Papillault ${ }^{23}$ that the Negro has a somewhat rounder type of thorax than the European, hence has a large antero-posterior diameter and a relatively small thoracic index. White troops at demobilization had strikingly broad and shallow chests.
(c) Standard deviation of antero-posterior chest diameter.-The standard deviation of the antero-posterior diameter of the chest is, as shown in Table LXXX, 1.87 centimeters for white troops, and, as shown in Table XCVI, 1.74 centimeters for colored troops. The corresponding coefficients of variation are 8.665 for white troops and 8.204 for colored. Hence the variability of the antero-posterior chest diameter for colored troops is markedly less than that of the whites.
(d) Comparison of eight European races.-Table 87 gives the absolute and proportional frequencies of occurrence in the different classes of antero-posterior chest diameter of the eight European races, summarized in Table 85.
The last column on the right in Table 85 gives the mean antero-posterior chest diameter for these races. From this column it appears that the largest anteroposterior chest diameter, 21.90, is found among the Polish, as was also the case with the transverse chest diameter. The next largest is found among the

Germans, as was also the case with the transverse chest diameter. Third come the Irish, who were fifth in transverse chest diameter, and fourth the Scotch, who were third in transverse chest diameter. Fifth in order are the Italians, who were sixth in transverse chest diameter. Sixth in order of antero-posterior diameter come the English, who were fourth in transverse chest diameter. Seventh are the Hebrews and eighth the French. The French and Hebrews have exchanged places in antero-posterior chest diameter as compared with transverse. It will be interesting to compare the thoracic index to be obtained by dividing the transverse diameter $\times 100$ by the antero-posterior. The results are expressed in per cents in next to the right-hand column of Table 85. The column of transverse diameters divided by antero-posterior shows that the Irish have the smallest thoracic index (index 133.22) and the English the greatest (134.59). The order from the smallest to the greatest is as follows: Irish, Hebrew, Polish, Freneh, German, Italian, Seoteh, and English. Thus in general, excluding the Irish (who are only in part Nordie), and ineluding the Polish (who are Nordic to a considerable degree), it appears that the Nordic races are characterized by greatest chest index. Comparing the variability of the antero-posterior diameters, it appears that the standard deviation is greatest, 1.76, among the English, followed by the Seoteh, German, and Hebrew. The standard deviation is least, 1.66, among the Italians and Polish, followed by the French and Irish.

Table 35.-Absolute and relative transverse diameter of chest with the standard deviation; also anteroposterior diameter of the chest with the thoracic index multiplied by 1,000 (transverse diameter divided by the antero-posterior diameter), in eight races, demobilization, 1919.

Race.	Number measured.	Transverse diameter of ehest.	Standard deviation.	Relative transverse diameter.	Thoracic index $\times 100$.	Antero posterior diameter of chest.
		Centimeters.	Centimeters.	Per cent.		Centimeters.
Scotch.	2,192	29.87	2.22	16.7S	134. 59	21.45 21.58
Irish..	6,135	28.77	2.30	16.79	133. 19	21.60
German.	7,074	29.12	2.32	16.93	133.64	21. 79
French.	1,433	28.58	2.35	16.95	133. 61	21.39
Italian.	3,514	28, 76	2.17	17.41	133. 89	21.48
Polish.	2,406	29. 22	2.26	17.25	133. 49	21.90
Hebrew.	1,690	28.25	2.31	16.92	133.22	21.42

TABLE 87.-Comparative frequency distribution of antero-posterior diameter of the chest in each of eight European races, demobilization, 1919. SECTION A: ABSOLUTE NUMBERS.

9. WAIST CIRCUMFERENCE.

(a) General discussion.-The waist circumference was taken at the level of the umbilicus. The waist circumference in relation to stature is somewhat variable in different races. As given in Martin's table (p. 288), in different races of Africa it varies in the males from 43 to 49 per cent. In young men of the French race it is about 42 per cent.
(b) Mean waist circumference.-The mean waist circumference of 96,157 white troops, as shown in Table 103, is 77.87 centimeters. The relative waist circumference is 45.28 per cent. This is slightly larger than the relative waist circumference of young French males. The mean waist circumference of 6,445 colored troops is, as shown in Table 104, 77.83 centimeters, or practically the same as for whites. The relative circumference is, therefore, practically the same, since the stature of white and colored troops is practically equal.
(c) Standard deviation of waist circumference.-The standard deviation of waist circumference for white troops, as shown in Table LXXXI, is 6.00 centimeters while that for colored troops is 5.76 . In view of the practical equality of the means, this indicates a greater variability of the waist circumference in white troops as compared with colored troops. This relation is brought out more clearly by the coefficients of variation which are, in the case of white troops, 7.705, and in the case of colored troops 7.40.
(d) Comparison of eight European races.-Table 89 gives the frequencies and proportional distributions in the different classes of waist circumference for each of the eight races. Table 88 gives in the fourth column from the right the average waist circumference of the different races. It appears from this column that the Germans have the largest waist circumference, 78.46 centimeters, the Polish second, Irish third, and English fourth. On the other hand, the Hebrews have the smallest a verage waist circumference, followed in order by the Italians, Frencl, and Scotch. The Germans stand second in cbest circumference and the Poles first, whereas the Germans stand first in waist circumference and the Poles second. It is clear that there is a relatively greater abdominal development in the Germans than in the Poles. The second column from the right gives the standard deviation as a measure of variability of the different races in respect to waist circumference. The standard deviation is highest, 6.26 , among the Irish, next among the Hebrews, then the Germans and English. It is least among the Polish, 5.48, next higher among the French, Italians, and Scotch. The relation of waist circumference to stature is given in the right-hand column in the table. From this column it appears that in relation to stature the Italians have the largest waist circumference, 46.71; they are followed by the Poles, Hebrews, and French. On the other hand, the English have the smallest waist circumference in relation to stature, followed in ascending series by the Scotch, Irish, and Germans. Thus the Nordic race is characterized by small waist circumference as compared with the Mediterranean, Polish, and Hebrew.

Table 88.-Absolute and relative waist circumference with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919.

Race.	Number	Absolute waist circumference.	Standard deviation.	Coemcient of variation.	Relative waist circumference.
English.		Centimeters 76.69	Centimeters. 6.09	Per cent.	Per cent.
Scotch.	2,061	77.53	6. 00	7. 739	44.93
Irish.	6,152	77.70	6. 26	8.0 .57	45.34
German	7,073	78.46	6. 10	7.775	45.61
French.	1,435	77.32	5. 84	7. 553	45. 86
Italian.	3,520	77.16	5. 87	7.608	46.71
Polish.	2,405	78.38	5. 48	6.992	46.27
Hebrew	1,687	76.71	6.11	7. 965	45.96

Table 89.-Comparative frequency distribution of waist circumference in rach of eight Eurnpean races, demobilization, 1919.
section a: absolute numbers

Ruer.	Total.	Waist circumference, in centimetcrs.											
		$\begin{aligned} & 50- \\ & \text { an. } \end{aligned}$	$\begin{aligned} & 64- \\ & 67 . \end{aligned}$	$\begin{aligned} & 68- \\ & 71 . \end{aligned}$	$\begin{aligned} & 72- \\ & 75 . \end{aligned}$	$\begin{aligned} & 76- \\ & 79 . \end{aligned}$	$\begin{aligned} & 80- \\ & 83 . \end{aligned}$	$\begin{aligned} & 84- \\ & 87 . \end{aligned}$	$\begin{aligned} & 88- \\ & 91 . \end{aligned}$	$\begin{aligned} & 92- \\ & 95 . \end{aligned}$	$\begin{aligned} & 96- \\ & 99 . \end{aligned}$	$\begin{aligned} & 100- \\ & 103 . \end{aligned}$	lod
English.	4,195	32	67	696	1,121	1,196	531	314	158				
Scotch.	6,061	${ }_{31}^{10}$	34 119	233 650	$\begin{array}{r}1.513 \\ 1,570 \\ \hline 15\end{array}$	1,589	1 3110	178 513	81 225	26	${ }_{51}^{16}$	1	13
German.	7,073	42	98	533	1, 609	2,031	1,517	727	320	113	56	19	
French.	1,455	9	27	150	1388	452	239	111	52	17	7	1	
Italian.	3,520	17	73	400	1,004	952	626	275	108	40	15	9	
Polish.	2,405	10	19	169	535	720	587	233	94	27	9	2	
Hebrew.	1,687	7	50	240	489	439	251	125	52	21	8	1	4
Number meas	28,548 122	158	487	3,071	7,249	8,135	5,220	2,476	1,090	386	186	60	30
Tota	28,670												

SECTION B: PROPORTIONAL RATIOS PER 1,000 .

Race.	Total.	-			Waist circumference, in centimeters.								104 Total.	
		$\begin{aligned} & 50- \\ & 53 . \end{aligned}$	$\begin{aligned} & 64- \\ & 67 . \end{aligned}$	$\begin{gathered} 68- \\ 71 . \end{gathered}$	$\begin{aligned} & 72- \\ & 75 . \end{aligned}$	$\begin{gathered} 76- \\ 79 . \end{gathered}$	$\begin{aligned} & 80- \\ & 83 . \end{aligned}$	$\begin{aligned} & 84- \\ & 87 . \end{aligned}$	$\begin{aligned} & 88- \\ & 91 . \end{aligned}$	$\begin{aligned} & 92- \\ & 95 . \end{aligned}$	$\begin{aligned} & 96- \\ & 99 . \end{aligned}$	$\begin{aligned} & 100- \\ & 103 . \end{aligned}$		
English	4, 195	7.63	15.97	165. 91	267.21	285. 10	126. 58	74.85	37.66	11.44	5. 72	1.67	0.24	1,000
Scotch.	2,061	4. 85	16. 50	113.05	258.62	285. 80	174. 19	86.37	39.30	12.62	7.76	. 49	. 49	1,000
Irish.	6,152	5. 04	19.34	105. 66	255. 21	285.44	180.42	83. 39	36. 57	15.2S	8. 29	3.25	2.11	1,000
German	7,073	5. 94	13. 86	75. 36	227.49	287.14	214.48	102.78	45.24	15.97	7.92	2.69	1.13	1,000
French	1,455	6. 19	18.56	103.10	266.68	310.65	164. 26	76. 29	35.74	11.68	4.81	. 69	1. 37	1,000
1 lalian.	3,520	4.83	20.74	113.63	285. 23	270.48	177.85	78.12	20.68	11.36	4. 26	2,56	. 28	1,000
Polish.	2,405	4.16	7.90	70. 27	222.45	299.36	244.08	96.88	39.09	11.23	3.74	. 83		1,000
Hebrew	1,687	4.15	29.64	142.27	289.88	260.22	148. 79	74. 10	30.82	12.45	4.74	. 59	2.37	1,000
Number measur Not measured.	28,548 122	5.53	17.06	107.58	253.93	284.96	182.85	86.74	38.18	13.52	6.52	2. 10	1.05	1,000
Total.	28,670													

(e) Comparison of white and colored races.-A comparison of white and Negro troops with reference to waist circumference has been made in earlier paragraphs and shows no important differences between the races in this respect. Despite the greater circumference of the chest in the white troops, the waist circumference is practically the same in white and colored. This shows that
the Negro troops have the more nearly cylindrical body, the white troops more conical, the increase of the chest over the waist being 102 millimeters in Negro troops and 109 millimeters in white troops.

10. TRANSVERSE DIAMETER OF THE PEIVIS.

(a) General discussion.-This was measured as the maximum distance between the crests of the ilium. It is measurement No. 40 of Martin ${ }^{5}$ (p. 143):

Gröste Breite zwischen den Darmbeinkämmen (Beckenbreite, Cristalbreite, Distantia intercristalis; largeur maximum des hanches, diametre bi-iliaque externe; distance between iliac tubercles). Direct measurement, horizontal distance between the two ilio-cristalia, rod calipers.
The measurement is thus taken against the labium externum of the crista iliaca and the arms of the instrument slightly pressed upon the flesh.

The measurements of 100,000 soldiers were taken practically in accordance with these directions.
The medical importance of this measurement is comparatively unimportant in the case of the male. It may have some relation to hernia, however, not yet determined. The military importance of this measurement is probably confined to its relation to uniforms. The breeches, constricted by the belt, are largely supported by the crest of the pelvis. In the case of slender soldiers the diameter of the body at the waist is less than at the pelvis; in the case of fat men it is greater. It is possible that the relation between circumference of waist and tranverse diameter of pelvis may come to have a medico-military significance, not only as an index of the nutrition of the soldier, but also because of its importance in relation to glandular disturbances that cause the deposition of fat on the omentum and in the body wall of the waist region.
The anthropological significance of pelvic diameter is very great. As Martin points out, this diameter is considerable in man and anthropoids. In Bavarians the breadth of pelvis is about 56 per cent of the length of the trunk (in women nearly 60 per cent). In the gorilla it is even larger, 66.5 per cent, in the chimpanzee 42 per cent, among the lower monkeys $37-25$ per cent.

In general the species with broad pelvis have also broad shoulders, producing a rectangular form of the trunk.

The breadth of pelvis may also be expressed in relation to the total height. Here again the difference between the sexes is marked and the figures given here refer only to males. Thus, following Martin's (1914, p. 269) table, among European races the ratio of pelvic diameter to stature is: Jews, 16 per cent; Russians, 16.3 per cent; Poles, 16.4; French in general, 16.5; Parisians, 16.9; Germans in general, 17.0; Roumanians, 17.2. Among Asiatics, the south Chinese have the smallest pelvis, 14.7 ; Japanese, 15.3 to 16.6 ; northern Chinese, 17-18.3. Many African tribes have relatively small pelves; Fiot, 14.2; Batua, 14.4; Buslumen, 16.4. Thus Negroes, South Chinese, and Jews have the smallest pelvic diameter of their respectivg continents. The maximum pelvic diameter is found among the Iroquois Indians, viz., 18.9.

Gould ${ }^{2}$ secured the mensurement of the breadth of pelvis of several thousand soldiers and sailors. He gives as a mean dimension 11.92 inches, or 30.28 centimeters, the mean result for men in usual vigor being greater by 0.14 inch (or 0.36 centimeter) than for men in poor health.

Gould ${ }^{2}$ found the following mean values for the breadth of pelvis for men in dufferent parts of the country:

Table 90.-Absolute transverse diameter of the pelvis, by sections, demobilization, 1865.

(b) Mean transverse diameter of the pelvis.-The mean transverse pelvic diameter of the 95,658 white troops is 29.43 centimeters. The relative pelvic diameter is 17.11 . Thus the transverse diameter of the body at the pelvis is 0.23 centimeter greater than the transverse chest diameter in white troops. This increase amounts to 1.36 per cent.

The mean transverse diameter of the pelvis of colored (Negro) troops is 28.42 centimeters, which is 1.01 centimeters less than that of white troops, despite the fact that the stature of the two races is practically the same. The transverse diameter of the pelvis is thus 0.63 centimeter less than the mean transverse diameter of the chest, or 2.169 per cent. The difference between the diameter of the chest and the pelvis is thus greater in colored than in white troops, despite the fact that the body form is more nearly cylindrical in the colored troops. This indicates then that the Negro troops have relatively narrower hips than the white troops and equal waists, but slightly smaller chest circumference. It may be remarked that casual observation of large numbers of Negro troops indicated the frequent presence of individuals with remarkably small pelvic diameter.
(c) Standard deviation of transverse diameter of the pelvis.-The standard deviation of transverse pelvic diameter for white troops is 2.85 centimeters and for colored 2.35 , indicating a much greater absolute variability in white than in colored troops in this dimension. The coefficient of variation in this dimension is for white troops 9.684 per cent and for colored troops 8.269 . Thus the pelvic diameter of colored troops is relatively as well as absolutely much less variable than that of white troops.
(d) Comparison of eight European races.-Table 92 gives the absolute and proportional frequencies of the different classes of transverse diameter of the pelvis for each of the eight races. From Table 91, fourth column from the right, it appears that the largest mean transverse diameter of the pelvis is found in the Germans, 29.80; next in the Poles, 29.55, followed by the Scotch and English.

Table 91.-Absolute and relative transverse pelvic diameter, with the standard devation and the coefficient of variation, in eight European races, demobilization, 1919.

	Race.	Number measured.	Absolute transverse pelvic dlameter.	Standard deviation.	Coeffeient of variation.	Relative transverse pelvic diameter.
English			Centimeters.	Centimeters.	Per cent.	Per cent.
Scotch.		2,053	29.38	2.84	9.324 9.668	17.02 17.03
Irish		6,108	28.92	2.69	9.302	16.88
German.		7,051	29.80	2.87	9.631	17.32
French.		1,429	28.70	2.65	9.233	17.02
Itallan		3,501	28. 62	2.61	9.120	17.33
l'ollsh.		2,396	29.55	2.64	8.834	17.44
Hebrew		1,688	28.34	2. 60	9.174	16.98

The average transverse diameter of the pelvis is smallest in the Hebrew, 28.34 ; next in the Italians, then the French and Irish. The standard deviation as an index of variation is given in the third column from the right. This shows that in respect to transverse diameter of the pelvis, the Germans are the most variable, 2.87; Scotch next, followed by the English and Irish. The Hebrews are the least variable, 2.60, and then in ascending order come the Italians, Polish, and French. The last column at the right gives the relation of the average transverse diameter of the pelvis to average stature of each of the races. From this column it appears that the Poles have the relatively largest pelvic diameter, 17.44 ; followed by the Italians and Germans. The Irish have the relatively smallest pelvic diameter, 16.88 , followed in ascending order by the Hebrew, French, English, and Scotch.
Table 92.-Comparative frequency distribution of transverse pelvic diameter in each of eight Europern races, demobilization.

(e) Comparison of color races.-The following summary table gives the means of comparing the diameter of the pelvis of five color races:

T'able 93.-Absolute and relative transverse diameter of the pelvis in the five color races, demobilization, 1919.

Race.	Number measured.	Mean diameter, In centlmeters.	Relative transverse diameter of pelvis.
White...	95,658	29.43	17.1
Nesto (and mulatto)	6,354	28.42	16.5
Chinese..	22	30.00	17.5
Japanese.	32	28.88	16.9
Indinn......	107	29.71	17.3

The above table shows the comparative transverse pelvic diameter in the different color races. The mean diameter is seen to be 29.4 in the white troops and in Negro troops 28.4. There is, therefore, a difference of over 3 per centa deficiency in the Negro troops. The pelvic diameter of the Indians and Chinese is still greater than that of the whites, attaining 30 centimeters in the latter. The pelvic diameter of the Japanese, on the other land, is only slightly greater than that of the Negro.

11. ARM LENGTH.

(a) General discussion.- The lengtly of the arm was measured as the tailor measures it-from the second dorsal vertebra to the styloid process of the ulna of the right arm, the forearm being flexed. The arm length is, therefore, properly not such, but the half-diameter of the chest at the level of the axilla plus the length of the arm as far as the styloid process. This measure is perhaps useful only for tailors, as anthropologists usually measure the length of the arm from the acromion. The length of the arm in the strict sense may be approximately secured by subtracting one-half the transverse diameter of the chest. The relative arm length as measured from the acromion varies widely in different races, as is indicated by the table of Martin ${ }^{5}$ (1914, p. 294). This is in the case of Bavarians, 35.4 per cent; French, 35 per cent; African Negroes, 35.5 per cent; Mawambu pygmies, 33.3 per cent; Lolo in Hunan, 32.4 per cent.
(b) Mean arm length.-The mean "arm" length in the Army measurements was for white troops 78.42 centimeters (Table LXXXII), and for Negro troops, 80.56 centimeters (Table CXIV). Thus it will be seen that with the sume mean stature the Negro troops have "arms" which averaged 2.14 centimeters longer than white troops. The difference in relative arm length will be the same as the absolute arm length because of the similarity of height of the two races. If now we subtract the half of the transverse chest diameter from the "arm" length of white troops, we find it to be 78.42 minus 14.51 , or 63.91 . In the case of Negro troops, it is $\$ 0.56$ minus 14.53 , or 66.03 . Thus a comparison of the arm length in the strict sense shows that of the Negro troops to be over 2 centimeters greater than that of white troops. The relative arm length will be secured by dividing these strict arm lengths by the stature. It is 37.16
in the case of whites and 38.40 in the case of Negro troops. From this point of view the relative arm length of Negro troops exceeded that of the white troops by about 3 per cent. This is in accordance with other observations, since, as shown in Martin's tables ${ }^{5}$ (p. 293), there are three African races (Ba-Binga, Lobi, and Bugu) which have a relative entire arm length (including the finger) that is greater than that of any European races.
(c) Standard deviation of arm length.-The standard deviation of the "arm" length of the white troops is 4.69 ; of Negro troops, 4.76. Thus, absolutely, the latter are the more variable. A comparison of the coefficients of variation, however, gives 5.981 per cent for the whites and 5.909 per cent for the Negro troops. Thus the Negro troops are relatively less variable than the whites in this respect.

Double the arm length plus length of wrist and fingers is approximately equal to span. We have seen that span is greater in colored than in whites, just as "arm" length is. Also, both measures are absolutely more variable in the colored troops. Thus by both tests the arms of the colored are longer and absolutely more variable than those of white troops.

12. FOREARM LENGTH.

Table LXXXII shows the correlation between "total arm length" and that of forearm in white troops. The mean length of the forearm (that is, from the olecranon process to the styloid process) is, in the case of white troops, 26.91 centimeters, and in the case of colored troops, 28.20 centimeters. Dividing the mean forearm by the total "arm length," minus half the transverse chest diameter, we find that for white troops the forearm constitutes 42.01 per cent of the whole arm length and for colored troops, 42.71 per cent. Thus the forearm length is not only absolutely greater in colored than in whites but also constitutes a relatively larger proportion of the arm length.

The relative length of forearm (i. e., in proportion to stature) is in the case of white troops 15.65 per cent and in the case of Negro troops 16.40. In Martin's table (1914, p. 297) it appears that some of the African Negroes have a relatively greater arm length than any of the European races listed, even as great as 17.7 per cent. The relative arm length of these European races varies from 14.3 per cent (Parisians) to 15.5 per cent (Bavarians) and 15.9 per cent (Germans and Jews). Martin also notes that in exceptionally long arms excess length is especially due to the great length of forearm.

13. LEG LENGTH.

(a) General discussion.-The measurement here called leg length is actually the distance from the gluteal fold to the tip of the internal malleolus of the tibia, as measured by a tape. It is to be noted that this dimension added to the sitting height falls about 10 centimeters short of the total stature. The difference is due, on the one hand, to the height of the internal malleolus above the floor, which is about 8 centimeters. The remaining 2 centimeters are accounted for by the sag of the gluteal muscles in the standing subject, so that the gluteal fold lies about 2 centimeters farther from the vertex in the standing subject than in the sitting subject.

The leg length as thus mensured is not the physiological leg length, but primarily of interest to the manufacturer of uniforms and other clothing. It is much less valuable from a military point of view than the total leg length as indicated by the height of the pubic arch. The leg length may also be secured by subtracting the sitting height from the total stature.
(b) Mean leg length. -The mean "leg length" as defined is for white troops 71.69 centimeters, as indicated by Table LXXVI. For Negro troops it is 74.38 , as shown in Table XCII. Thus there is a difference of 2.69 centimeters between white and Negro troops, or 3.75 per cent of the "leg length" of the whites. The relative "leg length" is 41.68 per cent of height for white troops.

We may compare the leg length found by subtracting the sitting height from the total stature. In white troops this is 171.99 minus 90.39 , or 81.60 centimeters. In the case of Negro troops it is 171.97 minus 87.35 , or 84.62 . Thus, by these means also we find an excess of 3.57 per cent in the leg length of Negro troops as compared with whites. Since the anthropoid apes are characterized by relatively short legs, the Negro in this respect represents a greater departure from the anthropoid types than do the whites. The relative leg length, determined by the method of subtracting sitting height from body height, is in the case of white troops 47.45 per cent and in the case of Negro troops 49.21 per cent. These figures are in good agreement with those given in Martin's table (p. 312), where the relative leg length obtained in this way is for Europeans mostly between 47.0 and 48.5 per cent, while for different African tribes it varies from 47.2 to 49.7 per cent. Armenians and Tartars have a relative leg length below the average; the American Indians show a great range in this respect.
(c) Standard deviation of leg length.-The standard deviation of "leg length" is for white troops, as shown in Table 103, 4.71, and for colored troops (Table 104) 4.59 . The corresponding coefficients of variation are for white troops 6.57 and for colored 6.17. This shows again a lower relative variability in colored than in white troops in respect to this dimension.
(d) Comparison of eight European races.-Table 95 gives the distribution of absolute and proportional frequencies of "leg length" in the eight races. It will be recalled that the leg length is the distance from the gluteal fold to the internal malleolus and includes, therefore, the sum of the thigh and lower leg, excluding the foot. Table 94 shows in the third column from the right the average leg length of the different races. This is greatest in the Scotch, 71.68, and next in the Germans, followed by the English and Irish. It is lowest in the Italians, followed by the Hebrews, French, and Poles. The third column from the right gives the variability of leg lengths for the different races. This is seen to be greatest among the English, next among the Scotch, and then in order among the Germans and Irish. It is least, 4.19, among the Italians, and then slightly greater in order among the Hebrews, Poles, and French.

Table 94.-Absolute and relative leg length with the standard deviation and the coefficient of rariation in eight European races, demobilization, 1919.

	Race.	Number measured.	Absolute leg length.	Standard deviation.	Coefficient of variation.	Relative leg length.
			Centimeters.	Centimeters.	Per cent.	Per cent.
English		4, 152 2,038	71.34	4.59	6. 434	41. 46
Irish.		6,110	70.91	4. 39	6. 6.191	41.54 41.38
German.		7,012	71.47	4.51	6. 310	41.54
French.		1,438	69.22	4.34	6.270	41.06
Italian.		3,446	67.84	4.19	6.176	41.07
Polish.		2,377	70.16	4.30	6.129	41.41
Hebrew.		1,664	68.93	4. 29	6.224	41.30

Since leg length is partly dependent upon stature, the right-hand column shows that the Scotch and Germans have relatively the greatest leg length, 41.54, as above defined; they are followed by the English and Poles. The French have the least relative leg length, 41.06, as above defined, being in this respect close to the Italians. Considerably above them stand the Hebrews and Irish. Since the French have relatively the greatest height of pubic arch and the shortest relative leg length, it would follow either that the ankle is relatively high in the French or that the symphysis pubis is placed relatively high.
Table 95.-Comparative frequency distribution of, leg length in each of eight European races, demobilization, 1919. SECTION A. ABSOLUTE NUMBERS.

(e) Comparison of color races.-The following table gives a summary of the absolute and relative leg lengths of the five colored races measured:

Table 96.-Absolute and relative leg length in five color races, demobilization, 1919.

The distance from the gluteal fold to the internal malleolus in the different races is shown in the table above. We see from this table again that the leg length is over 2.69 centimeters greater in Negro troops than in white, despite the practical equality in total stature. The relative leg length is 43.3 per cent among the Negro troops, 41.7 per cent among the whites, and 41.4 per cent among the Chinese; the Japanese, 43.4, and Indian, 41.8. The Japanese in this respect are more like the Negro troops.

14. KNEE HEIGHT.

(a) General discussion.-Knee height was taken as the distance from the floor to the top of the patella. It has relatively small military importance, excepting in so far as by subtracting it from the "leg length" plus 8 centimeters the length of the thigh will be given, from which may be estimated the corresponding dimensions of the breeches.
(b) Mean knee height.-The mean knee height for white troops is 47.08 (Table 103); for colored troops, 47.26 (Table 104). That of the colored troops is sensibly greater than that of the white troops. In the case of white troops the knee height constitutes 65.67 per cent of leg length, and in the case of the colored troops 63.54 per cent. Thus in the colored troops the lower leg is relatively a smaller proportion of the whole leg length than in the case of the white troops; consequently the thigh is relatively long. This is in striking contrast to the conditions found in the upper appendage, where the forearm (exclusive of the hand) proves to form a relatively larger proportion of the whole arm in colored than in white troops. Since the proportion of knee height to total stature is, in the case of white troops, 27.38 per cent and 27.48 in the case of colored, in relation to total stature the lower leg of the colored troops is greater than that of white troops, and this despite the fact that it constitutes a smaller fraction of the total "leg length."

The index giving the relation of upper leg to lower leg (excluding the foot) may be calculated as follows:

Pubic height.	White. 86.82	Colored. 89.42
Knee height.	47.08	47.26
Thigh.	39.74	42.16

Also the lower leg length in the strict sense, excluding the foot, may be approximately determined by subtracting 8 centimeters from the knee height. This gives us, then, in the case of whites, a net lower leg length of 39.08 centimeters; in the case of colored, 39.26 centimeters.
(c) Standard deviation of knee height.-This is 3.62 centimeters in white troops and 3.64 centimeters in colored; the length of lower leg and foot is absolutely more variable in white than in Negro troops, despite their shorter length in whites. The coefficient of variability of this dimension is in white troops 7.689 per cent and in colored 7.702 per cent. This is a relatively high coefficient.

Table 97.-Absolute and relative knee height with the standard deviation and the coefficient of variation in eight European races, demobilization, 1919.

	Race.	Number measured.	Absolute knee helght.	Standard deviation.	Coefliclent of variation.	Relative knee height.
English			Centimeters.	Centimeters.	Per cent.	Per cent.
Scotch.		1,651	47.74 47.83	4.14 3.91	8.672 8.175	27.74 27.72
Irish.		4,703	46.59	3.72	7.985	27.19
German		5,646	47.22	3.74	7.920	27.45
French.		701	46.83	3.84	8. 200	27.78
Italian.		2,880	45. 13	3.51	7. 778	27.32
Polish.		1,917	46.69	3.66	7.839	27.56
Hebrew		1,468	45.57	3.59	7.878	27.30

 SECTION A: ABSOLUTE NUMBERS.

Race.		Total.	Knee height, in centimeters.																									
				30-31 32-	32-33 34	4-35	36-37	38-39	40-41	42-43	44-45	46-47	48-49	50-51	52-53	54-55	56-57	58-5	60-6	62-63	64-65	66-67		70-71	72-73	74-	76-77	
English		3,171			1	5	12	32	101	289	539	615	552	455	296	167	72	30	1		1	1		1		1		
Scotch.		1,651				3	4	12	56	118	203	332	334	233	118	79	29	7	1						1		
German.		5,646		1	1	19	${ }_{31}$	59	163	478	-998	1,389	1,197	673	346	186	80	21	5		i	-		2		1	i	
French.		701			1	2	6	9	26	74	129	168	139	78	37	20	6	5				. ${ }^{1}$						
Italian.		2,880		2	4	4	13	57	293	554	765	538	355	182	69	30	8	4							1	1		
Polish.		1,917		1	3	5	5	24	83	191	413	434	327	222	114	48	12	1	1	2	1							
Hebrew		1,468		1	3	2	7	27	101	262	366	336	174	101	55	20	10	1		1		. 1						
Number measured....... Not measured.		22,1376,533		9	15	52	102	277	1,005	2, 495	4,511	4,941	3,940	2, 406	1,357	655	260	78	11	3	3	4	1	3	5	3	1	
			28, 670																									
SECTION B: PROPORTIONAL RATIOS PER $1,000$.																												
Race.	Total.	Knee height, in centimeters.																										
		31	32-33	33	-37		38-39	40-41	42-43	44-45	46-47	48-49	50-51	52-53	54-55	56-57	58-59	60-61	62-63	64-65	66-67	68-69	70-71	72-73	74-75	76-77		
English	3,1711,6514,703	0.61	0. 32	21.5	58	10.09		31.8533.92	91.14 71.4 1	169.98159.30	193.93	174.08202.30208	143.49141.11	93.35107.81	52.6647.85	22.7017.56	$\begin{aligned} & 9.46 \\ & 4.24 \end{aligned}$	0.32.61		0.32	0.32 0.32		0.61	0.32		1,000	
Scotch.					82.42																							
Irish.....		. 64	. 21		24.10		12. 4212.84	38.7028.8737.09	11.4984.66105.56	(184.01	249.65	182. 2120198.29	-119.20 111.27	51.2852.78	32.94	14.17	(1.41 $\begin{aligned} & 1.91 \\ & 3.72 \\ & 7.13\end{aligned}$	-64 ${ }^{\text {. }} 18$		- 21	0.21.	$\cdots 35$	$\left[\begin{array}{l} -43 \\ : 18 \end{array}\right.$. 21		1,001,0001,000	
German	5,646	-18	- $\begin{array}{r}\text { - } \\ 1.43 \\ \hline 1\end{array}$		13 85 8	. 49															-18.							
French.	2,880	. 69			29 ${ }^{\text {a }}$			101.73	${ }_{192.36}^{105.56}$	184.01 265.61	239.65 186.80		${ }_{63.19}^{11.27}$	52.78 23.96	10.42	8. ${ }_{28}^{\text {8. }}$	7. 39								. 35	. 35		1,000
Polish.	1,917		$\begin{aligned} & 1.39 \\ & 1.56 \\ & 2.04 \end{aligned}$	$\begin{array}{c\|c} 8 & 6.61 \\ 4 & 1.36 \end{array}$	$\begin{array}{ll\|} \hline 9 & 3 \\ 61 & 4 \cdot 01 \\ 36 & 2.61 \\ 3.77 \end{array}$		$\begin{aligned} & 12.52 \\ & 18.39 \end{aligned}$	$\begin{aligned} & 43.30 \\ & 68.81 \end{aligned}$	99.64	215.45	242.05	170.59	115.81	59.47	25.04	6. 26	. 52	. 52	1. 04	. 52							1,000	
Hebrew	1,468	. 68					178.49		249.31	228.89	118. 53	68.81	37.47	13.62	6.81	. 68		. 68		.68						1,000		
Number measured Not measured...	$\begin{array}{r} 22,137 \\ 6,533 \end{array}$. 41	. 68	- 68.35	. 35	61		12.51	45.40	112.71	203.78	223.20	177.99	108. 69	61.30	29. 59	11.75	3.52	. 50	. 14	. 14	. 18	. 05	. 14	. 23	. 14	. 05	1,000.
Total....... 28, 670		$\|\cdots \cdots\|$																										
		$\left.\left.\right\|^{\cdots \cdots}\right\|^{-}$																										

15. THIGH CIRCUMFERENCE.

(a) General discussion.-Measurers were instructed to secure the maximum circumference of the thigh by means of a tape passed around the upper portion of the thigh and moved slightly upward until it reached the level of the gluteal fold.

The military importance of this measurement is probably not great, though there is possibly a correlation (never determined, however) between the thigh girth and the capacity of the soldier to make prolonged marches and carry heavy burdens. The circumference of the thigh was used in the table of manikin dimensions (Table 122) to secure the greatest breadth of the "hips" or greatest transverse diameter at the level of the gluteal fold. This was obtained by taking twice the quotient of the circumference of the thigh divided by π, or 3.1416.

The thigh girth in relation to stature varies in different races. It attains its smallest dimensions in certain African tribes. Thus in the Ba -Tua the relative thigh girth is given as 28.2 (Martin, ${ }^{5}$ p. 322). The length of the thigh divided by its circumference gives an index which varies markedly during developmental years. In the case of children 14-15 years this ratio is about 52 per cent.
(b) Mean thigh circumference.-The mean thigh circumference for white troops is 52.709 centimeters, as shown in Table 103. The corresponding measurement for colored troops is 54.077 (Table 104). Thus in the colored troops it is 1.3 centimeters greater than in white troops. The relative thigh circumference is 30.65 per cent of stature in the case of white troops, about the same as for the average European (Martin, ${ }^{5}$ p. 322). In the case of colored troops it is 31.45 , about the same as for the Ba-Binga, as shown in Martin (1914, p. 322). The length divided by the circumference is 75.60 per cent in the white troops and 77.96 in the colored.
(c) Standard deviation of thigh circumference.-The standard deviation of thigh circumference is for white troops 3.73 centimeters, as shown in Table 103, and for colored troops 3.72, or practically the same. Since the mean circumference is greater for the colored troops than for the whites, the coefficient of variability of the colored troops (6.88) is less than that for the whites (7.08).
(d) Comparison of eight European races.-Tables 100 give the absolute and proportional frequencies of each of the different classes of thigh girth for each of the eight races. In Table 99 the third column from the left gives the mean thigh girth for each of these races. From this column it appears that at demobilization the men of German origin showed the greatest thigh girth, 53.19. These were followed by the Poles, English, and Scotch. On the other hand, the French have the smallest thigh girth, 51.98, followed in ascending order by the Italians, Hebrews, and Irish. The third column from the right gives the standard deviation as an index of variability in these races. From this column it appears that the thigh girth is most variable in the Irish, 3.68 ; next in the English, 3.66 ; then in the Germans, Italians, and Hebrews. It is least variable in the French, 3.44 ; followed in ascending series by Polish and Scotch. Thigh circumference in relation to stature is given in the right-hand column of

Table 99. From this column it appears that the Italians have the relatively largest thigh girth, 31.50 , followed by the Hebrews, Polish, and Germans. The Scotch have the relatively smallest thigh girth, 30.35 , followed in ascending order by the English, Irish, and French. Thus in general the Mediterranean peoples and Hebrews have the largest relative thigh girth; the Nordic races and the French the relatively smallest thigh girth. This is another index of the slenderness of the Nordics.

Table 99.-Absolute and relative thigh circumference with the standard deriation and the coefficient of variation in eight European races, demobilization, 1919.

	Race.	Number measured.	A bsolute thigh circumference.	Standard deviation.	Coefficient of variation.	Relative thigh circumference.
			Centimeters.	Centimeters.	Per cent.	Per cent.
English		4, 146	52.38	3. 66	6.987	30.44
Scotch		2,037	52.36	3.56	6.799	30.35
Irish.		6,070	52.27	3.68	7.040	30.50
German.		6,960	53.19	3.62	6.806	30.92
French.		1,451	51.98	3.44	6.618	30. 83
Italian.		3,489	52.03	3.59	6.900	31.50
Polish.		2,385	52.46	3.45	6. 576	30.97
Hebrew .		1,664	52.18	3.58	6.861	31.26

Table 100.-Comparative frequency distribution of thigh circumference in each of eight European races, demobilization.

Race.			Total.		Thigh circumference, in centimeters.																										
					42	43	44	45	46	47	48	49	30	51	52	53	54	55	56	57	58	59	60	61	62	63	64	es	66		
English				146		11	27	50	92	140	225	323	422	475	444	488	372														
Scotch.			2,	037	3	11	12	19	42	57	117	152	180	237	$\stackrel{448}{248}$	${ }_{213}^{218}$	199	191	106	169	${ }_{132}^{132}$	29	4	14	24 9	$\begin{aligned} & 25 \\ & 4 \end{aligned}$	${ }_{6}^{10}$	5 3			
Irish....			6,9,8	970	8 6	18	36 18	69 38	${ }^{108} 8$	${ }_{163}^{259}$	${ }_{273}^{347}$	519	${ }_{616}^{638}$	${ }_{680} 67$	706	632	556	438	306	244	183	125	73	42	25	24	16	16	16		
French.				451	,	${ }_{6}$	18	11	${ }_{31}$	163	${ }^{27}$	42	616	680	774	781	716	6.4	522	367	2×0	216	138	70	57	25	21	14	10		
Italian.				489	\%	9	24	43	781	152	216 216	123 303	${ }_{377}^{158}$	156 410	+186	153 385	143 281	109	81 173	42	${ }^{23}$	${ }_{60}^{16}$	${ }_{37}^{15}$	${ }^{9}$	${ }^{6}$	6	2	2			
Polish.				385	4	5	4	23	43	74	122	167	247	246	${ }_{341}^{423}$	${ }_{266}$	${ }_{260}^{291}$	${ }_{160}^{227}$	141	$\begin{array}{r} 135 \\ 84 \end{array}$	$\begin{aligned} & 82 \\ & 76 \end{aligned}$	$\begin{aligned} & 60 \\ & 53 \end{aligned}$	$\begin{aligned} & 37 \\ & 26 \end{aligned}$	$\begin{aligned} & 27 \\ & 19 \end{aligned}$	$\begin{aligned} & 17 \\ & 14 \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	${ }^{6}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$			
Hebrew				664	2	6	13	18	32	52	92	126	201	211	197	192	154	114	170		$\begin{aligned} & 76 \\ & 47 \end{aligned}$	$\begin{aligned} & 53 \\ & 29 \end{aligned}$	${ }_{23}^{26}$	$\begin{aligned} & 19 \\ & 11 \end{aligned}$	$\begin{array}{r} 14 \\ 2 \end{array}$	5		$\begin{aligned} & 2 \\ & 6 \end{aligned}$	3 3		
Number measured................ Not measured.			$\begin{array}{r} 28,202 \\ 468 \end{array}$		37	76	136	271	513	984 1,	, 483 2,	2,137 2,	, 839	087	, 319 3,	110	2,681	2,201	1,632	1,188	877	613	34	228	154	102	66	33	31		
Total.					28,670																										
SECTION B: Proportional ratios per 1,000.																															
Race.	Total.	Thigh circumference, in centimeters.																													
		42	- 43	44		45	46	47	48	49	50	51	52	53	54	55	56	57	55	59	60	61	62	63	64	65	66				
English. Scotch	4,146	0.96	2. 6.65	6. 51		${ }^{2.06}$	22.19	33.77	54.28	2877.91	1101.79	114.57	107. 10	117.78	89.73	74. 29	96.20	40.28	31.84	20.50	11.58	8.68	5.79	6.03	2.41	1.21					
Irish.	6,070	1.32	2. 40	[$\begin{aligned} & \text { 5. } 93\end{aligned}$		9.33	17.79	${ }_{42} 32.97$	${ }_{57.17}^{57.4}$	$7{ }^{4} 785.50$	$2{ }^{2} 88.37$	${ }_{110}^{116.35}$	${ }^{121.75}$	104.57	97.71	93.77	752.04	47.13	26.51	14.24	11.78	6.87	4. 42	1.96	2.95	1.47	0. 49		000		
German	6,960		1.44	2.59		5.46	12.50	23. 42	39.23	23 60.92	288.50	97.70	${ }_{111}^{116.21}$	112.12	$\xrightarrow{91.60}$	${ }_{93}^{72.16}$	6 ${ }^{50.41}$		30.15	${ }_{31}^{20.59}$	12.03	${ }_{10}^{6.92}$	4.12	3. 95	2.64	$2{ }^{2} \mathrm{6H}$	1.65		,000		
French.	1,451	2.07	4.14	1.38		7.58	21.37	53.07	62.72	${ }_{2}{ }_{84} 88$	8 108. 59	107.51	128.19	105.45	${ }^{108.56}$	93.97 75.12	$2{ }^{\text {2 }}$	28.95	40.23	31.03 11.03	19.34	10.06	${ }^{8} 119$	3.59	3.02	2. 01	1.4		000		
Itallan.	3,489	2.01	2. 58	6.88		2. 32	22.35	43.56	61.91	186.84	4108.05	117.50	121.24	110.35	80.54	65.06	49.58	38.69	23.50		10.60		4.87		1.72	1.38					
Polish...	2,385	1.68	2. 10	1.68		9.64	18.03	31.03	51.15	570.02	2103.56	103.14	4142.97	111.53	109.01	67.09	${ }^{59.12}$	35.22	31.86	22.22	10.90	7.97		2.10	1.72	1.43	1.26		000		
Hebrew	1,GH4	1.20	3.61	7.81		0. 82	19.23	31.25	55. 29	29.75 .72	2120.80	123.80	118.39	115.39	92.55	68.51	14.07	31.85	28.25	17.43	13. 2	6.61	1.20	3.10	3.01	$\stackrel{.81}{3.61}$	1.26		000		
Number meas ured. Not measured		1.31	2.69	4.82 ..	9.61		18.19	34.89	52.58	75.78	100.67	109.46	117.69	110.28	95. 06	78.04	57.87	42.12	31.10	21.73	13.62	8.08	5.46	3.62	234		1.10				
	25, 468	1.31					1.8s																			1,000					
Total.	28,670																														

16. CALF CIRGUMFERENCE.

(a) General discussion.-The instructions to anthropologists at camps called for the measurement of the maximum circumference of the calf.

Martin ${ }^{5}$ states (p. 322) that the stronger or weaker development of the calf rests either upon the development of the musculus triceps suræ or on the degree of enlargement of the panniculus adiposus. The latter factor contributes more to the circumference of the calf in the female, the former in the male sex. Strongly muscular calves indicate a highly placed belly of the gastrocnemius muscle, while calves of smaller circumference are characterized by a gastrocnemius with longer muscle fibers but smaller cross section. Also there is a correlation with the length of the tibia, since with a shorter tibia there is found prevalently a gastrocnemius with short-muscled belly and longer tendons; with the longer bone, on the contrary, the muscle with a long belly and short tendons. The calf of small circumference (i. e., a slight development in breadth and thickness of the musculus triceps sure, and with a low lying transition of the muscle into the terminal tendons) is found especially in the Negro groups, among the Egyptians, Australians, Dravida, and Weddas; while thicker and shorter calves are characteristics of most European groups, and of the Mongoloid and Malay varieties.

The military importance of the circumference of the calf is slight. It measures something of the degree of development of the gastrocnemius muscle, which is of great importance in marching.
(b) Mean calf circumference.-The mean calf circumference of white troops is 34.09 centimeters and that of the colored troops 34.71 centimeters, which is 0.62 centimeter greater than that of the white troops. This is the more remarkable in view of the general slenderness of calf in African tribes. The circumference of the calf in relation to total stature is found from the data given in Tables 103 and 104 for white and colored troops, respectively. In the case of the former it is 19.82 per cent, which is somewhat less than the average European, placed by Martin ${ }^{5}$ (p. 322) at 20.5. In colored troops it is 20.18.

The relation between the maximum calf circumference and thigh circumference is, in the case of white troops, 64.7 per cent, and in the case of colored troops, 64.2 per cent. These are rather low ratios compared with those given by Martin ${ }^{5}$ (p.322), which lie between 66.3 and 70 per cent in the male.
(c) Standard deviation of calf circumference.-The standard deviation of calf circumference in white troops is 2.019 centimeters and in the case of colored 2.01. The coefficient of variation is, in the case of white troops, 5.93 per cent, and in the case of colored, 5.79 per cent. Thus the calf circumference is much more variable in colored than in white troops.
(d) Comparison of eight European races.-Table 102 gives the absolute and proportional frequencies of occurrence of the different classes of calf circumference for each of the eight races.

The third column from the left of Table 101 gives the mean calf circumference. This varies in the different races from a maximum in the Polish of 34.44 , followed in descending order by the Germans and Scotch. The minimum average calf circumference, 33.68 , is found among the Hebrews, followed in ascending order by the French, Italians, Irish, and English. The relative variability in this dimen-
sion in the various races is indicated by the standard deviation, third column from the right. According to this the English and Irish have the greatest variability in calf circumference, 2.07, followed by the Scotch. Relatively slight variability is found in the Polish, 1.93, followed in increasing order by the French, Germans, Italians, and Hebrews. Thus, the more northern races show greater variability in respect to this dimension. In the righthand column of Table 101 is given the calf circumference in relation to stature. The relatively greatest calf circumference is found among the Italians, 20.41; followed by the Polish, Hebrews, Germans, and French. The relatively smallest calf circumference is found among the English, 19.70; followed in ascending order by the Scotch and Irish. Thus the northern races show the smallest relative calf circumference, which is in accordance with the generally slender build of these people.

Table 101.-Absolute and relative calf circumference, with the standard deriation and the coefficient of variation in eight European races, demobilization, 1919.

Race.	Number measured.	Mean absolute calf circumference.	Siandard deviation.	Coefficient of variation.	Relative calf circumference.
English	4,214	$\begin{gathered} C m . \\ 33.90 \end{gathered}$	Cm. 2. 07	Per cent. $\text { 6. } 100$	Per cent. 19.70
Scotch.	2,079	34.04	2.06	6. 052	19.73
1 lish .	6,174	33. 83	2.07	6. 119	19.74
German	7,094	34. 40	2.02	5. 872	20.00
French.	1,463	33.68	1.96	5. 820	19.98
Italian.	3,532	33.71	2.04	6. 052	20.41
''olish..	2.417	34. 44	1. 93	5. 604	20.33
Hebrew	1,697	33.66	2.04	6.061	20.17

Table 102.-Comparative frequency distribution of calf circumference in each of eight European races, demobilization.
section A: absolute numbers.

Hace.	Total.	Calf eircumference, in centimeters.											
		29	30	31	32	33	34	3.5	36	37	38	39	40
English.	4,214	29	140	320	609	766	$\mathrm{s02}$	662	431	232	119	92	12
Scotch.	2,079	15	57	136	2×5	369	382	350	239	139	31	50	6
Irish.	6,174	70	218	462	865	1,177	1,211	950	598	327	149	128	21
(ierman	7,094	32	131	314	731	1,172	1,415	1,245	992	572	290	184	16
Freteh.	1,463	15	47	116	243	281	284	228	129	75	23	21	1
Italian.	3, 532	39	141	295	533	672	672	524	352	159	82	61	2
Polish.	2,417	6	34	102	230	403	484	468	340	204	92	51	3
Hebrew	1,697	24	58	149	253	350	322	263	137	63	36	39	3
Total.	23, 670	230	826	1,894	3,749	5,190	5, 572	4,690	3,218	1,771	842	624	64

SECTION B: PROPORTIONA1, RATIOS PER $1,000$.

Race.	Total.	C'alf circumference, in centimeters.												Total.
		29	30	31	32	33	34	35	36	37	38	39	40	
English	4,214	6. 88	33. 22	75.94	144. 32	181.78	190. 32	157.10	102.28	55. 06	28. 24	21. 33	2. 85	1,000
scoteh.	2,079	7.22	27. 42	65.42	137. 10	177.49	183.74	168. 35	114.86	66.80	24. 53	24.05	2. 89	1,000
Irish.	6,174	11.34	35. 31	74. 83	140.10	190. 64	196. 15	153.87	96.87	52.97	24.13	20.41	3. 40	1,000
German	7,094	4.51	18.47	44. 26	103. 04	165. 21	199.46	175. 50	139. 81	80. 63	40. 88	25.94	2.26	1,000
Freneh	1,463	10.25	32.13	79. 29	166. 10	192.07	191.12	155. 84	88. 18	51.27	15. 72	14.35	. 68	1,000
Italian.	3,532	11.04	39.92	83.52	150.90	190.26	190. 26	148.36	99.60	45. 02	23.22	17.27	. 57	1,000
Polisis	2,417	2.48	14.07	42. 20	95. 16	166. 73	200.25	193. 133	140.67	84.40	38, 06	21.10	1.24	1,000
Hebrew	1,697	14.14	34.18	87.80	149.09	206. 25	159. 75	154.98	80. 73	37. 12	21.21	22. 98	1. 77	1,000
Total	24, 670	א. 02	2x. 81	tif. 06	130. 76	181.02	194.35	163. 59	112.24	61.77	29.37	21. 73	2.23	1,000

17. SUPRAPATELLA CIRCUMFERENCE.

(a) General discussion.-The directions required the anthropologists to take the circumference of the leg above the patella. The importance of this measurement seemed to be primarily for uniforms, as these fit closely at this part of the leg.
(b) Mean suprapatella circumference.-Tne mean suprapatella circumference was 37.336 centimeters for white troops, and 37.611 centimeters for Negro, thus about 0.3 centimeter greater in Negro troops, corresponding with their generally greater girth of leg. Since the stature of the white and Negro troops is the same, the relative circumference of the suprapatella region is in the same proportion as the mean.
(c) Standard deviation of suprapatella circumference.-The standard deviation of suprapatella circumference is 2.45 centimeters for white troops and 2.43 centimeters for Negro troops, or nearly the same. The coefficient of variation of suprapatella circumference in white troops is 6.56 , a relatively high variability, and in the case of Negro troops it is 6.46 , a strikingly lower variability.

18. KNEE-PATELLA CIRCUMFERENCE.

(a) General discussion.-The instructions for anthropologists called for the measurement of the knee at the level of the patella. This measurement was taken primarily for the fitting of uniforms.
(b) Mean knee-patella circumference.-The mean patella circumference among white troops is 36.21 centimeters, and in colored troops 36.52 centimeters. Thus the patella circumference of the colored troops exceeds markedly that of the white troops which is in accordance with the greater girths of other parts of the leg.
(c) Standard deviation of knee-patella circumference.-The standard deviation of patella circumference is for white troops 1.979, and for Negro troops 1.987. The relative variability in the whites is 5.47 per cent and in the Negro troops 5.45 per cent. Here again this dimension shows itself relatively less variable in the Negro than in the white troops.

19. COMPARISON OF DIMENSIONS OF WHITE AND NEGRO TROOPS.

(a) Comparison of means of whites and Negroes.-In the preceding sections there have been given for many of the dimensions the averages found in the color races. The numbers involved are small in the case of Japanese, Chinese, and Indians, but are so considerable in the case of white and Negro troops as to make a comparison significant.

Tables 103 and 104 give the differences in means and standard deviations of 20 dimensions of white and Negro troops. The results of these tables are shown graphically in Plate I. From the tables and the plate it appears that whereas the average height of white and Negro soldiers is practically the same the Negro men exceeded, on the average, the white men in the following dimensions:
(b) Span.-The total span of the Negroes is about 3 per cent greater than that of white men.
(c) Leg length.-Since the lengths of arm and leg are correlated in animals generally, it is in accordance with expectation to find that the leg is longer in the Negro than in the white troops, showing an excess of about 3 per cent.
(d) Arm length.-As this constitutes an important part of the span, we may expect, as we find, that arm length will be greater in the Negro than in the white troops.
(e) Pubic height.-This measures the physiological length of leg and shows about the same excess as leg length.
(f) Kinee height.-As a component of leg length, knee height shows a slight excess in Negro over white troops.
(g) Forearm.-This, as in the segments of the arm length, shows an excess in the Negro troops.
(h) Sternal notch.-This is slightly greater in Negro than in white troops. Consequently the height of neck and head together must be less in Negro than in white troops.
(i) Sitting height.-Since the total height is the same and the leg length greater in Negro than in white troops (Gould, 1865, pp. 253, 255, 299; also our Table 108), it is clear that sitting height must be less in Negro than in white troops, and such proves to be the case. This smaller sitting height is due in part to the smaller length of head and neck in Negro troops as compared with white troops, but also the length of the trunk from the gluteal fold to sternal notch is relatively less in Negro than in white troops.

In contrast with the vertical dimensions the circumferences and diameters show for the most part relatively slight differences between white and Negro troops; largely because they are smaller dimensions. However, certain differences are clearly shown. The circumferences of the trunk, whether taken at chest or at waist, are slightly less in Negro than in white troops. The transverse diameter of the pelvis is strikingly less in Negro troops. The breadth of the shoulder is, however, somewhat greater in Negro than in white troops and the same is true of the circumference of the neck, thigh, and calf.

Despite approximately the same height, Negro troops weighed nearly 5 pounds more than white troops. The index of build of the Negro troops was about- 32.7 as compared with 31.6 for white troops.

The general comparative picture we get of the white troops (including a great variety of races) and the Negro troops is this: The Negro troops have relatively longer legs and arms; shorter trunks; smaller circumference of the waist; more nearly parallel outlines of the trunk; the waist is less marked because of the relatively small transverse diameter of the pelvis and chest; less nearly circular ellipse on cross section of the chest; larger, shorter necks; larger leg girth; and greater weight than the whites. The Negro seems more powerfully developed from the pelvis down and the white more powerfully developed in the chest.

In summary, then, the main differences of shape between Negro and white troops are that the former have relatively longer appendages, shorter trunk, head, and neck, broader shoulders, narrower pelvis, and greater girth of neck, thigh, and calf than the latter.

TABLE 103.-Summary of dimensions of approximately 100,000 white troops, demobilization.

	Number of mell measired.	Mean.		Relation to height (centimeters).	Standard deviation (eentimeters).	Probabie error (eentimeters).	Coeffof varia tion (eentimeter) (per	Standard deviation (inehes).	Table from whieh figures were takeı.
		Centimeters.	Inehes.						
Stature.	96,596	171.99	67.72		6. 66	± 0.0102	3. 872	2.62	LXXXIII
Span...	96,596	175.58	69.13	102.10	7.95	$\pm .0122$	4.528	3.13	LXXXIV
Sitting helght	96, 239	90.39	35.59	52.55	3.51	$\pm .0054$	3.883	1.38	LXXXIII
Pubic arch, height	91,305	86.82	34.18	50.47	5.05	$\pm .0080$	5.817	1.99	I, XXXV1
Sternal notch, height	96, 439	141.18	55. 58	82.09	5.91	$\pm .0091$	4.186	2.33	LXXXV
Leg length.	76,141	71.69	28.22	41.68	4.71	$\pm .0081$	6.570	1.85	LXXVI
Knee height.	76,141	47.08	18. 54	27.38	3.62	$\pm .0063$	7.689	1.43	LXXVI
Arm length.	94,940	78.57	30.87	45. 60	4.69	$\pm .0053$	5.981	. 90	LXXXII
Forearm.	82,492	26.91	10.59	15.65	1.73	$\pm .0029$	6.429	. 68	LXXXII
Chest eircumferen	95,867	88.79	34.96	51.62	5.09	$\pm .0078$	5.733	2.00	XCIX
Chest transverse.	96,583	29.02	11.42	16.87	2.40	$\pm .0037$	8. 270	. 94	LXXX
Chest, antero-posterior	96,583	21.58	8.50	12.55	1. 87	$\pm .0029$	8. 665	. 74	LXXX
Shoulder width......	95, 167	41.81	16. 46	24.31	2.41	$\pm .0037$	5.764	. 95	CI
Neck eireumference.	95, 271	35.98	14.16	20.92	1.80	$\pm .0028$	5.003	. 71	LXXVIII
Waist eircumference	96,157	77.87	30.66	45.28	6.00	$\pm .0093$	7.705	2.36	LXXXI
Transverse pelvic diam	95, 658	29.43	11.59	17. 11	2.85	$\pm .0044$	9.684	1.12	LXXXI
Thigh eireumference. .	95, 188	52.71	20.75	30.65	3.73	$\pm .0058$	7.076	1. 47	CXVIII
Suprapatella...	96, 157	37.34	14.70	21.71	2.45	$\pm .0059$	6.561	. 96	CXIX
Knee patella.	96, 157	36.21	14.26	21.05	1.98	$\pm .0030$	5.468	. 78	CXX
Calf circumferenc	96, 087	34.09	13.42	19. 82	2.02	$\pm .0045$	5.925	. 80	CXXI
Weight.	79, 706	a 65.62	${ }^{\text {b } 144.67 ~}$	c 31.56	a 7.67	$\pm .0424$	3.587	${ }^{\text {b }} 16.92$	
a Kilograms.		${ }^{6}$ Pot	unds.			Weight in (Heigh	pounds in inche	$\frac{\times 1,000}{e s .)^{2}}$	

Table 104.-Summary of dimensions of approximately 6,000 colored troops, demobilization.

	Number of men measured.	Mean.		Relation to height (eentimeters).	Standard deviation (centimeters)	Probable error (centimeters).	Coeffi- cient of varia (centimeter) (per cent).	$\begin{gathered} \text { Stand- } \\ \text { ard } \\ \text { devia- } \\ \text { tion } \\ \text { (inehes). } \end{gathered}$	Table from which figures were taken.
		Centimeters.	Inches.						
Stature	6, 441	171.97	67.70		6.91	± 0.0410	4.018	2.72	I, XXXIX
Span.	6,441	180.76	71.17	105.10	8.59	$\pm .0510$	4. 752	3.38	LXXXVIII
Sitting height	6,443	87.35	34.39	50.79	3.48	$\pm .0207$	3.984	1.37	L,XXXVII
Pubie arch, height	6,220	89.42	35.21	52.00	5.27	$\pm .0319$	5.894	2. 07	XC
Sternal noteh, heigh	6,454	142.39	56.06	82.80	6.05	$\pm .0359$	4. 249	2.38	LXXXIX
Leg length.	5,595	74.38	29.28	43.25	4.59	$\pm .0292$	6.171	1.81	XClI
Knee height.	5,725	47.26	18.61	27.48	3.64	$\pm .0229$	7.702	1.43	XCI
Arm length	6, 135	80.56	31.72	46.85	4.76	$\pm .0213$	5. 909	. 93	CXIV
Forearm.	5,514	28.20	11. 10	16. 40	2.03	$\pm .0131$	7.199	. 80	XCVIII
Chest eircumieren	6,355	87.99	34.64	51.17	4.76	$\pm .0285$	5.410	1.48	CVII
Chest transverse.	6,450	29.05	11.44	16. 89	2.26	$\pm .0134$	7.780	. 89	XCVI
Chest, antero-posterior	6,450	21.21	8.35	12. 33	1.74	$\pm .0103$	8. 204	. 69	XCVI
Shoulder width.	6,289	42.89	16.88	24.94	2.15	$\pm .0130$	5.013	. 85	CIX
Neck circumference.	6,280	36.37	14.32	21.15	1.72	$\pm .0103$	4.729	. 68	XCIV
Waist circumference.	6,445	77.83	30.64	45.25	5.76	$\pm .0342$	7.401	2.27	CXXII
Transverse pelvie diam	6,354	28.42	11.19	16. 53	2.35	$\pm .0140$	8. 269	. 93	XCVII
Thigh eircumference.	6,367	54.08	21.29	31.45	3.72	$\pm .0330$	6.879	1.46	XXV
Suprapatella...	6,443	37.61	14. 81	21.87	2.43	$\pm .0214$	6. 461	. 96	CXXVI
Knce patella.	6,444	36.52	14.38	21.24	1.99	$\pm .0175$	5.449	-. 78	CXXVII
Calf circumference	6,444	34.71	13.67	20.18	2.01	$\pm .0125$	5. 791	. 79	CXXVIII
Weight.	3,319	${ }^{\text {a }} 67.83$	b149.53	c 32. 65	a 8.00	$\pm .1452$	3.203	\% 17.53	

c Weight in pounds $\times 1,000$. (Height in inches.) ${ }^{2}$

Table 10..-. I verage dimensions in color races, demobilization, 1919.

a See Table 103.
b See Table 104.
c See Table 107.
Table 106.-Relative dimensions in color races, demobilization, 1919.
[Percentage rates.]

Dimeasion.	White.	Colored.	Indians.	Chinese.	Japanese.
$\left.\frac{\text { Weight in lbs. }}{[\text { Stature(in. })]^{3}}\right\} \text {. }$	31.56	32.65	32.93	32.82	32.00
$\left.\frac{\text { Sitting height (cm.) }}{\text { Stature (cm.). }}\right\}$	52.55	50.79	52.53	52.04	51.41
$\left.\frac{\text { Sternal notch (cm.) }}{\text { Stature (cm.). }}\right\} \text {. }$	82.09	82.80	82.19	82.32	82.15
$\left.\frac{\text { Pubic helght (cm.) }}{\text { Stature (cm.). }}\right\}$	50.47	52.00	50.35	50.33	51.66
$\left.\frac{\text { Leg length }(\mathrm{cm} .)}{\text { Stature }(\mathrm{cm}) .}\right\}$	41.68	43.25	41.76	41.41	43. 42
$\left.\frac{\text { Knee height (cm.) }}{\text { Stature (cm.). }}\right\} .$	27.38	27.48	27.39	27.00	27.33
$\left.\frac{\text { Span (cm.) }}{\text { Stature (cm.) }}\right\} .$	102. 10	105. 10	103. 10	103. 10	103. 70
$\left.\frac{\text { Shoulder width }(\mathrm{cm} .)}{\text { Stature }(\mathrm{cm}) .}\right\} \text {. }$	24.31	24.94	24.83	24.94	24. 57
$\left.\frac{\text { Chest circumference (cm.) }}{\text { Stature }(\mathrm{cm}) .}\right\} \text {. }$	51.62	51.17			
$\left.\frac{\text { Chest circumference (cm.) }}{\text { Weight in lbs. }}\right\} \text {. }$	61.37	58. 84			
$\left.\begin{array}{l}\text { Transverse chest (cm.) } \\ \text { Intero-post.chest (cm.) }\end{array}\right\}$.	134.48	136.96			
$\left.\frac{\text { Antero-post.chest }(\mathrm{cm} .)}{\text { Stature }(\mathrm{cm})}\right\}$	12. 55	12.33			
$\text { Waist circumference (cm.) } \frac{\text { Stature (cm.). }}{\text { Wemen }}$	45. 28	45.25			
$\left.\frac{\text { Pelvic diameter }(\mathrm{cm} .)}{\text { Stature }(\mathrm{cm} .)}\right\} \text {. }$	17.11	16. 53	17.32	17.53	16.90
$\left.\frac{\text { Thigh circumference }(\mathrm{cm} .)}{\text { Stature }(\mathrm{cm} .)}\right\}$	30.65	31.45			
$\left.\frac{\text { Caif circumference (cm.) }}{\text { Stature (cm.). }}\right\} \text {. }$	19.82	20.18			

Table 107.-Comparative frequency distribution of measurements in color races at demobilization.
SECTION A: HEIGHT.

SECTION C: SPAN.

Table 107.-Comparative frequency distribution of measurements in color races at demobilization-Continued. section e: sitting height.

SECTION G: LEG LENGTH.

Table 107.-Comparative frequency distribution of measurements in color races at demobilization-Continued. SECTION I: SHOULDER BREADTH.

20. GENERAI, COMPARISON OF OTHER COLOR RACES.

Unfortunately the numbers of Indians, Chinese, and Japanese measured were so small that the value of the comparison of the measurement for them with whites and Negroes is much reduced (Table 105). Nevertheless, some results are fairly clear. Of all three races the Indians are the tallest and the Japanese the shortest, but the height of Indians averaged less than that of the white or Negro troops. In average weight and build the Indians exceeded any other race. Next to the whites the Japanese have the lowest index of build. The sitting height of the Indians exceeded that of any of the color races except white, despite the fact that their stature is inferior to that of the Negroes. Their leg length is less than that of whites, Negroes, and Japanese, but greater than that of the Chinese. The shoulder width is greater than that of whites and less than that of Negro troops. The pelvic width of the Indians is greater than that of any of the other races, except the Chinese. On the whole, the 106 Indians measured resembled, in their proportions, more the 22 Chinese measured than any other race.

A comparison of the relative dimensions of the color races (Table 106) offers points of interest. The Negro troops have the stockiest build, the Indians come next, and the whites are last. The white troops have the relative largest sitting height (trunk, head, and neck), the Indians about the same, and the Negro troops least. The relative height of the sternal notch is greatest in the Negro troops and least in white troops. Pelvic height also is greatest in Negro troops and less in Indians and Chinese than in the whites; the whites are intermediate in leg length. The white troops have the relatively shortest span and the Negro troops have the longest. The relative shoulder width is greatest in Negro and Chinese troops and least in white. The relative transverse pelvic diameter is least in the Negro troops and greatest in the Chinese. The chest of the Negro troops is more elliptical on cross section than that of the whites.

Table 108.-Comparative measurements at demobilization, Civil and World Wars. WHITE TROOPS.

Measurements.	Number of men measured.	Mean.	Remarks. ${ }^{\text {b }}$
Height (demobilization, 1919).	96,596	67.72	
Sitting height:	10,876	36.08	Sitting height is made up of head and neck $9.94+$
Demobilization, 1919	96,239	35.59	body length 26.16 ; pages 253 and 25.5.
Pubie height:			
Gould a	1,061	33.27	Sailors; pages 290 and 291.
Demobilization, 1919	91,365	34.18	
Leg length:			
	10,876	28.49	Leg length is the difference between the total leg length 31.06, and the thickness of the foot, 2.57; pages 257 and 274 .
Gluteal fold to apex internal malleolns (demobilization, 1919).	76,141	28.22	
Gould a.	10,848	18.61	Knee height; page 258.
Demobilization, 1919	76, 141	18. 54	Knee helght, page 25 .
Chest eircumference:			
Gould a	10,874	34. 49	Chest cireumference; page 263.
Demobilization, 1919	95, 867	34.96	
Neck circumference: Gould a	9,300	13.63	Neck circumference; page 260.
Demobilization, 1919	95,271	14. 16	
Waist circumference:			
Gould a.	10,876	31.47	Waist cireumference; page 266.
Demobilization, 1919	96,157	30.66	Wast ciroumforence, page 20.
Weight:			
Gould a.	10,757	141.38	Weight; Table III, page 403.
Draft, 1917-1918....	873,159	141.54	
Demobilization, 1919........	79,706	144.67	
Height: ${ }_{\text {Volunteer recruits (Gould) a }}$	1,104, 841	67.64	Height, white and colored: Table VII, page 105.
Draft, 1917-1918........... ..	873,159	67. 49	
Baxter.	501,068	67.30	Height, white and colored draft recruits; Baxter, Volume I, page 23.

NEGRO TROOPS.

Height (demobilization, 1919).	6,441	67.70	
Sitting height:			
Gould a.	6,441	34.11	Sitting height is made up of head and neck 9.e2 +body length 24.49; page 299.
Demobilization, 1919	6,443	34.39	
Pubic height:			
Gould a	2,020 6,220	34.30	Pubic height; pages 299 and 300.
Leg length:			
Gould a.	2,020	29.43	Leg length is the difference between the total leg length, 32.10, and the thickness of the foot, 2.57; Table V, pages 303 and 305.
Gluteal fold to apex internal malleolus (de- Knee height: mobilization, 1919).	5,595	29.28	
Gould a.	2,020	19. 14	Knee height; Table V, page 314.
Demobilization, 1919	5,725	18.61	
Chest eircumference: Gould a	2,020	34.28	Chest cireumference; Table V', page 304.
Demobilization, 1919.	6,355	34.64	
Neck circumference:			
Gould a. \qquad Demobilization, 1919	2,020	13. 92	Neck circumference; Table V', page 304.
Demobilization, 1919 Waist circumference:	6,280	14.32	
Gould a	2,020	30.30	Waist circumference; Table V, page 304.
Demobilization, 1919	6,445	30.64	
Weight: Gould a	2,001	144.58	Weight; Table I, page 402.
Demobilization, 1919	3,319	149.53	

a Demobilization, 1865 (Gould, 1869).
${ }^{b}$ Except where speeified the references are to Gould.

21. COMPARISON OF THE SOMATIC PROPORTIONS IN THE EIGHT EUROPEAN RACES.

(a) General discussion.-The number of races in the United States of which representatives were measured at demobilization is very great. Provision was made in coding for some 78 countries and subdivisions of the populations of countries. But when the final results were tabulated it was found that there
were only eight of the European nations native-born representatives of which were included in our statistics in sufficient frequency to make the analysis worth while. These races are:

Table: 109.-A pproximate number of men measured in 8 European races, demobilization, 1919.

Race.	Approximate numof men measured.	Race.	Approximate numof men measured.
English.	4,204	French...	1,457
Scotch..	2,074	1 talian.	3,519
1 rish..	6,164	Polish..	2,408
German	7,077	Hebrew.	1,692

For the above races the principal dimensions as given in Table 110 were drawn up.

Table 110.-Absolute dimensions in 8 European races, demobilization, 1919.

Dimension.	English.	Scotch.	Irish.	German.	French.	1 tallan.	1'olish.	Hebrew.
Number men measured.	4,204	2,074	6, 164	7,077	1,457	3,519	2,408	1,692
Height . ${ }^{\text {m }}$.	172.08	172.54	171.36	172.04	168.59	165.18	169.41	166.91
Weight ${ }^{\text {l }}$ bs. .	144.98	144.93	142.96	148.20	142.16	137.99	145.62	137.85
Index of build	31.59	31.41	31.41	32.31	32.37	32.63	32.73	31.93
Sitting heightem.	90.63	90.75	90.46	90.36	89.47	87.76	89.42	88.0\%
Spanem.	175.61	175.60	174.10	176.66	172.85	169.19	174.60	170.30
Sternal notchem	140.87	141.53	142.28	141.19	137.88	135.37	139.15	136.93
Pubic heightem.	87.19	87.30	86.55	86.63	85.80	82.81	85.27	83.94
Knee heightem.	47.74	47.83	46.59	47.22	46.83	45.13	46.69	45.57
Leg lengthcm.	71.34	71. 68	70.91	71.47	69.22	67.84	70.16	68.93
Chest eircumferenceem.	88.18	88. 57	88.67	89.52	88.49	88.87	90.42	87.53
Transverse chestem.	23.87	29.01	28.77	29.12	28.58	28.76	29.22	28.25
Antero-posterior chest m.	21.45	21.58	21.60	21.79	21.39	21.48	21.90	21.42
Shoulder widthem. .	41.69	41.70	41.43	42. 19	40.41	41.64	42.24	41.42
Pelvic widthem. .	29.28	29.38	28.92	29.80	28.70	28.62	29.55	28.34
Waist circumference.cm.	76.69	77.53	77.70	78.46	77.32	77.16	78.38	76.71
Thigh circumferencecm. .	52.38	52.36	52.27	53.19	51.98	52.03	52.46	52.18
Calf circumferenceem. .	33.90	34.04	33.83	34. 40	33.68	33.71	34.44	33.66
Flaxen hair................ . . $\mathrm{per} 1,000 .$.	55.05	52.81	37.80	68.49	27.19	6.02	75.77	16.01
Light brown hair per 1,000. .	235.70	228.85	188.54	306.08	138.77	59.06	333.47	110.31
Clear red hair per 1,000. .	13.82	20.05	25.42	6.79	7.67	1.72	7.08	8.90
Clear blue cyes $\mathrm{per} 1,000$.	441.57	477.29	533.70	426.14	342.90	111.59	468.50	230.86

(b) Stature.-Table 25 gives the proportional distribution of different classes of stature. In order of mean stature the Scotch stand first, 172.54 centimeters. They are followed by the English, 172.08; German, 172.04; Irish, 171.36; Polish, 169.41; French, 168.59; Hebrews, 166.91; and Italians, 165.18. The standard deviation in stature is least in the Italians (probably because they are shortest) and greatest in the English, indicating a great admixture of race statures in that people. Other high standard deviations are: German, 6.61; French, 6.50. Next to the Italians in limited stature variability stand the Polish with a standard deviation of 6.12 , and the Hebrews with 6.20. The Irish have a standard deviation of 6.31 , and the Scotch of 6.39 .

Corresponding to their tall stature, we find among the Scotch a larger proportion of men of stature class 172-173 centimeters than among any other people. Indeed, this constitutes the modal class for the Scotch. For the English $170-171$ is the modal class and the same holds for the German, Irish, Polish, and French. For Hebrews and Italians, however, the modal class is 164-165 centimeters. Using the English system of measures, the average
stature of the Scotch is about 68 inches (172.54 centimeters), of the Italians 65 inches (165.18 centimeters).
(c) Weight.-Table 37 gives the distribution of absolute weights and the relative proportion of the different weight classes for the eight European races.

From Table 110 we learn that though the Scotch have the tallest average stature they have not the greatest average weight. This greatest average weight is found in the Germans, 148.20 pounds; second in order come the Polish, 145.62 pounds; then the English and Scotch, respectively, 144.98 and 144.93 pounds; the Irish, 142.96 pounds; French, 142.16 pounds; and at the bottom of the list the Hebrews and Italians, respectively, 137.85 and 137.99 pounds.

In variability of weight the Scotch (standard deviation 17.41) stand at the top, followed by the English, Irish, and Germans. The Polish stand at the bottom of the list (standard deviation 15.29), with Italians, French, and Hebrews above.
(d) Index of build.-The index of build of the eight races is obtained by dividing the mean weight by the square of the mean stature.

Table 111.-Index of build in eight European races, obtained by dividing weight by stature and by the square of stature, demobilization, 1919.

Race.			Weight. Stature.
Polish.		32.73	2.183
Italian..		32.63	${ }_{2}^{2.122}$
French.		32.31 32.37	${ }_{2.142}^{2.188}$
Hebrew		31.93	2.098
English.		31.59	2.140
Scotch..		31.41	2.134
1 rish.		31.41	2.119

Table 111 gives the index of build, using both the first and second powers of the statures as divisors. The races are arranged in order of the quotient of weight divided by stature squared. It appears from this calculation that the Polish have the largest index of build, followed in order by the Italians, Germans, French, Hebrew, English, Scotch, and Irish. If it is contended that the larger races are given an unduly small index of build, due to the squaring of the stature, a comparison may be made of the weight divided by the first power of the stature, in which the order of robustness is German, Polish, French, English, Scotch, Italian, Irish, and Hebrew. From other evidence it seems probable that the first series is the more significant.
(e) Summary.-Without calling attention in detail to all the striking results shown in Tables 110 and 111, it may be said in summary that in absolute dimensions of the five groups-Scotch, English, Irish, German, and Polish-the Scotch lead in stature, sitting height, pubic height, knee height, and leg length-thus in vertical dimensions. The English are usually second in these respects. The Poles are first in horizontal dimensions-in index of build, chest circumference, shoulder width, and calf circumference. The Germans are first in absolute weight and second in the horizontal dimensions, but not in index of build.

Of the four groups-Polish, French, Hebrew, and Italian - the Poles are in a class by themselves in absolute dimensions. The French are next, being first in sitting height, pubic and knee heights, and second in the other dimensions. The Italian group stands first in nothing; they are mostly inferior in absolute vertical dimensions to the Hebrews but exceed them in horizontal ones, such as index of build and dimensions of chest, shoulder width, and calf circumference.

Table 112.-Relative dimensions in eight European races, demobilization, 1919.a
[Per cent rates.]

Dimensions.	English.	Scotch.	1rish.	German.	French.	1 talian.	Pollsh.	llebrew.
$\left.\frac{\text { Weight, in pounds }}{\text { Stature }{ }^{2} \text { (inches) }}\right\} .$	31.59	31.41	31.41	32.31	32.27	32.63	32.73	31.92
$\left.\frac{\text { Sitting height }}{\text { Stature }}\right\}$	52.67	52.60	52.79	52.52	53.07	53.13	52,78	52.76
$\left.\frac{\text { Sternal notch }}{\text { Stature }}\right\}$	81.86	82.03	83.03	82.07	81.78	81.95	8214	82.04
$\left.\frac{\text { Pubic height }}{\text { Stature }}\right\}$	50.67	50.60	50.51	50, 35	50. 89	50.14	50.33	50.29
$\left.\frac{\text { Leg length }}{\text { Stature }}\right\}$	41.46	41. 54	41.38	41.54	41.06	41.07	41.41	41.30
$\left.\frac{\text { Knee height }}{\text { Stature }}\right\}$	27.74	27. 72	27.19	27.45	27.78	27.32	27.56	27.30
$\left.\frac{\text { Span }}{\text { Stature }}\right\}$	102. 10	101.80	101.60	102.70	102.60	102. 40	103. 10	102.00
$\left.\frac{\text { Shoulder width }}{\text { Stature }}\right\} \text {. }$	24.23	24.17	24.18	24. 52	23.97	25.21	24.93	24.82
Chest circumierence $\}$	60.82	61.11	62.02	60.40	62. 25	64.40	62.09	63.50
Weight (in pounds) Transverse chest	134. 59	134.43	133.19	133.64	133.61	133.89	133.49	131.88
Antero-posterior chest Antero-posterior chest $\}$	12.4	12.51	12.61	12.67	12.69	13.00	12.93	12.83
$\frac{\text { Stature (pounds) }}{\left.\frac{\text { Wist circumference }}{\text { Stature (pounds) }}\right\} \text {. }}$	12.47 44.57	12.51 44.93	12.61 45.34	12.67 45.61	12.69 45.86	13.60 46.71	12.83 46.27	45.96
$\left.\frac{\text { Pel vic diameter }}{\text { Stature }}\right\} \text {. }$	17.02	17.03	16.88	17.32	17.02	17.33	17.44	16.98
$\left.\frac{\text { Thigh circumference }}{\text { Stature }}\right\} \text {. }$	30. 44	30.35	30.50	30.92	30.83	31.50	30.97	31.26
$\left.\frac{\text { Calf circumference }}{\text { Stature }}\right\} \text {. }$	19.70	19.73	19.74	20.00	19.98	20.41	20. 33	20.17

a Unless specified all measurements are in centimeters.
In relative dimensions (Table 112) in the five groups-Scotch, English, Irish, Germans, and Polish-it appears that the Polish stand first in all relative horizontal dimensions and the Germans second. In many of such dimensions the English stand last, as the most slender, although the Scotch and Irish are close competitors for this place. Of relative vertical dimensions the English stand first in relative pubic and knee height, the Irish in relative sitting height and sternal notch, and the Scotch and German in leg length. On the other hand, the Irish stand at the bottom in leg dimensions, and the Germans at or near the bottom in relative sitting and pubic heights. In build the Poles are first and the Scotch and Irish last. The Irish chest is most nearly cylindrical (infantile) and the English flattest.
In the four groups-Polish, French, Hebrew, and Italian-the Italians are first in relative horizontal dimensions, while the Poles are frequently last. In relative vertical dimension the Poles are first in sternal height, while the French exceed in relative pubic height and knee height. The Hebrews are last in relative sitting height and knee height. The chest rotundity decreases from the Hebrews, through Polish, and French to Italians, who are in this group the most like the English in this respect.

AVERAGE DIMENSIONS. EIGHT RACES. DEMOBILIZATION-1919 MEAS. IH CMS.; WT. IM LBS.

3-WEIGHT

[^15]AVERAGE DIMENSIONS, EIGHT RACES. DEMOBILIZATION-1919 MEAS. IW CERTIMETERS

PLATE XXIII.

AVERAGE DIMENSIONS, EIGHT RACES, DEMOBILIZATION-1919 meas. in CENTIMETERS

AVERAGE DIMENSIONS, EIGHT RACES, DEMOBLIZATION-1919

 MEAS. IN CENTIMETERS

45 | 50 | |
| :--- | :--- |
| | 29.80 |
| | 29.55 |
| | 29.38 |
| | 29.28 |
| | 28.92 |
| | 28.70 |
| 28.62 | |
| 28.34 | |

3-CHEST DIAMETER. TRANS.

45 | 50 | |
| :--- | :--- |
| | 29.22 |
| | 29.12 |
| | 29.01 |
| | 28.87 |
| | 28.77 |
| | 28.76 |
| | 28.58 |
| | 28.25 |

4-CHEST, ANTERO-POSTERIOR

RELATIVE DIMENSIONS, EIGHT RACES, DEMOBILIZATION - 1919 PERCENTAGE RATES BASED ON MEAS. IN CMS.

4-PUBIC HEIGHT

RELATIVE DIMENSIONS, EIGHT RACES, DEMOBILIZATION-1919 PERCENTAGE RATES BASED OH MEAS. IM CMS.

3-THIGH CIRCUMFERENCE
 30.35

4-KNEE HEIGHT

Plate xXVII.

RELATIVE DIMENSIONS, EIGHT RACES. DEMOBILIZATION-1919 percentage rates based on meas. In cms.

2-CALF CIRCUMFERENCE

40	45	50	
			20.41
			20.33
			20.17
			20.00
			19.98
			19.74
			19.73
			19.70

3-PELVIC DIAMETER. TRANS.

4045 \begin{tabular}{l}
40

${ }^{40}$

17.44

17.33

17.32

17.03

17.02

17.02

16.98

16.88
\end{tabular}

4-CHEST, ANTERO-POSTERIOR

$40{ }^{40} |$| 50 |
| :--- |
| 13.00 |
| 12.93 |
| 12.83 |
| 12.69 |
| 12.67 |
| 12.61 |
| 12.51 |
| 12.47 |

E. CORRELATIONS BETWEEN MEASUREMENTS.

1. CORRELATIONS BETWFEN MEASUREMENTS FOR WHITE AND NEGRO TROOPS.

(a) General description of tables.-From the foregoing sections it is clear that height, weight, and chest circumference are not independent, but, on the contrary, closely interdependent measurements. In order to understand the law of their associations, it is necessary to apply correlation tables. Such correlation tables are given in Tables I, II, and III. Table I shows the correlation between stature and weight. It answers the question, How were the weights of men of the stature of 59 inches distributed; how those of the stature of 60 , 61 , and 62 inches, etc.? The distribution of weights for men of different stature is given by reading in horizontal lines across the table. The table also gives the relation between the different statures of men for a given weight. It answers the question, What proportion of men weighing 105-109 pounds are 60 inches, 61,62 inches, etc., tall? The distribution of statures among men of a given weight is given by reading down in the vertical columns. It will be observed that the entries become larger in the middle of the table; this is because men of medium stature and medium weight are much commoner than those of extreme stature or those of extreme weight. Thus, in Table I the largest entry is 18,930 , which means that that number of men out of 868,445 had a stature about 67 inches and 135-139. inclusive, pounds. This combination was then the commonest one among the early recruits into the United States Army.

Table I answers the question, What proportions of men of a given stature, such as 69 inches, fall into each of the different classes of weight? These proportions per 1,000 are obtained by reading along the horizontal lines. Table I answers the question, What proportions of men of different classes of weight, as for instance 145-149 pounds, fall into each of the different classes of stature ? The answer is given again by reading along the horizontal lines. It must be remembered in applying these tables that the frequencies in the extreme classes fail to give a good picture of the distribution of weights and statures in that part of the population. This is because there was a selection against men of under 63 inches, and this selection was especially marked in the case of men under 60 inches tall. A few short men were taken, provided they had an exceptionally fine physique, were especially robust, and had a relatively high weight. Consequently we actually find a larger proportion of men of 59 inches with a weight of $125-129$ pounds than we do of men of 60 inches. Similarly for selected men of 60 inches, the most frequent weight was between 115-119 pounds, which is the same as the most frequent weight for men of 61 or even 62 inches. This shows that even for men of 60 inches a disproportionately large number of lightweights were rejected. On the other hand, few men were accepted who were 76 inches tall. Some such were indeed accepted if they were not obese, so it occurs that the proportion of men weighing 115-119 pounds actually increases as the stature increases from 74 to 79 inches. This
shows that as the stature increased there was a tendency to reject a disproportionately larger number of heavy men. The same thing is shown in the men of the weight of $120-124$ pounds. Between the limits of 62 inches and 75 inches and 100 and 199 pounds, inclusive, the table represents, however, nearly the conditions found in the general population.
(b) Correlations between stature and weight.-By means of a mathematical treatment proposed by Francis Galton and elaborated by Karl Pearson, it is possible to find a single numerical expression for the correlation between pairs of dimensions related like stature and weight. By applying the proper mathematical formula it is determined that the correlation of stature to weight (using the entire Table I) is 0.4810 . This may be interpreted as indicating that as there is an increase of one stature class, there tends to be an increase of about 0.48 , on the average, of the weight class. If the correlation were perfect, any one height class would be accompanied by only one correlated weight class, but it is clear that this is not the case, that the weights of men of successive classes are very variable, and, as weight increases with the increase of stature, that there is a tendency for the individuals to mass themselves around a central point in the table. For English undergraduates a corresponding correlation has been found of the value 0.49 (Pearson, 1899).

The coefficient of correlation, 0.48 , is a fairly high one, as correlations go. The relation between breadth and length in a collection of German skulls has been found to be 0.49 . The relation between capacity and breadth of German skulls has been placed at 0.67 . The relation of length of radius and stature is about 0.70 , whereas that for arm and stature is only 0.37 , and clavicle and scapula, 0.12 to 0.16 .

Table I gives for each class of stature the mean weight. This table is of interest in comparison with the statistics obtained by Gould ${ }^{2}$ at the end of the Civil War and given in his Table IX (p. 408). This Table IX is indeed for white men only, whereas our Table I includes about 6 per cent colored. In Gould's table half inches are tabulated as well as whole inches, and in order to make comparison with our table it is necessary to combine the half inch with the following full inch in his table. It has been done in our Table 113, which shows in parallel columns the average weight of men of a given height, 1866 and 1917-1918.

Table lil3.-C'omparative weight of men of different statures among white soldiers of 1865 at demobilization and white and colored soldiers at demobilization, 1919.

Height, in inches.	Mean weight, in pounds.		Height, in inches.	Mean weight, in pounds.	
	White soldiers at demobilization, 1866 . a	White and colored at demobilization, 1919.b		White soldiers at demobiliza tion, 1866 .a	White and colored at demobilization, 1919.b
60.	111. 79	123.00	68.	144.93	145. 52
61.	117.59	125. 66	69.	149.04	149.39
62.	120.77	127.10	70.	153.19	153.30
63.	122.95	129.78	71.	158. 21	156.91
64.	128, 43	131.84	72.	162. 47	159.84
65.	132.12	135. 20	73.	166.40	164. 03
66.	136. 06	139. 26	74	168.98	168.54
67.	140. 77	142.71		170.39	168. 00

Comparing the two series, with due allowance for the latter including about 6 per cent negro troops, it appears that, on the average, men of 70 inches and under in stature are heavier among the demobilized soldiers of 1919, but men over 70 inches are lighter than they were in 1866 . This indicates that there has been a change in our population through the addition of short stout men and tall lank men. There las indeed clearly been an addition to our population of short thick-set persons from southeastern Europe and from French Canada, and our tall population (including the mountain whites and many of the tall men of the Southern States) has become lanker, through the inclusion of a larger percentage of this lank type in the 1917 data than in the 1866 data.

We may seek a check on this conclusion by comparing our measurements of the draft boards on recruits of 1917-1918 with figures for 6,359 American-born white drafted men accepted for military service by recruiting officers during the draft period of the Civil War, as given in Baxter ${ }^{1}$ (Vol. II, pages 300-315). (See Tables 11 and 12, p. 74.)

Table 12, based on Baxter's, indicates that for Civil War drafted recruits, white native Americans, the commonest combination was $120-139$ pounds weight and $65-67$ inches of stature, and this combination was found in 171 per 1,000 men. Of World War recruits the commonest combination is 120-139 pounds and $67-69$ inches stature, and this combination was found in 134 per 1,000 men.

A comparison of Table 12 with Table 11, giving the statistics for the recruits of 1917-1918, all colors and nativities and in the same form as for 6,359 Americanborn whites, Civil War tables, shows that there was a considerably larger proportion of men 69-73 inches and over in the recruits of 1917-1918. Assuming the basis of selection to have remained the same, then it would appear that there is in the population now a smaller proportion of very short men and a larger proportion of very tall men as compared with 50 years ago. However, the comparability of these tables is very limited, since the one for the Civil War includes only native-born white Americans and the other includes all colors and nativities drafted in 1917-1918. Also the army of the Civil War contained many boys of 18 years or under.

There is shown in the tables a considerable decrease of men of small weight, under 140 pounds, and an increase of men of large weight, over 140 pounds. The tables as they stand indicate an increase of short thick-set men and tall slender men. The former group is doubtless made up largely of recent immigrants from southeastern Europe, who are excluded in the Civil War table. The latter is largely due to the inclusion in our statistics, of the tall lank type from the Southern States who were to a large extent also excluded in the Civil War table. Whether this type is racial or due to other causes does not concern us now. It is largely through the inclusion of these men from the Southern States that there is a larger percentage oi high statures among the recruits of 1917-1918 than among those of the Civil War. At least this influence has been added to that of the immigration of Scandinavians. As already stated, the value of this comparison is very limited, since Baxter's figures are for draft recruits, American-born recruits, and those for 1917-1918 are for the mixed population.

It is very difficult to answer the question whether the physique of our young men has changed in the last 50 years. Indeed, the question thus unqualified has little meaning. Had the racial constitution of the population remained constant, that is, had there been no heavy immigration, then the question would have more meaning; but in view of the tremendous immigration, amounting in some years to nearly a million persons, the physical changes of the racial constitution of our stock have been so great as to mask entirely any slight alteration that may have occurred in the physique of the stock of 50 years ago, either through improvement or deterioration of environmental or economic conditions.

Table 114.-Correlation between stature and chest circumference, Civil War recruits (Baxter, ${ }^{1}$ Vol. II, p. 166).

Stature, in inches.	Chest circumfcrence (expiration), in centimeters.						Total.
	Under 29.	29-30.9	31-32.9	33-34.9	35-36.9	37 and over.	
Under 61.	1. 391	2. 257	2. 060	1. 203	0.443	0.124	7.478
61-62.	4.365	12657	13. 739	7.797	2. 475	. 555	41. 588
63-64.	6.512	30. 083	50.107	38.755	13. 425	2. 892	141. 774
6.5-66.	4. 530	32. 409	85.775	91.375	40.017	9. 506	263.612
67-68.	1.852	19. 105	77.520	111.183	61.263	17.760	288.683
69-70.	- 559	7. 033	36.219	68.695	47.688	17. 012	177.206
71-72.	. 150	1. 599	10. 033	23.119	20.562	9.027	64. 490
73 and over	. 018	. 261	1.708	4. 834	5. 225	3.127	15.173
Total..	19.377	105.404	277. 161	346.961	191.098	60.003	1,000.004

Total strength, 501,068 drafted men, includes substitutes and late volunteers of all nationalities.
Table 115.-Correlation between stature and chest circumference, recruits, 1917-1918 (per 1,000).

Stature, in inches.	Chest eireumference, in centimeters.					Total.
	29-30	31-32	33-34	35-36	Over 37.	
Under 61	0.990	2. 339	2.288	0. 971	0. 292	6.880
${ }_{6}^{61-62 .} 64$.	$\begin{array}{r}4.611 \\ 13.532 \\ \hline\end{array}$	10.772	8. 31. 306	2.768	${ }^{\text {3 }}$. 6.177	26. 822
$65-66$.	23. 029	77.475	79.057	32.424	${ }_{9.329}$	221.314
67-68.	21. 203	91.602	113.965	53.286	16. 468	296. 524
69-70.	10.224	57.215	89.970	49. 593	16.328	223.330
71-72.	2.838	20.099	40. 106	26.010	9. 591	98. 644
73 and over.	. 515	4. 351	11. 536	9.612	4.117	30.131
Total.	76.942	300.830	376. 244	186.022	59.957	999.995

Total strength, 873,159 drafted men of all nationalities.
(c) Correlation between stature and chest circumference.-Table II gives the correlation of stature to chest circumference; that is, it shows the absolute number of men who were 59 inches tall and who belonged to each of the respective classes of chest circumference from 29 to 39 inches, and the same for each class of stature from 59 to 79 inches. The ratios per 1,000 for each of the separate statures is given in Table II, and similarly the distribution per 1,000 of each of the separate chest measurements of the different statures is also given in Table II. Table II shows that in 873,159 men measured the commonest combination among drafted men was 68 inches stature and 33 inches chest circumference.

From Table II it appears that there was actually a larger proportion of men that were 59 inches tall who had Ω chest circumference of 33 inches or over than of men that were 60 inches tall, and correspondingly of the men 60 inches tall there was a larger proportion with a chest circumference 33 inches and over than there was of men 61 and 62 inches tall. The reason for this is that there was a selection for Army purposes of the stoutest men of small stature. The men of short stature who had a chest circumference of only 30 inches were largely eliminated. For men of 62 inches stature and above, the effects of this selection is no longer obvious. Similarly in the case of men over 75 inches tall we find the chest circumference not increasing with the stature. Indeed, the chest circumference in Table II tends slightly to decline in the case of the very tall men. This is apparently due to the selective eliminanation from military service of the very heavy men among the tall men who were examined. The question arises whether there has been a change in physique of men of military age since the Civil War. Some light is thrown on the subject by a comparison of Table 114 and Table 115. Table 114 gives the per mille distribution of the different combinations of stature and chest circumference classes from 501,068 men of all nationalities, draft recruits for the Civil War, taken from a population already depleted by volunteer enlistments. Table 115 gives similarly the per mille distribution of the combination of stature and chest circumference classes for $\$ 73,159$ recruits for the World War. Assuming that no men under 29 inches chest circumference were accepted for the World War, we may compare the remaining classes of chest circumference with each stature class in the two tables. The most frequent combination in both the Civil War and the World War is 67-68 inches stature and $33-34$ inches chest circumference. This group contains 111 per 1,000 in the Civil War recruits and 114 per 1,000 in the World War recruits. Taking the men with the commonest chest circumference, $33-34$ inches, it appears that in the World War there was a larger proportion of the tall statured men of this chest circumference, indicating the larger prcportion of slender men. For the 31-32 inches we find similarly a larger proportion of tall slender men. Taking the group 35-36 inches, we find again an excess of the taller men. It is indeed only in the group of short slender men ${ }^{a}$ that we find a deficiency in the World War recruits. There were proportionately more of the tall slender men in the World War than in the Civil War. This result accords with what has been found already and doubtless is due to the fact that the draft for the World War covered the Southern States, the home of tall slender men, whereas these were naturally not included in the recruits for the Civil War, Federal Army.

Another matter of importance that comes from a consideration of Table II is the coefficient of correlation. This is found to be 0.2304 , about half the correlation that exists between stature and weight. This shows that the relation between stature and weight is twice as close as that between stature and chest circumference. In other words, men of a given stature are less variable in respect to their weight measurements than in respect to their chest circumference.

[^16](d) Correlation between weight and chest circumference.-Table III gives the correlation between weight and chest circumference. The coefficient of correlation is found to be 0.6907 , which is a much higher correlation than between stature and weight and stature and chest circumference. This is in accordance with common experience, namely, that chest measurement varies closely with weight in a given stature;-the heavier the man the greater his chest circumference. This table shows that the commonest chest circumference is 33 inches and the commonest weight 135-139 pounds. The most frequent combination of chest circumference and weight is 33 chest and 135-139 weight. This then corresponds to the condition of the typical man of military age. Since the most frequent height is 68 inches, the most frequent combination of these three dimensions found in recruits of military age is the following: Stature, 68 inches; weight, 135-139 pounds; chest, 33 inches. The corresponding average measurements are: Stature, 67.49 inches; chest circumference (expiration), 33.22 , and weight 141.54 pounds.
Table III (B) gives the ratio per 1,000 of the different weights to chest measurement, and Table III (C) gives the ratio per 1,000 of the separate chest measurements to each weight class.
(e) Correlation between stature and waist circumference.-Table LXXV gives the correlation between stature and waist circumference for 103,410 white and colored troops consolidated. The stature groups range from 148 to 205 centimeters, the mode being in the class 170-171 centimeters, a class which contains 12 per cent of all cases. The average stature is 171.99 centimeters, with a standard deviation of 6.68 ± 0.01.

The waist circumference ranges from 50 to 104 centimeters and over, the modal class being 76-77 centimeters, and the mean waist circumference 77.84 centimeters, with a standard deviation of 5.91 ± 0.01. The correlation between stature and waist circumference is 0.1923 ± 0.0019. This is not a high correlation, such as is found, in a symmetrical figure, on the two sides of the sagittal plane. It is well known that persons who are very tall are large in all dimensions; still, there are so many short persons that are stout and so many tall persons that are thin, as measured by the waist circumference, that the first obvious relation is obscured by the second one.

From the table we see that the commonest relation of stature and waist circumference is that of stature of $170-171$ centimeters, and a waist circumference of 76-77 centimeters. This condition is found in about 19 per 1,000 of the men measured.

2. CORRELATION BETWEEN MEASUREMENTS FOR WHITE TROOPS (DEMOBILIZATION).

(a) Correlation between chest circumference and transverse diameter of pelvis between cristx.-Table LXXIX shows the correlation between chest circumference and transverse diameter of pelvis between cristæ. The table shows that the modal diameter of the pelvis is 29 centimeters, a class that includes about 16 per cent of all. The commonest combination of chest circumference and transverse diameter of the pelvis is: $86-89$ centimeters chest circumference
and 29 centimeters pelvic diameter, giving a combination found in nearly 6 per cent of recruits. The mean diameter of the pelvis for the white troops is 29.45; the standard deviation of this dimension is 2.90 . The correlation is $.3073 \pm 0.0021$.
(b) Correlation between stature and sitting height.-Table LXXXIII shows the correlation between total stature and sitting height for white troops. As has been pointed out earlier, sitting height is usually about 53 per cent of the total stature. In Table LXXXIII it appears that the commonest sitting height is 90-91 centimeters, while the commonest stature is 170-171 centimeters; the sitting height here also is about 53 per cent of the stature. The average sitting height is 90.39 , with a standard deviation of 3.51 ; the mean stature in this table is 171.99 centimeters, with a standard deviation of 6.66 . The range in the relation of sitting height to stature is, however, great, as indicated in the table. Thus there were 4 per 1,000 of the recruits with a stature of 162.5 centimeters, and sitting height of 90.5 centimeters. For these the relative sitting height is 55.6 per cent of the total stature. One per 1,000 of the men had a stature of 184.5 and a sitting height of 90.5 ; here the relative sitting height is 49.1 per cent of the total stature. Similarly, of men 170.5 centimeters in stature, there were 0.6 per 1,000 who had a sitting height of 80.5 ; thus their relative sitting height was 47.2 per cent of the stature. Again, 0.5 per 1,000 , with a sitting height of 98.5 and a total stature of 170.5 , had a relative sitting height of 57.8 per cent of the total stature. The correlation between stature and sitting height is found to be 0.6626 ± 0.0012, a high correlation, as was to be expected, since sitting height is a segment of total stature.
(c) Correlation between stature and height of sternal notch.-Table LXXXV shows the correlation between stature and height of sternal notch from the floor (in centimeters). The commonest height of the sternal notch is $140-141$ centimeters, and the mean height of sternal notch is 141.18 ; standard deviation, 5.91 centimeters. The table shows for each of the different statures the absolute distribution and the frequency of different heights of sternal notch.

Since the height of the sternal notch is an important element of the total stature, it is to be expected that there is a close relation between the two dimensions. The coefficient of correlation is calculated from Table LXXXV as 0.8567 ± 0.0006, a very high correlation. The ratio of height of sternal notch to total stature is as $141.18: 171.99$, or $\$ 2.09$, or about five-sixths of the total stature.
(d) Correlation between stature and height of pubic arch.-Table LXXXVI gives the correlation between stature and height of pubic arch for white troops. The modal height of pubic arch is $86-87$ centimeters, a group which contains about 15 per cent of all. The average height of pubic arch is 86.82 centimeters; standard deviation, 5.05 centimeters. It will be observed from this table that the relation of mean pubic height to mean stature is as $86.82: 172.02$, or 50.47 per cent. Thus we see that in this series height of pubic arch is almost preciscly one-half total stature.

Since height of pubic arch constitutes about one-half of the total stature, it is to be expected that the correlation between the two would be fairly high. It proves to be 0.6960 , or over two-thirds, naturally less than the correlation
between sternal height and stature, because sternal height is a larger component of total stature.
(e) Correlation between stature and span.-Table LXXXIV gives the correlation between stature and span for white troops. The modal span is seen to fall in the class 174-175 centimeters, which contains about 10 per cent of all men measured. The ratio of mean span to mean stature is as $175.58: 171.99$, or 102.09 per cent. Thus mean span is seen to be slightly greater than mean stature. There is, however, a good deal of variation in this respect. Thus in the case of men with a span of 168.5 centimeters the most frequent stature is 166.5 centimeters, giving 101.2 per cent. However, there is at one extreme a number of men of this same span who have a height of only 154.5, giving a ratio of 109.06 . In this group the span is 9 per cent greater than stature. On the other hand, in six cases the stature of men with a span of 168.5 was 186.5, giving a ratio of 90.35 per cent. In this case the span is about 10 per cent less than the stature.

The correlation between stature and span is 0.7944 , a high correlation, as a glance at the correlation surface shows must be the case. For English fathers the correlation between these two dimensions was found by Pearson (1903) to be 0.783 ; for the sons of such fathers, 0.802 . Our result is almost intermediate between Pearson's two figures.
(f) Correlation between chest circumference and weight.-Table LXXVII gives the correlation between chest circumference in centimeters and weight in pounds for white troops. The commonest combination is seen to be a chest circumference of $86-89$ centimeters, and a weight of $140-149$ pounds. This class contains about 10 per cent of all men measured. As chest circumference and weight are more or less independent measures, it is not to be expected that the correlation between them will be very high, but it proves to be 0.6598 ± 0.0013. This is a fairly high correlation and indicates that the development of muscles and the deposition of fat upon the chest go hand in hand with increasing weight, so that the two are closely interdependent. It will be noted that this correlation is distinctly less than that found (p. 426) in the case of recruits
(g) Correlation between chest circumference and neck circumference.-Table LXXVIII gives the correlation between chest circumference and neck circumference in white troops. The modal class for neck circumference is seen to be 36 centimeters, for chest circumference 86-89 centimeters. The mean neck circumference is 35.98 ; standard deviation 1.80 centimeters. The mean chest circumference is 88.79 ; standard deviation 5.18. Thus, in this group the neck circumference is to chest circumference as $35.98: 88.79$, or 40.52 per cent. That is, the neck circumference is about 40 per cent or two-fifths of the chest circumference. The correlation between these two dimensions is $0.5061 \pm$ 0.0016 . This fairly high correlation indicates that the same developmental factors that determine a robust trunk also determine to a considerable extent a large neck. Since chest circumference is so closely correlated with weight, it is probable that the neck circumference is also somewhat correlated with weight, though the actual correlation was not calculated.
(h) Correlation between transverse and antero-posterior diameters of the chest.Table LXXX gives the correlation between transverse and antero-posterior chest diameters in white troops. The modal class for transverse chest diameter is 28-29 centimeters, and for antero-posterior 20-21 centimeters. The average transverse diameter of the chest is 29.02 ; standard deviation 2.40. The mean antero-posterior chest diameter is 21.58 ; standard deviation 1.87. Thus, the antero-posterior diameter is to the transverse diameter as 21.58:29.02, or 74.36 per cent. In other words, the antero-posterior diameter is, on the average, about three-fourths the transverse diameter of the chest. There is, however, a good deal of variation in this regard. Thus the transverse diameter of the chest is seen to range from 18 to 49 centimeters, the larger diameter being 2.5 times the smaller diameter. Since the larger chest circumference is more than twice the smaller chest circumference, this great variation in transverse chest diameter indicates that the length of the axes of the chest is very much more variable than the total circumference. The capacity of the chest is much more constant than its form.

The table gives the range of antero-posterior diameter as extending from 14 to about 40 centimeters. Here we see that the largest class of anteroposterior diameter is 2.7 times the smaller antero-posterior diameter. Thus the range is somewhat greater in per cent than the variability in the transverse chest diameter. The variability of the transverse diameter is, however, seen to be somewhat greater than that of the antero-posterior diameter, as 2.40: 1.87. This is, however, largely because the transverse diameter is a greater dimension than the antero-posterior diameter. The coefficient of variation, which is obtained by dividing the standard deviation by the mean, is for the transverse diameter of the chest 8.27 per cent and for the antero-posterior diameter 8.67 per cent. Thus taking into account the differences in mean dimension, the antero-posterior diameter is more variable than the transverse. This will be easily understood by those who have measured a large number of men. Even among those accepted, there are many cases of chicken-breasted individuals with prominent sternum, greatly increasing the antero-posterior diameter. The correlation between the two diameters is relatively small, 0.2714 . This small correlation is no doubt the resultant of two factors, one which tends to keep the shape of the thorax constant and the other which tends to preserve a fairly constant volume, at least for men of a given size. The correlation of the first set of factors is positive, of the latter negative; that is to say, a long transverse diameter would be correlated with a relatively shorter antero-posterior diameter.
(i) Correlation between chest circumference and transverse pelvic diameter.Table LXXIX shows the correlation between chest circumference and breadth of the pelvis (between cristæ) for white troops. Of chest circuinference, the modal class is seen to be $86-89$ centimeters, the mean 88.78 , and standard deviation 5.17. Of pelvic diameter the modal class is 29 centimeters, and the mean 29.45 , and standard deviation 2.90 . The relation of mean chest circumference to mean pelvic diameter is thus $88.79: 29.43$, or 33.14 per cent. Thus for white troops the pelvic diameter is almost exactly one-third of the chest girth, while it is 38 per cent of waist girth, indicating again the fact that chest
girth exceeds waist girth in these veterans. The correlation between these dimensions is 0.3073 ± 0.0021 as compared with 0.3510 ± 0.0019 for waist and pelvis. This suggests that pelvic diameter has a slightly closer relation with waist girth on the one hand than with chest girth on the other; doubtless due to the closer proximity of the two dimensions.
(j) Correlation between waist circumference and transverse pelvic diameter.Table LXXXI shows the correlation between waist circumference and transverse diameter of the pelvis (between cristæ) for white troops. The modal class of waist circumference is seen to be 76-79 centimeters; the mean is 77.87 ; standard deviation 6.08. The modal class for transverse pelvic diameter is 29 centimeters, mean transverse pelvic diameter 29.43; standard deviation 2.85. The relation of mean pelvic diameter to mean waist circumference is thus seen to be 37.8 per cent. This relation, however, is less significant than the relation between the transverse pelvic diameter and the transverse diameter of the chest. This is as 29.43: 29.02, or 101.41. That is to say, on the average, the transverse pelvic diameter is about 1.4 per cent greater than the transverse chest diameter. The correlation between the above two dimensions is $0.3510 \pm$ 0.0019 . This correlation is to be expected, since both dimensions depend upon the form of the trunk which constitutes roughly a cylinder of which the diameter as well as the length varies. However, the fact that the coefficient of correlation deviates so far from unity proves that the capacity of the chest and the transverse diameter of the pelvis are to a considerable extent independently variable, and this is understandable in view of the comparative rigidity of the pelvis and the great elasticity of the chest. For the chest is capable of very great extension and development in such training as was given to military men.
(k) Correlation between arm length and forearm.-Table LXXXII gives the correlation between total arm length (a measurement which extends from the spines of the vertebral column along the outside of the flexed arm to the styloid process at the wrist) and the forearm (or the distance from the olecranon process at the elbow to the styloid process). Thus the forearm is a part of the total "arm length" measurement.

The modal class of arm length is 78-79 centimeters; the average arm length is 78.42 ; standard deviation 4.69 centimeters. The modal class of forearm length is 27 centimeters; the mean forearm is 26.91 ; standard deviation 1.73. Thus the forearm measurement constitutes 34.32 per cent of the total "arm length," or slightly more than one-third. Of the total arm length measurement, then, about two-thirds is the distance from the elbow to the vertebral column. The average transverse diameter of the chest is 29.02 , half the chest diameter is 14.51 . Substracting the sum of half the mean transverse chest diameter and mean length of the forearm $(14.51+26.91=41.42)$ from the total arm length, we get 37.16 centimeters as the length of the upper arm. This makes the relation of the length of the forearm to the length of the upper arm as 26.91: 37.16 , or 72.42 per cent. Calling the total "arm length " 100 , then the relative length of the segments to be assigned to the half chest diameter, upper arm and forearm as far as the styloid process, are $18.46,47.29$, and 34.25 , or very roughly 1,3 , and 2 , respectively.

Since the forearm is part of the measurement of arm length, a high corrclation between the two parts is to be expected. This is found to be 0.5837 , which is a fairly high correlation. That it is not higher is no doubt due to the fact that it is the resultant of two independently working factors, one which influences the arm as a whole and all its parts and tends to create a positive correlation, and the other which, with constant arm length, tends to alter the relative position at which the division between fore and upper arm shall occur. This tends toward a negative correlation.
(l) Correlation between leg length and knee height.-Table LXXVI gives the correlation between the length of the leg and the height of the knee for white troops. As indicated elsewhere, the length of the leg is measured from the gluteal fold (which is the posterior continuation of the perineum and marks approximately the lower end of the sitting height dimension) to the apex of the internal malleolus. The knee lieight, on the contrary, is measured from the floor to the top of the patella. Thus the knee height is included in part in the leg length, but is not completely included in it.

The modal class of leg length is $70-71$ centimeters, the mean leg length is 71.69 ; standard deviation 4.71 . The modal class of knee height is $46-47$ centimeters. The mean knee height is 47.08 ; standard deviation 3.62 centimeters. The mean leg length is 71.69 centimeters; standard deviation, 4.71 centimeters. Thus the leg length is seen to be more variable than the knee height, which, however, is to be expected, owing to its greater length. If we divide the two standard deviations by the mean length of the corresponding parts, we get a coefficient of variation for leg length of 6.57 per cent and a coefficient of variation for knee height of 7.69 . That is to say, knee height is a relatively more variable dimension than the leg length. This suggests that in addition to the variation in the knce height, correlated with variations in the leg length and the size of the body as a whole, there is also a variation in the knee height (assuming the leg length constant) due to the fact of variation in the relative position of the knee, which is sometimes at a relatively higher sometimes at a relatively lower point on the leg.

The correlation between knee height and leg length is 0.4178 , a fairly high correlation, because the knee height is a part of leg length. That it is not larger is due to the fact, as pointed out above; that the knee height is not entirely included in the leg length. Variation in the relation of knee height to leg length is considerable. Thus with a constant leg length of 70.5 centimeters, we have on the one hand a knee height of 38.5 centimeters, and on the other of 58.5 centimeters. In the first case the ratio of knee height to leg length is 54.61 per cent, in the second 82.98 per cent. Adding 8.5 centimeters to the mean leg length to give the height of the internal malleolus from the floor, we have a mean leg length of 80.19 . Using this as a divisor, we have a ratio for the short knee height of 48.01 per cent and for the longer height of 72.95 per cent. That is, in the shorter knee height the lower leg is less than half of the total leg length; in the greater knee height it approaches three-fourths of the total leg length. In such cases, then, the thigh would constitute only about one-fourth of the total leg length.

If one subtracts from the average knee height 8.5 centimeters, being the average distance from the internal malleolus to the sole of the foot, then the average height of the lower part, of the leg is 38.6 centimeters, which, divided by the leg length (71.69), gives 53.84 per cent as the average relation of the lower leg to total leg length. This is a relatively high proportion as compared with the dimensions given in Martin ${ }^{5}$ (pp. 314-315), where at the age of 13 years in the male the "Unterschenkel" is about 42 per cent; in the case of adult Chinese 42.7 per cent. The high per cent of leg length found in our table is no doubt partly due to the circumstance that the measurement was made to the top of the patella, whereas in Martin's measurement, it was made only to the head of the tibia, which is located about 5 centimeters below the top of the patella. Subtracting these 5 centimeters +8.5 (the height of the internal malleolus), or 13.5 altogether, from the mean knee height, we have 33.6 remaining, which, divided by 71.69 , gives 46.87 per cent. Even this gives a relatively long lower leg, due, again, to the fact that our divisor "leg length and foot" is still too short, being height of gluteal fold instead of height of trochanter or iliospinale. For trochanter leg length about 5 centimeters has to be added to our "leg length and foot," which gives a relative knee height of 43.8 per cent.
(m) Correlation between leg length and waist circumference.-Table CXV shows the correlation between waist circumference and leg length for white troops. This is the basal table used in forming the breeches groups for uniforms. The modal class of waist circumference is $76-79$ centimeters. The mean is 77.87 ; standard deviation 6.08 centimeters. The modal class of leg length is $70-71$ centimeters; mean leg length 71.44 centimeters. This mean leg length is clearly to be preferred to that obtained from Table LXXVI, which is based on 20,000 fewer measurements. The coefficient of correlation between waist circumference and leg length is 0.1591 ± 0.0021, a low correlation but positive, indicating that, through the operation of factors that influence the size of the body as a whole, on the average, men with larger waist circumference have longer legs. That the correlation is so low is due in large part to the fact that shorter men are, on the average, more robust (have relatively larger waist and chests) than taller (longer-legged) nien.

3. CORRELATION BETWEEN MEASUREMENTS.-NEGRO TROOPS.

In the following paragraphs the correlations are given between various pairs of dimensions for Negro troops. The numbers are unfortunately small, under 6,500 , but the means and correlations obtained from them are doubtless significant for comparison with white troops.
(a) Correlation between stature and sitting height.-Table LXXXVII gives the correlation between stature and sitting height for 6,433 colored troops. The modal class of sitting height is $86-87$ centimeters, the mean sitting height is 87.35 ; standard deviation 3.48 . The mean stature is 171.99 ; standard deviation 6.90 centimeters. The relation of mean sitting height to stature is 50.79 per cent. Considering only the classes which contain more than 10 individuals: the range of relative sitting height for men of stature 170-173 is from 46.7
per cent to 53.6 per cent. The coefficient of correlation between stature and sitting height is 0.6088 .
(b) Correlation between stature and height of sternal notch.-Table LXXXIX gives the correlation between stature and height of sternal notch in 6,454 colored troops. The modal class for sternal notch is 142-143 centimeters; the average is 142.39 ; standard deviation 6.05 . The relation of height of sternal notch to mean stature is 82.8 per cent. If the standard deviation of the mean stature (in this table, 6.91 centimeters) is somewhat more variable than the height of sternal notch, it may be because of the greater number of units involved in mean stature. Dividing each standard deviation by the mean in order to secure the coefficient of variation, we find that this is for the mean stature 4.25 per cent, and for sternal notch 4.01 per cent. Thus, the height of the sternal notch proves to be also a relatively less variable dimension. The coefficient of correlation between these two dimensions is 0.8582 .
(c) Correlation between stature and height of pubic arch.-Table XC gives the correlation between stature and height of pubic arch in the case of 6,220 colored troops. The modal class of pubic height is $90-91$ centimeters, the mean pubic height is 89.42 ; standard deviation 5.27 . The relation of mean height of pubic arch to mean stature is 52.02 per cent. The variability in this respect is considerable. Thus the men with a stature of $172-173$ centimeters have a relative pubic height ranging (if we include only the more frequent classes) from 46.67 to 55.94 . The coefficient of correlation is 0.6948 .
(d) Correlation between stature and knee height.-Table XCI shows the correlation between stature and knee height for 5,725 colored troops. The modal class of knee height is $46-47$ centimeters. The average is 47.26 ; standard deviation 3.64. Mean height is 172.05 ; standard deviation 6.90. The average knee height constitutes 27.47 per cent. The coefficient of correlation between the two dimensions is 0.4763 .
(e) Correlation between stature and span.-Table LXXXVIII gives the correlation between stature and span in the case of 6,441 colored troops. The modal class of span is 182-183 centimeters; the average span is 180.76 ; standard deviation 8.59. The relation of span to height is 105.16 per cent. The range in this respect is seen to be considerable. Thus of men with an average stature of 170.5 we have some with a span of 168.5 , or 98.83 per cent. At the other extreme we have men with a span of 190.5 , or 1.118 times the stature. The coefficient of correlation between the two dimensions is 0.7292 ; less than in whites.
(f) Correlation between chest circumference and weight.-Table XCIII gives the correlation between chest circumference and weight for 3,319 colored troops. The number is small because in one of the camps, for a period, the colored men were not weighed. The modal class of weight is $140-149$ pounds and modal chest circumference $86-89$ centimeters. The mean weight is 149.53 ; standard deviation 17.53 pounds. The mean chest circumference is 88.14 ; standard deviation 4.79 centimeters. The range of weight is from $100-200$ pounds and over. Of the $3,319 \mathrm{men}, 23$ weigh 200 pounds or over, or 6.93 per 1,000 . The chest circumference ranges from around 70 to over 105 centimeters, the largest number being 50 per cent greater than the smallest. The correlation between chest circumference and weight is 0.6559 ± 0.0067, a high correlation
because, as pointed out in another connection, the chest circumference varies directly with weight since extra weight is apt to be laid down on muscles and fatty tissues of the chest. The correlation is the same as in whites.
(g) Correlation between chest circumference and sitting height.-Table CVII gives the correlation between chest circumference and sitting height in the case of 6,355 colored troops. The modal class for sitting height is $86-87$ centimeters. Mean sitting height is 87.35 ; standard deviation 3.43. The modal class for chest circumference is $86-87$ centimeters; mean chest circumference 87.99 ; standard deviation 4.76 . We see here a very close relation between chest circumference and sitting height, the ratio of the one to the other being as 1.007:1. The range in chest circumference, even excluding the extreme classes with fewer than 5 , is very great, from 70 centimeters to 105 , or an increase of 150 per cent. For men with a sitting height of $86-87$ centimeters there is a range of classes containing 10 or more from $76-77$ to $98-99$ centimeters. In the slenderest group this gives a ratio of chest circumference to sitting height of 88.44 per cent; for the stoutest men the ratio is 113.87 per cent. The correlation between chest circumference and sitting height is 0.3012 .
(h) Correlation between chest circumference and neck circumference.-Table XCIV gives the correlation between chest circumference and neck circumference for 6,280 colored troops. The neck circumference ranges from 29 to 44 centimeters, the modal class being 36 centimeters. The average neck circumference is 36.37 ; standard deviation 1.72 . The mean chest circumference is 87.97 ; standard deviation 4.84 . The relation of neck circumference to chest circumference is obtained by dividing the mean of the former by the mean of the latter, or 41.34 per cent. Taking the class of 83.5 chest circumference, we find the extremes of neck circumference having more than 5 in the class as follows: For the smallest neck circumference, 31 centimeters, or 37.15 per cent of chest circumference; for the largest neck circumference, 40 centimeters, or 47.90 per cent. The correlation between neck circumference and chest circumference is 0.5172 ± 0.0062; practically as in whites.
(i) Correlation between transverse and antero-posterior diameters of the chest.Table XCVI gives the correlation between transverse and antero-posterior chest diameters in the case of 6,450 colored men. The antero-posterior diameter ranges from 14 to 35 centimeters, with a modal class at 20-21 centimeters. The mean antero-posterior diameter is 21.21; standard deviation 1.74. The transverse chest diameter ranges from 18 to 45 centimeters, with a modal class at 28-29 centimeters, and an average of 29.05 ; standard deviation 2.26. The antero-posterior diameter is, therefore, to the transverse as $21.21: 29.05$, or 73.01 per cent. For men of antero-posterior diameter of 20.5 centimeters, there is a considerable range of transverse diameter from 20.5 to 38.5 centimeters. In the narrowest chest, the relation of antero-posterior to transverse diameter is 100 per cent. In the broadest chest it is 53.25 per cent. The corresponding thoracic indices are 100 and 188.

The standard deviation of transverse diameter is greater than that of the antero-posterior, but this may be due to the greater average size of the transverse dimension. The coefficient of variability of the transverse diameter is 7.78 ; of antero-posterior diameter it is 8.20 . This indicates that the antero-
posterior diameter is relatively the more variable. The coefficient of correlation between transverse and antero-posterior chest diameters is 0.2267 .
(j) Correlation between chest circumference and transverse diameter of pelvis.Table XCV gives the correlation between chest circumference and transverse diameter of pelvis in the 6,345 colored troops. The range of diameters of pelvis, including classes containing more than 10 , is from 21 to 39 centimeters. The modal class is 28 centimeters, and the average diameter is 28.54 ; standard deviation 2.64. Taking the class of men averaging 87.5 centimeters chest circumference, including only the groups containing 10 or more, we find a range from 23 to 34 centimeters. The relation of mean transverse diameter of pelvis to mean chest circumference is 32.44 per cent. For the men of smallest pelvic diameter referred to above (23 centimeters) it is 26.29 per cent; for the men with greatest pelvic diameter (34 centimeters) it is 38.86 per cent.

More significant, perhaps, is the ratio of transverse diameter of pelvis to transverse chest diameter, 98.24 per cent. Thus the transverse diameter of the pelvis is slightly less than the transverse diameter of the chest. The correlation between chest circumference and transverse diameter of pelvis is $0.3297 \pm$ 0.0075 .
(k) Correlation between waist circumference and transverse diameter of pelvis.Table XCVII gives the correlation between waist circumference and transverse diameter of pelvis in 6,354 colored troops. The most frequent combination of measures is 76-79 waist circumference with 28 centimeters diameter of pelvis. The mean diameter of pelvis is for this group 28.42; standard deviation 2.35 . The mean waist circumference is 77.82 ; standard deviation 5.71. The ratio of diameter of pelvis to waist circumference is thus 36.52 per cent-that is, the waist is relatively smaller with relation to the hips than the chest is. The standard deviation of the waist circumference is greater than that of the transverse diameter of the pelvis as $5.71: 2.35$. The coefficient of variation, however, is in the one dimension 7.40 per cent and the other 8.27 per cent. Thus, rather remarkably, the diameter of the pelvis seems to show a relatively greater variability than the circumference of the waist. (Note the greater variability of pelvic diameter and waist circumference in whites than in colored). The correlation between waist circumference and transverse diameter of pelvis is 0.4456 ± 0.0068.
(l) Correlation between arm length and forearm.-Table XCVIII gives the correlation between arm length and forearm for 5,514 colored troops. The arm length, as will be remembered, is defined as the distance from the spines of the vertebral column to the styloid process. The forearm is from the elbow to the same process. The modal class for arm length is $80-81$ centimeters; for forearm 28 centimeters. The average arm length is 80.79 ; standard deviation 4.76 . The average length of the forearm is 28.20 ; standard deviation 2.03 . The mean forearm is to the mean arm length as 28.20:80.79, or 34.91 per cent. Taking arm-length class 78.5 , and considering only those classes which contain 5 or more individuals, the relatively shortest forearm is 24 centimeters, or 30.57 per cent; the longest forearm is 31 centimeters, or 39.48 per cent of "arm length."

The total arm length may be divided into three sections, including half the transverse diameter of the chest, upper arm and forearm. The average half
transverse diameter of chest is 14.53 . If we add to this the mean forearm 28.20 , there remains 38.06 for the approximate length of the upper arm. In relation to the total mean arm length of 80.79 , these dimensions are, respectively, 17.98 , 47.11 , and 34.91 per cent. The correlation between arm length and forearm is 0.5782 , a relatively high correlation, because one measurement is included in the other.
(m) Correlation of leg length and knee height.-Table XCII gives the correlation of leg length and knee height for 5,595 colored troops. Leg length has been defined as the distance from the gluteal fold to the internal malleolus, and knee height as the distance from the sole of the foot to the top of the patella. The two measurements therefore overlap and one is not wholly included in the other. The modal class of leg length is $74-75$ centimeters, and that of knee height is 46-47. The average leg length is 74.38 ; standard deviation 4.59. The average mean knee height is 47.32 ; standard deviation 3.37 . It is probable from the table that there are some adult males who have a smaller knee height than 38 centimeters and a greater knee height than 57 centimeters.

To compare the leg length and knee height, we may subtract from the knee height 8 centimeters, in order to get the length of the lower leg from the top of the patella down. As thus defined, the knee height from the top of the patella to the malleolus is 39.3 . If we subtract further 6 centimeters for the distance from the top of the patella to the head of the tibia, we get 33.3 centimeters as the length of the lower part of the leg. This distance divided by the leg length gives the proportion of the lower leg to total length of leg as 44.77 per cent. The knee height as measured constitutes 63.62 per cent of the total leg length. The correlation between knee height and leg length is 0.4305 .

4. COMPARISON OF CORRELATION BETWEEN WHITES AND NEGROES.

Tables 103, 104, and 116 give the comparative measurements and correlation of parts in the white and Negro troops. These tables show at a glance the means of the various dimensions, their standard deviations, and the correlation of certain pairs. We see, for example, that the stature of the Negro troops is more variable than of the white troops, but that the sitting height is 1 per cent less variable in the Negro than in the white. Similarly, the span is more variable in the Negro than in white troops, but the correlation between stature and span is less. This relation between size of standard deviation and correlation is to be expected, since the smaller the variability of each of two dimensions the greater the correlation is apt to be between them. Table 116 shows that the correlation between stature and height of sternal notch is about the same in the two races, slightly greater in the Negro than in the white. Between stature and height of pubic arch it is about the same in the two races. Between leg length and knee height the correlation is much greater in the Negro than in the white; between chest circumference and sitting height the correlation is markedly greater in Negro than in white troops; between transverse and antero-posterior chest diameters the correlation is much greater in the white than in the Negro. This is perhaps associated with the greater similarity in white troops than in Negro troops of the axes of the ellipse made by the cross section of the chest. The correlation between pelvic diameter and waist girth is greater in Negro than in white troops,
perhaps associated with the smaller pelvic diameter．The correlation between chest circumference and pelvic diameter is also greater in the Negro than in the white troops，perhaps associated with the smaller size of the latter dimensions in the Negro race．（See Plate XXIX，page 253．）

Tabbe 116．－Corrclations，summary of white and colored troops，demobrilization， 1919.

Dimension．	Demobilization．			Mobilization， white and colored．	Taken from tables－		
	White．	Colored．	White and colored．		White．	Colored．	White and colored．
Stature and waist．			0． 1923 ± 0.0019				LXXV
Stature and weight．			． $5198 \pm .0017$	0.4810 ± 0.0006			LXXIV
Stature and chest．				． $2304 \pm .0007$			，
Weight and chest．				$.6907 \pm .001$			III
Stature and sitting height．．	0.6620 ± 0.00120	0.6088 ± 0.0053			LXXXIII	LXXXVII	
Stature and sternal notch．	． $8567 \pm .0006$	． $8582 \pm .0022$				LXXXIX	
Stature and pubic arch．	$.0960 \pm .0012$	$.6948 \pm .0044$			LXXXVI	LXXX	
Stature and knee height		$.4763 \pm .0069$				LXXXVEI	
Stature and span．．．．．．．－	$.794 \pm .0008$	．7292土 ． 0034			LXXXIV	LXXXVIII	
Chest circumicrence and weight．	$.6598 \pm .0013$	． $6559 \pm .0067$			LXXVII	XC111	
Chest circumference and sitting height．．．．	． $2415 \pm .0021$	． $3012 \pm .0077$			XCIX	CVII	
Chest circumference and neck circumfer－ ence．	$.5061 \pm .0016$	． $5172 \pm .0062$			LXXVI11	XCIV	
Chest transverse and antero－posterior．．．．．．．	．2714土．0020	． $2267 \pm .0080$			LXXX	XCVI	
Chest circumference							
and pelvis，transverse．	． $3073 \pm .0021$	． $3297 \pm .0075$			LXXIX	XCV	
and pel vis，transverse．	．3510土 ． 0019	． $4456 \pm .0068$			LXXXI	xCVII	
Arm length and fore－ arm．	$.5837 \pm .0015$	． $5782 \pm .0060$			LXXXII	XCV1I1	
Leg length and knee							
height Leg length and waist	． $4178 \pm .0020$	． $4305 \pm .0073$			LXXVI	XCl1	
circumference．．．	$.1501 \pm .0021$				CXV		

CORRELATIONS, WHITE AND NEGRO TROOPS DEMOBILIZATION-1919

PLATE XXIX.

F. PATTERNS FOR UNIFORMS.

The measurements ordered by the War Department were ior the purpose of securing patterns for uniforms. This purpose guided the set of measurements taken and has influenced the statistical treatment of the data secured. It is believed, however, that this fact will not diminish their importance for general anthropological purposes.
The uniform of the soldier consists of two more or less independent pieces, the blouse for the upper part of the body and the breeches for the lower part. The problem, therefore, is different from that of fitting a single suit-like a union suit-to the soldier, and the matter of precise length of trunk is of relatively less importance in uniforms than it would be for single-piece suits.

1. MEASUREMENTS FOR BLOUSES.

(a) General discussion.-Our first purpose, then, was to secure measurements which would serve first for making patterns for the blouse and secondly for making patterns for breeches. One limitation was prescribed by the office of the quartermaster, namely, that uniforms would not be made for any group which contained fewer than 5 per 1,000 men. Consequently, it became necessary to combine, for the purpose of this study, many of the smaller classes to fit the needs of the series. The construction of the blouse groups is shown in Tables XCIX and CVII, which give the correlation between chest circumference and sitting height. These two measures were taken as of primary importance in considering the blouse. The chest circumference is the primary basis of classification, and the length of the trunk, as measured by sitting height, is of secondary importance.
The correlation Tables XCIX and CVII were divided, as indicated in the tables, into 22 groups. The first included all chest circumferences under 78 centimeters. The last three groups included all chest circumferences of 102-105, 106-109, and 110-117, respectively. The last two groups, indeed, do not contain the prescribed 5 per 1,000 . The division was made rather to meet anthropological interests. All of the other chest circumference groups were classes with a range of 4 centimeters. These groups are 78-81, 82-85, 86-89, 90-93, 94-97, 98-101. The division of each of these chest circumference classes was made so as to provide approximately 20 per cent in each of the extreme groups and 60 per cent in each of the median groups. The group with the shortest sitting height was designated by the initial " S ," for short; that with median sitting height by " M ," for median; and that with longest sitting height by "L," for long. The 22 groups thus constructed were called blouse groups, and their association with other dimensions was determined.
(b) Chest circumference.-Table XCIX gives for white troops approximately the frequency per 1,000 men of each of the different chest circumferences for

$$
5 S t i 36^{\circ}-21-18
$$

each sitting height. Thus of men of the sitting height of $86-87$ centimeters there were 2 with a chest circumference of $68-69$ centimeters; there were 5 with chest circumference $70-71 ; 21$ with chest circumference 72-73 centimeters; and 34 with chest circumference $74-75$ centimeters, etc. The modal chest circumference for men of this sitting height was 76-77 centimeters. Taking the distribution as a whole, we find that the commonest sitting height is $90-91$ centimeters, the commonest chest circumference is 88-89 centimeters, and the commonest combination is that of 88-89 chest circumference and $90-91$ sitting height. This group includes about 3.33 per cent of the individuals of the table. The central blouse group is that with chest circumference $86-89$ centimeters and sitting height of 88-93 centimeters, and includes about 200 per 1,000 , or 20 per cent. Since Table XCIX gives absolute numbers for 95,867 persons, the numbers have to be increased about 4.3 per cent to give exact ratios per 100,000 .
(c) Weight.-Table C gives the association between the different blouse groups and the weight of the individual for white troops. Thus for 79,706 of such troops the total distribution is shown in the second column from the left of the table. The next column gives the findings for blouse group 1 with chest circumference of 68-77 centimeters, inclusive. The remaining columns give the absolute frequencies of the different weight classes for each blouse group; also the mean weight of men for each blouse group.

As the table shows, there are naturally more light-weight men associated with the small-size blouses and an excess of heavy-weight men associated with the large-size blouses.

Table 117 (p. 273) gives the average measurements of white men belonging to each of the 22 blouse groups. It is upon this table that the table of dimensions of manikins (Table 122, p. 276) is, in part, made up.

Tabie 117.-Dimensions associated with the "blouse" groups, white troops, demobilization.
[From Tables XCIX-CVI.]

Blouse group nation	Average chest circumference.	A verage sitting height.	$\begin{array}{\|c\|} \hline \text { A ver- } \\ \text { age } \\ \text { stature. } \end{array}$		Average length of head and neck.	Average trunk height.	Average arm length.	Average neck cir-cumference.	Average shoulder width.	Average chest transverse diameter	Aver- age ehest anteropos terlor diameter.	Average diameter pelvis (transverse diameter).	Average weight.	Rate per 1,000 of each group.
			Cm.	Cm				Cm.	Cm.	Cm	Cm	Cm.		
	75.0	8R. 8	169.5	139.3	30.2	5R. 6	76.8	34.4	39.6	27.0	20.0	2×1	129	8.8
2 s	80.0	83.6	163.7	134.6	29.1	54.5	74.2	34.2	39.2	23.8	19.9	27.4	120	7.9
2 m	80.0	88.6	169.2	139.0	30.2	58.4	76.1	34.5	39.7	27.1	20.1	27.9	126	34.9
21.	80.0	93.5	176.4	144.5	31.9	61.6	78.1	34.8	40.6	27.6	20.5	2x. 7	135	10.4
3 s	83.6	83.6	163.7	134.6	29.1	54.5	74.9	34.9	40.0	27.5	20.5	27.9	125	21.7
3 m	83.7	88.8	169.5	139.3	30.2	58.6	76.7	35.0	40.5	27.8	20.7	2 S .4	132	125.3
31.	83.8	93.7	176.7	144.8	31.9	61.8	78.7	35, 2	41.2	28.2	20.8	29.1	140	50.6
4 s	87.5	85.4	165.2	135. 8	29.4	56.0	76.2	35.6	41.0	2, 5	20.8	22.6	134	62.2
4 m	87.6	90.5	172.0	141.3	30.7	59.8	78.2	35.7	41.5	24,8	21.3	29.2	141	208.2
41.	87.6	95.4	178.9	146.5	32.4	63.0	80.1	35. 9	42.1	29.1	21.5	29.9	150	50.3
5 s .	91.3	85.4	165.2	135. 8	29.4	56.0	77.1	36.3	41.9	29.4	21.9	29.2	142	36.6
5 m	91.4	90.6	172.1	141.4	30.7	59.9	79.0	36.4	42.3	29.5	22.0	29.8	150	162.4
51.	91.4	95.5	179.0	146.6	32.4	63.1	81.1	36.6	42.9	29.8	22.1	30.5	158	54.0
	95.2	85.4	165.2	135. 8	29.4	56.0	77.9	37.1	42.8	30.0	22.6	30.1	150	12.7
6 m	95.2	91.5	173.5	142.4	31.1	60.4	76.9	37.2	43.3	30.4	22.7	30.6	160	91.8
61.	95.3	97.3	180.9	148.3	32.6	64.7	$\stackrel{4}{2} 7$	37.4	44.0	30.8	22.9	31.3	170	12.7
7 s	99.1	87.3	167.6	137.7	29.9	57.4	78.9	37.8	43.5	30.9	23.5	31.0	162	8.1
7 m	99.1	92.4	174.8	143.2	31.6	60.8	81.1	37.9	44.1	31.2	23.5	31.5	170	24.3
	99.1	97.4	181.1	148. 5	32.6	64.8	82.8	38. 0	44.5	31.3	23.7	31.7	179	5.4
8.	103.1	92.4	174.8	143.2	31.6	60.8	81.3	3K. 8	45.0	32.2	24.5	32.4	181	8.4
	107.2	92.6	175.1	143.4	31.7	60.9	81.6	39.7	45.7	33.2	25.5	33.4	189	2.3
	112.1	92.6	175.1	143.4	31.7	60.9	81.7	40.8	46.2	34.3	26.4	34.7	191	1.0

Table 118.-Dimensions associated with the "blouse" groups, colored troops, demobilization.
[From Tables CVII-CXIV゚.]

Blouse group designation	Average chest circumference.	Average sitting herght.	$\begin{array}{\|c\|} \hline \text { Aver- } \\ \text { age } \\ \text { stature. } \end{array}$	Aver- age sternal noteh.	Average length of head and neck.	Average trunk height.	$\begin{aligned} & \text { A ver- } \\ & \text { age } \\ & \text { arm } \\ & \text { length. } \end{aligned}$	A verage neck cir-cumference.	Average shoulder width.	A verage chest transverse dıameter		Average dlameter pelvis (transverse diameter).	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { weight. } \end{aligned}$	Rate per 1,000 of each group.
	Cm.	Cm.	Cm.	Cm.	Cm.		Cm.	Cm.	Cm.	Cm.	Cm.	Cm.	Lbs.	
	71.4	86.5	170.9	141.7	29.2	57.3	79.0	35.4	41.7	27.7	20.6	27.1	135	3.2
2	75.9	84.9	168.6	139.7	28.9	56.0	76, 3	34.4	40.4	28.4	19.4	26.7	127	9.0
3 s	80.0	81.6	165. 1	136.9	24, 2	53.4	76.1	34.5	40.4	26.9	19.8	26.8	126	14.3
3 m	79.9	86.1	170.3	141.1	29.2	56.9	77.9	34.9	41.0	27.3	20.0	27.1	131	41.0
31.	80.1	91.6	177.5	146.7	30.8	60.8	79.2	35.2	41.3	27.5	20.4	2 C 0	141	7.1
4 s	83.7	81.7	165.2	137.0	27. 2	53.5	77.5	35. 3	41.3	27.8	20.4	27.1	130	42.2
4 m	83.8	86.4	170.8	141.6	29.2	57.2	79.1	35.5	41.8	24.1	20.4	27.7	136	147.1
41.	83.9	91.6	177.5	146.7	30.8	60.8	80.3	35. 7	42.3	2x,5	20.7	$2 \times .4$	146	35.9
5 s	87.3	81.6	165.1	136.9	2×2	53.4	$7 \times .6$	36.1	42.2	24. 5	21.0	24. 0	140	40.8
5 m	87.5	87.3	171.9	142.6	29.3	58.0	80.4	36.3	42.7	29.0	21.1	28.4	147	276.6
51.	87.7	93.3	179.3	148. 4	30.9	62.4	s2. 2	36.4	43.3	29.1	21.3	29.2	154	30.5
6 s	91.8	83.0	166. 4	138.1	2×3	54.7	80.2	36.9	43. 5	29.7	21.7	28.7	151	27.5
6 II	91.3	87.9	172.6	143.2	29.4	58.5	82.0	37.0	43.7	29.6	21.7	29.2	157	172.9
61	91.4	93.5	179.5	148.6	30.9	62.6	83.4	37.1	44.0	29.9	21.8	29.6	163	32.3
7 s	95.6	84.5	168.0	139.2	$2 \times .8$	55.7	81.8	37.6	44.3	30.4	22.2	29.6	164	17.3
7 m	95.1	88.9	174.0	144.0	30.0	$5 \times .9$	83.2	37.9	4.7	30.4	22.4	29.8	168	53.5
71.	95.2	93.6	179.6	148.7	30.9	62.7	84.1	38.0	45.4	30.7	22.6	30. 1	176	22.5
85	99.6	84.7	168.3	139.4	2x. 9	55.8	81.2	37.8	44.3	31.6	23.3	30.4	165	3. 3
8 m	99.0	89.6	175.0	144.8	30.2	59.4	84.5	38.8	45.7	31.5	23.2	30.8	152	14.8
	99.1	95.4	181.6	150.3	31.3	64.1	86, 2	38.7	46.3	31.9	23.1	31.1	150	3.5
	104.2	90.4	176.4	145.8	30.6	59.8	83.5	39.4	47.6	32.6	24.9	32.9	193	4.9

2. MEASUREMENTS FOR BREECHES.

The primary classification of breeches is made on the circumference of the waist; the secondary division is length of leg. The method of taking these measurements has been already described (p. 57). In order to determine the number and limits of groups to which the breeches patterns should be cut, Table CXV was drawn up. This gives the different classes of waist circumference from 63 and under to 110 centimeters for white troops. Groups 1 and 2 were not subdivided, on accóunt of small size. Group 9 remained undivided for the same reason, and the following three larger classes of waist circumference, containing few individuals, were grouped into one breeches group. On the other hand, waist circumference $68-71,72-75,76-79,80-83,84-87,88-91$, were each divided into three groups, short, median, and long, because of the number of men falling into these classes of waist circumference. This makes 22 classes of breeches groups. Table 121, derived from Tables CXV and CXXII, gives the relative frequency per 1,000 of each of the breeches groups for white and colored troops.

Tables 119 and 120 were prepared to give the association between the various breeches groups and dimensions of various parts of the body, for both white and colored troops. It is believed that these should be used in the making of uniforms. The more important anthropometric conclusions have been drawn from them in the earlier part of this book, under the respective parts.

Table 119.-Dimensions (in centimeters) associated with the "breeches" group, white troops, demobilization.

From Tables CXV-CXXI.]

Breechesgroupdesignation.	Average circumference of waist.	Average leagth of leg.	Average thigh circumference.	Average suprapatclla cireumfercnee.	Average patclla circum. ferenec.	A verage calf cir-eumference.	Average knce height.	Average transverse pelvic diamcter.	Ratio per 1,000 of groups.
1.	61	70.9	49.2	36.3	34.9	33.6	46.6	28.6	4.7
2.	66	69.3	48.0	34.9	34.2	32.1	45.8	27.2	15.6
38.	70	63.2	49.5	35.4	34.3	32.5	44.4	27.0	14.5
3 m	70	70.2	49.6	35.7	35.9	32.6	46.1	28.1	73.6
31.	70	78.1	49.7	35.7	35.4	32.8	48.3	29.4	11.0
4 s	74	(3). 1	50.9	36.3	34.9	33.0	44.3	27.5	27.9
	74	70.5	51.0	36.4	35.5	33.3	46.4	28.6	179.4
41............................	74	78.2	51.1	36.5	36.0	33.5	48.7	29.8	34.6
5 s .	77	65.1	52.4	37.1	35.6	33.8	44.9	28.4	52.6
5 m	77	71.4	52.5	37.3	36.2	34.0	46.9	29.3	183.6
51.	77	78.3	52.5	37.3	36.6	34.3	49.2	30.5	53.5
68.	81	65.0	54.2	38.1	36.4	34.6	45.1	29.1	29.5
6 m	81	72.3	54.2	38.2	36.9	34.8	47.4	30.1	143.5
61.	81	80.4	54.1	38.3	37.4	35.0	50.1	31.1	22.3
7 s .	85	65.0	55.6	38.9	36.9	35.2	44.9	29.8	11.9
7 m .	85	72.4	55.7	39.0	37.5	35.5	47.7	30.8	67.9
71.	85	80.3	55.4	38.9	37.7	35.7	50.8	32.1	13.6
8 s .	89	64.9	56.9	39.5	37.4	35.6	45.0	30.5	4.9
8 m	89	72.5	57.0	39.6	38.0	36.0	47.8	31.4	27.6
81.	89	80.4	56.7	39.4	38.1	36.1	50.9	32.4	6.1
9.............................	93	72.3	58.7	40.2	38.3	36.5	47.7	32.1	12.7
10.........................	97	72.3	59.2	40.3	38.3	36.5	47.8	32.4	5.8
11.	101	72.5	61.1	40.7	39.1	37.4	$48.3{ }^{-}$	33.4	2.0
12...	104	72.0	61.8	41.1	39.7	36.9	47.1	34.1	1.4

Table 120.-Dimensions (in centimeters) associated with the "brecches" group, colored troops, demobilization.
[From Tables CXXII-CXXVIII.

Breechesgroupdesignation.	Average circumference of walst.	Average length of leg.	Average thigh circumference.	Average suprapatella circumference.	Average patella circumference.	A verage calf cir-cumference.	A verage knee height.	Average transverse pelvic diameter.	Ratio per 1,000 of groups.
1.	61	74.2	50.6	36.7	36.2	34.2	47.3	25.0	5.28
2.	66	71.6	48.9	34.8	34.2	32.3	45.7	26.4	11.02
38.	70	65.2	49.9	35.5	34.3	32.5	43.3	25.9	11.48
	70	72.4	51.0	35.6	35.0	33.0	45.8	26.9	65.79
$31 .$.	70	80.3	51.0	35.8	35.4	33.0	48.4	27.4	13.65
48.	74	66.9	52.5	36.7	35.3	33.5	44.4	27.0	38.95
4 m	74	73.5	52.4	36.5	35.7	33.8	46.4	27.5	158.29;
41.	74	80.1	52.3	36.4	36.2	33.8	48.7	28.1	38.48
5 s .	77	66.8	53.9	37.3	35.8	34.3	45.3	27.4	40.90
5 m	77	73.7	53.9	37.7	36.5	34.8	47.2	25.3	20 K .36
51.	77	80.5	53.8	37.5	36.9	34.8	49.7	28.8	76.96
68.	81	67.1	55.4	38.7	36.7	35.4	45.4	28.4	17.84
6 m	81	74.6	55.5	38.6	37.3	35.5	47.8	29.3	147.25
61.	81	82.1	55.7	38.5	37.8	35.9	50.5	29.8	32.89
7 s	85	67.5	57.1	39.1	37.4	36.2	45.4	29.4	8.07
7 m	85	75.0	57.1	39.5	37.8	36.1	47.8	30.0	61.44
71.	85	82.3	57.4	39.5	38.0	36.3	50.6	30.3	13.65
8 s .	89	64.0	57.7	39.4	37.1	36.1	44.7	29.8	2.48
8 m .	89	74.5	58.7	40.5	38.7	36.7	47.8	30.4	22.81
81.	89	82.3	59.5	40.2	38.6	37.3	51.2	31.2	7.14
9.	93	76.6	60.1	40.5	38.6	37.0	48.2	31.2	9.31
10.	97	75.0	61.8	40.4	38.5	37.1	48.0	31.2	5.90
11.	101	73.6	62.9	41.1	39.4	38.1	47.8	32.7	4.03

Table 121.-"Blouse" and "breeches" groups, whitk and Negro troops.-Designation of each group, basic measurements adopted, and proportional number of each group of the total number of men measured at demobilization.
"Blouse" groups.
"Breeches". groups.

3．Dimensions of manikins．

The original orders authorizing the measurement of 100,000 soldiers pro－ vided for the construction of manikins from the measurements．Consequently Tables 117 to 120 ，inclusive，have been drawn up giving data for making such manikins．Tables 117 and 118 give the measurements for the upper part of the body，required for fitting blouses．Tables 119 and 120 give the measure－ ments for the body，from the waist down，for fitting breeches．
Later it was desired to construct entire human figures，and these could not be obtained by piecing together the half figures of which the dimensions are given in the above tables．To construct these entire manikins a slight propor－ tional adjustment had to be made in the＂long＂and＂short＂groups．The results are shown in Table 122，which is that of the dimensions of 21 complete manikins for white troops．Whether Tables 117 and 119 or Table 122 shall be used in the manufacture of uniforms and other clothing depends，curiously enough，on the esthetic choice between having the lower edges of the blouses （in case of men of the same stature but different trunk lengths）reach a common level from the floor or reach a common anatomical level（e．g．，the trochanters） on the body．Those who regard the former as desirable will use the table of total manikins；those who prefer the latter will use the two tables for blouse groups and breeches groups，respectively．

Table 122．－Dimensions of the 21 manikins（in centimeters），white troops．

$\begin{aligned} & \text { 号 } \\ & \text { 豆 } \\ & \text { 蔦 } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \ddot{z} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 岳 } \\ & \text { 㤩 } \\ & \text { 豆 } \\ & \frac{1}{4} \end{aligned}$					Chest antero-posterior.								통 है 른			
		169.5	88.	39.3	58.6	76.8	34.	39.6	75.0	27.0	20.0	86.3	28.3	60.6	48．9	31.1	36.					6.3
		163.5	83.6	134.6	54.5	74.2	34.2	39.2	80.0	26.8	19.9	82.3	27.4	69.2	50.4	32.0	36.	35.9	32.	33.		48.0
	2 m	169.2	88.6	139.0	58.4	76.1	34.5	39.7	80.0	27.1	20.1	85.2	27.9	66.4	48.3	30.7	35.1	34． 4	31.	32.	69	46.1
	21.	176.4	93.6	144.6	61.6	78.1	34.8	40.6	80.0	27.6	20.5	89.2	28.7	64.7	47.0	29．9	34.2	33.5	30.	31.		44.9
	3 s	163.7	83.6	134.6	54.5	74.9	34.9	40.0	83.7	27.5	20.5	82.3	27.5	75.3	53.2	33.9	38.	36． 9	33.	34.	7.	47.7
	3 m	169.5	88.8	139.3	58.6	76． 7	35.0	40.5	83.7	27.8	20.7	85.5	28.2	70.1	49.6	31.5	35.7	35.9	32.3	32.6	70.3	46.1
	31.	176．7	93.7	144．8	61.8	78.7	35.2	41.2	83.8	28． 2	20.8	89.2	29.2	65.7	46.7	29.7	33.5	33.2	30.0	30.8	73.3	45.4
	4s．	165.2	85.4	135.8	56.0	76.2	35.6	41.0	87.5	28.5	20.8	83.3	2 S .0	80.0	55.0	35.0	39.	37.7	34.	35． 7	68.2	47.9
．．	4 m	172.0	90.5	141.3	59.8	78.2	35.7	41.5	87.6	28.8	21.3	86． 8	29.0	74.5	51.4	32.6	36.7	35.7	32.	33．	71.0	46.7
10.	41.	178.9	95.4	146． 5	63.0	80.1	35.9	42.1	87.6	29.1	21.5	90.3	29.9	70.0	48.3	30.7	34．	34． 0	30.	31.7	74.0	46.1
11.	5 s	165． 2	85.4	135.8	56.0	77.1	36． 3	41.9	91.3	29.4	21.9	83.3	28， 8	81.2	55．3	35.1	39.1	37.6	33.	35． 7	68． 7	47.4
12.	5 m	1721	90.6	141.4	59．9	79.0	36． 4	42.3	91.4	29.5	22.0	87． 0	29.5	77.1	52． 5	33.4	37.3	36． 2	32.	34.	71.5	46.9
13.	1	179.0	95.5	146.6	63.1	81.1	36.6	42.9	91.4	29.8	22.1	90.6	30.5	73． 2	49．9	31.7	35.4	34.8	31.	32.6	74． 4	46.7
14.	S	165.2	85.4	135.8	56.0	77.9	37.1	42.8	95.2	30.0	22.6	83.1	29.6	86.1	57.6	36.7	40.5	38.7	34.	36.8	69.1	47.9
15.	6 m	173.5	91.5	142.4	60.4	76.9	37.2	43.3	95.2	30.4	22.7	87.7	30.4	81.1	54.3	34.6	38.3	37.0	33.	34.	72.4	47.5
16.	61	180.9	97.3	148.3	64.7	82.7	37.4	44.0	95.3	30.8	22.9	91.6	31.2	76.1	50.8	32.3	36.9	35.1	31． 7	32.	75.5	47.1
17.	7s	167.6	87.3	137．7	57.4	78.9	37.8	43.5	99.1	30.9	23.5	84.5	31.0	91.2	59.7	38.0	41.	39.6	35.6	37.	69.	48．2
18.	71	174.8	92.4	143.2	60.8	81.1	37.9	44.1	99.1	31.2	23.5	88.4	31.2	85.3	55.9	35.5	39.	37.6	33.	35.	72.7	47.9
19.	71．	181.1	97.4	148.5	64.8	82.8	38.0	44.5	99.1	31.3	23.7	91.4	31.9	79.8	52.0	33.0	36．	35.	31.	33． 5	75． 4	47.7
20.		17.8	92.4	143.2	60.8	81.3	38.8	45.0	103.1	32.2	24.5	88.5	31.4	89.1	57.0	36.3	39.5	38． 0	34.2	35． 9	12.	47.8
21．	9－10．	175.1	92.6	143.4	60.9	81.6	40.3	46.0	110.0	33.7	26.0	88． 5	33.0	97.6	59.5	37.9		38． 7		36.9	72.7	48.1

4．SIZES AND PROPORTIONS OF MEN IN THE DISTRIBUTION ZONES，Q．M．C．
One aim of the measurements of the 100,000 men was to secure manikins for the construction of patterns for uniforms．The second aim was to secure the proper distribution of sizes of uniforms to the different areas covered by the distribution zones of the Quartermaster Corps．Certain of these zones are
designated largely because of the storage capacity of certain large cities or other special relation to the quartermaster's activities. Such are the cities of Philadelphia (D. Z. 3), Baltimore (D. Z. 4), Jeffersonville (D. Z. 6), and the District of Columbia (D. Z. 15). In addition there are 10 distribution zones covering certain large sections of the country or groups of States. These zones may be defined by their included States as follows:

ZONE 1.
Maine.
New Hampshire. Vermont.
Massachusetts.
Rhode Island.
ZONE 2.
Connecticut.
New York. New Jersey.
Pennsylvania
ZONE 3.
Philadelphia.
ZONE 4.
Delaware.
Maryland.
Virginia.

ZONE 5.
North Carolina.
South Carolina.
Georgia.
Florida.
Alabama.
Tennessee.

ZONE 7.
West Virginia. Kentucky. Ohio. Indiana. Michigan. Wisconsin. Minnesota. Iowa. Illinois, northern half.

ZONE 8.
Kansas. Missouri. Oklahoina. Arkansas. Illinois, southeru half. ZONE 9.

Mississippi. Louisiana. ZONE 10.

Texas.
ZONE 11. North Dakota. South Dakota. Nebraska. Wyoming. Colorado. Utah.

Table CXXXIV shows the distributions of frequencies of different statures for the different distribution zones, for a total of $102,061 \mathrm{men}$. This table also gives the proportional frequency of the different statures in each zone. Arranging the zones in order of average stature of the men, we have the following: Zone 10 (Texas), 174.23; zone 5 (Southern States from North Carolina to Alabama, including Tennessee), 173.90; zone 13 (Pacific Coast States, Nevada, Idaho, and Montana), 173.51; zone 8 (Missouri, Arkansas, Kansas, and Oklahoma), 173.48; zone 11 (North and South Dakota, Colorado, Wyoming, and Utah), 173.44; zone 9 (Mississippi and Louisiana), 173.33; zone 12 (New Mexico and Arizona), 172.73; zone 7 (Central States, including also West Virginia, Kentucky, Wisconsin, Minnesota, and Iowa), 172.06; zone 4 (Delaware, Maryland, Virginia), 171.88; zone 2 (Connecticut, New York, New Jersey, and Pennsylvania), 170.10; zone 1 (New England except Connecticut), 169.78.

Arranging the different zones in order of variability as measured by the standard deviation, we have the following: Zone 12 (Desert States), 6.686; zone 2 (Middle States), 6.622; zone 11 (the Dakotas and Mountain States), 6.612 ; zone 9 (Mississippi, Louisiana), 6.572; zone 4 (Delaware, Maryland, Virginia), 6.566; zone 7 (Central States), 6.500; zone 5 (Southeastern States), 6.484 ; zone 1 (New England, except Connecticut), 6.460; zone 13 (Pacific and Northwestern States), 6.412; zone 8 (Missouri, Arkansas, Kansas, Oklahoma), 6.356 ; zone 10 (Texas), 6.304. Thus it appears that, as other parts of the study have shown, Texas contains among the tallest men of the country and they prove to be the most homogeneous in stature. New England contains the
shortest men and they are fairly uniform in this respect. The greatest variability occurs in the Desert States of New Mexico and Arizona, where there is an admixture of Indians, Mexicans, and white Americans of European origin.

Table CXXXIV-B gives the proportional distribution of the different statures for each of the different zones. Thus for zones 1, 2, and 7 the modal stature is $170-171$ centimeters; for zones $4,5,8,9,10$, and 13 it is $172-173$ centimeters; for zones 11 and 12 it is $174-175$ centimeters. Thus Table CXXXIV-B tells the quartermaster what proportion out of every 1,000 suits of uniforms sent to the different zones should fit men of the respective statures.

Since, however, the blouses and breeches are separate garments, it is more important to know the proportion of men of different chest dimensions and waist dimensions, respectively, that occur in the different zones. The required information is given in Tables CXXXVI and CXXXVII. Table CXXXVI gives the absolute number of men found with the different chest circumferences in the different distribution zones. It also gives for each zone per 1,000 men the number having each of the classes of chest circumference. It shows also what proportion of sizes of each 1,000 blouses distributed should be sent to each of the distribution zones in order to meet the size requirements of men of these zones. Thus Table CXXXVI-B states that to zone 1 there should be distributed in every 1,000 blouses 285 of chest size $90-94,382$ of chest size $85-89,189$ of chest size $80-84$. On the other hand, to zone 11 there should be sent 363 blouses of chest size $90-94,324$ of chest size $85-89$, and only 124 of chest size 80-84. To zone 12 there should be sent only 8 blouses of size 100-104, whereas to zone 11,23 per 1,000 blouses of size $100-104$ should be sent. To zone 4 there should be sent 30 blouses per 1,000 of size $75-79$, whereas to zone 11 there should be sent only 10 such.

Table CXXXVI-C states that in distributing 1,000 blouses of size $60-64$, 512 , or over half of them, should go to zone 2 ; 268, or over one-fourth, should go to zone 7, the remaining one-fourth should be distributed as indicated, but none at all should be sent to zones $9,10,12$, and 13 . Of 1,000 blouses of size $65-69$, one-third of all should be sent to zone $7 ; 278$, or over one-fourth, to zone 2 ; the remainder will be variously distributed as indicated, but only 1 or 2 should be sent to zones 4,11 , and 12 . Of 1,000 blouses of size $75-79,284$ should be sent to zone 7 ; another one-fourth, precisely 265 , should be sent to zone 2 ; 130 should be sent to zone 5 ; but only 9 should be sent to zone 11 , and 3 to zone 12. Similarly the tables give the proper distribution for all of the different sizes of blouses.

The sizes of breeches are determined primarily by waist circumference. Distribution by waist circumference is shown in Table CXXXVII. This table gives the absolute frequency by zones of occurrence of the different waist circumference in the 101,576 men measured. The table indicates the proper proportion of the different sizes of breeches in a shipment of 1,000 to any zone. Thus, in a shipment of 1,000 breeches to zone 1,4 should be of waist circumference $60-64,60$ of waist circumference $65-69,283$ of waist $70-74,368$ of waist $75-79,185$ of waist $80-84,67$ of waist $85-89,22$ of waist $90-94,7$ of waist $95-99$, and 3 of waist $100-104$. Similar data are given for each zone.

Table CXXXVII-C shows the proper distribution to the different zones of 1,000 breeches of different waist circumference sizes. Thus of 1,000 breeches of waist $60-64,331$, or about one-third of all, should be sent to zone $7 ; 309$ to zone $2 ; 9$ to zone 9 , etc. It may be pointed out, however, that there is reason for thinking that the men measured may not constitute the real proportion of recruits drawn from the different zones. If the total number of men measured in the various zones be divided by the total number of men drafted from these different zones, as given in the report of the Provost Marshal General, there will be obtained for each zone the proportion of drafted men who were measured at demobilization.

Table LXXIII gives the distribution of different colored races measured in the various zones. This table, for many reasons made clear in the last sections, must not be taken as an actual relative frequency of the different colored races in these zones. It appears that the most colored men were measured from zone 5, including the Southeastern States. The next largest proportion is in zone 9 , including Louisiana and Mississippi, although an equally large number was measured from zone 4 . An attempt was made to distinguish the mulattoes, quadroons, and sambos, but it can not be hoped that this attempt succeeded. A large proportion of sambos, or three-fourths blacks, were measured from zone 9 , Louisiana and Mississippi, and a smaller proportion from zone 5 , the Southeastern States. On the other hand, more mulattoes and quadroons were measured from zone 5 than from zone 9.

The distribution of blouse and breeches groups for white and colored troops taken separately are shown in Tables CXXIX-CXXXII.

G. DISTRIBUTION OF EYE COLOR.

Eye color is of importance as a rough index of race. Thus the so-called Nordic race, which has its home in northwestern Europe, is characterized by clear blue eyes. Nearly all other peoples have brown eyes. Hybrids between blue and brown eyed people have light brown or blue eyes with brown spots. Table 130 shows that absolutely the largest number of clear blue eyes was observed from zone 7, but there were more eyes observed from this zone than from any other. There were fewest clear blue eyes from zone 12, but there were fewer eyes examined from this zone than from any other. The absolute numbers, therefore, are not very significant. More important is the proportion of different types found in the different zones.

Table 130-B gives also the proportion of different eye colors in the different zones. Taking the figures as they stand, it appears that the largest proportion of clear blue eyes is found in zone 13 (the Pacific and northern Rocky Mountain States). Next largest percentage is in zone 11, the central Rocky Mountain States, the Dakotas and Nebraska. Third comes zone 7 (42 per cent blue-eyed); this territory has a large proportion of Scandinavians. The smallest rate for clear blue eyes (15 per cent) is found in zone 5 , which includes the Southeastern States with their large proportion of colored population. In this zone, moreover, there is an exceptionally large proportion (42 per cent) of persons found with blue eyes having brown spots. It seems possible that the proportion of blue eyes with brown spots found is due to special (and justifiable) precaution of the anthropologist in charge at Camp Gordon in warning his recorders to look for brown spots in apparently blue eyes. If we combine clear blue with blue with brown spots, then the proportion of such eyes in the whole population is about 62 per cent. In zone 13 it is 65 per cent; in zone 11, 70 per cent; in zone 7,69 per cent; in zone 5,57 per cent; in zone 4,53 per cent, which is the lowest proportion of clear blue and blue with brown spots found in any zone. Of light brown eyes the highest rate as given is 45 per cent in zone 9 , including Mississippi and Louisiana, of which the population is over one-third colored. Very high rates are found also in zone 5, the Southwest; zone 4, Virginia and Maryland; zone 10, Texas. Low rates are found in zone 11, the central Rocky Mountain States; and zone 7, the Central States, including Minnesota, Wisconsin, and Iowa. Of the dark-brown eyes, the largest rate is found in zone 12, Arizona and New Mexico, and this doubtless is due to the influence of the Indian race here. Next is zone 10 , and next zone 8 , where the Indian rate is high. Low rates are found in zone 5 of the Southeast, zone 1, New England, and zone 11, the central Rocky Mountain States.
(a) Clear blue eyes.-The significance of these results will be clearer from a study of Table CXXXVIII, which gives the proportion of eye color by States. Table 123 gives the distribution of clear blue eye color by States. The States are arranged in descending order of the proportion of clear blue eyes observed. At the top of the list stands Alaska, with a rate
of 54 per cent; next Wisconsin, also with about 54 per cent. This is the State in which in certain sections one-fourth of the inhabitants are Scandinavians. Next comes the State of Maine with 53 per cent; the largest foreign element in Maine is French Canadian, about 13 per cent in one section; otherwise the immigrants are chiefly English Canadians; there are few representatives of south-eastern Europe. Vermont stands next with 51 per cent. Since Maine and Vermont contain a large proportion of French Canadians, it seems probable that the proportion of blue eyes is high among them. Next stands Minnesota with a high Scandinavian population, and then comes Oregon with many Scandinavians and Germans. Massachusetts follows with 49 per cent clear blue eyes. This also has a large representation of French Canadians and Irish. Next comes Michigan and then the State of Washington, botls with many representatives from northwestern Europe. At the bottom of the list stands Florida, with only 4 per cent of clear blue eyes among the population. This population includes Negroes, mulattoes, and a considerable number of Cubans and West Indians, some probably who have received their brown eye color from Negro stock. It is perhaps not strange that this State, with its dense Negro population and with its former Spanish blood and its proximity to Cuba, should be the darkest of all the States in respect to eye color. Next to the bottom stands Georgia, which is geographically adjacent to Florida. The numbers of Nevada may be excluded, since there are only two individuals under consideration. This is followed by Alabama, Tennessee, South Carolina, Louisiana, Kentucky, Missouri, North Carolina, and Mississippi, all but one Southern States. The proportion of clear blue eye is, therefore, smallest in those States which lave a large proportion of Negro population. Consequently, in general terms, the proportion of clear blue eyes diminishes with latitude. This is to be explained on the ground that blue eye color rose in northern Europe, and that immigrants from northern Europe settled the northern parts of our country; and, also, that the percentage of the Negro population there is small (see Plate XXX, Fig. 7, p. 295).

Table 123.-Absolute and relative numbers of veterans with clear blue eyes, by States of nativity in order of incidence, demobilization, 1919.

State.	Number of cases.	Ratio.	State.	Number of cases.	Ratio.
Alaska.	7	538. 46	New Jork.	3,843	416.13
Wisconsin	1,441	538. 29	Arkansas.	1,064	412. 08
Maine.	365	525.94	Colorado.	93	409.69
Vermont.	229	512.30	Peminsivania.	4,381	401.88
Minnesota	969	496.67	Cailfornia....	109	391.31
Oregon.	529	494.39	W yoming.	31	387.50
Massachusetts	2,365	493.22	District of Columbia.	87	376.62
Michigan..	1,821	$4 \mathrm{C8} 86$	Texas..	1,511	345.45
Washington	-986	4.86. 92	Maryiand.	1, 387	338.88
Utah.	51	455.71	Arizona..	43	330.77
New llampshlre	201	453.51	Indiana.	1,265	319.85
Idaho.	77	459.31	Virginia.	614	318. 13
Connecticut	464	465.39	New Mexico.	69	300.00
lilinois.	3,112	463. 92	Mississippi.	582	276.88
Rhode Istand.	180	461.54	North Caroilina	479	263.91
Montana..	122	$45 \% 65$	Missouri.......	651	224,66
North Dakota	158	411.34	Kentucky	565	192. 56
Oklahoma.	1,008	43 S .23	Loulisiana.	362	174.12
Now Jersey.	1,374	430.93	South Carolina	128	154. 40
Nebraska..	353	42¢.92	Tennessee.	426	131.33
West Virginia	726	427.82	Aiabama.	246	127.33
Ohio...	3,027	426.70	Nevada.	2	111.11
Kausas	433	426.60	Georgia.	330	96.97
South Dakota	177	425.48	Flurida.	97	94.73
Iowa.....	679	421.74	Total.	38, 354	374. 69

(b) Blue eyes with brown spots.-The distribution of eye color "blue with brown spots" is given in Table 124. In some ways this affords a remarkable reversal of the order of the States shown in Table 123, for here such States as Tennessee, Kentucky, Missouri, Alabama, Florida, and Georgia, stand at the top of the list, constituting from 42 to 52 per cent of the population. It is impossible to say, however, how much of this large proportion of blue with brown spots found is due to special effort to find it on the part of the observers. The lowest proportion of blue with brown spots is found in certain of the New England States; in Rhode Island only 10 per cent; Massachusetts, 11 per cent; Vermont, 11 per cent; Maine, 13 per cent; New York and Connecticut follow with less than 14 per cent. The proportion of blue and brown spots found in Louisiana is small, 15 per cent, which may in part be accounted for by the fact that men from this State were observed at Camp Shelby, where another anthropologist was in charge, who was perhaps less careful to instruct his observers to note the presence of brown spots upon the blue iris. However, it must be admitted that the proportion of blueness of iris found in men from Louisiana is low and it seems probable that not only the colored population, but also the South French blood, which settled there, has had its influence in depressing the total amount of blue eye color found in that State.

Table 124.-Absolute and relative numbers of veterans with blue eyes with brown spots, by States of nativity in order of incidence, demobilization, 1919.

State.	Number of cases.	Ratio.	State.	Number of cases.	Ratlo.
Tennessee.	1,463	519.72	Wyoming.	15	157. 50
Kentucky	1,510	514.65	Wisconsin.	474	177.06
Missouri..	1,420	498. 77	Oklahoma.	408	176.16
Alabama	881	456.00	Virginia.	339	175.65
Florida.	443	432.62	Utah..	18	171. 42
Georgia.	1,433	421.10	Michigan	626	167.92
Indiana.	1,616	408. 60	New Mexico.	38	165.21
South Carolina.	296	357. 05	Pennsylvania.	1,79.	164.67
North Dakota.	101	282.12	Washington.	332	163.95
lowa.	451	250.12	Arkansas..	423	163. 82
Nevada.	5	277.77	Montains.	41	154. 13
South Dakota	114	274.03	Alaska.	2	153.85
Nebraska.	218	264.88	Oregon.	164	153.27
Minnesota	485	248.59	Louisiana.	315	151. 51
Arizona.	32	246.15	New Jersey	477	149.62
Kansas..	248	244.33	Distriet of Columbia.	34	147. 19
Delaware.	71	236.66	New Hampshire..	59	142.51
California.	108	223.60	Idaho.-.	23	140.24
Mississippı	435	206.95	Connecticut	138	138.42
Texas....	904	206. 68	New York.	1,247	134.95
lllinols.	1,363	203.19	Maine.	90	129.68
Colorado.	46	202. 64	Vermont.	49	109.62
North Carolina	366	291.65	Massachusetts	521	108. 66
West Virgims.	335	197. 41	Rhode Island	41	101.74
Maryland...	${ }_{1}^{222}$	194. 40			
Ohlo.....	1,336	188.33	Total	23, 571	229.79

(c) Brown eyes.-Considering dark brown eye color, we find that Louisiana stands at the very head of the table with 48 per cent of her soldiers placed in that category; a relatively low proportion (19 per cent) from Louisiana were found with light brown eyes. In the table (126) of dark brown eyes, next to Louisiana, stand North Carolina, Virginia, District of Columbia, Georgia, Mississippi, Florida, and South Carolina; and here again the Southern States have an excess of dark brown eyes in the population, due to the colored race. The Southern States for the most part stand near the bottom of the list of
light brown eyes, although Louisiana has a median position, with a rate of 19 per cent. Of dark brown eyes, Maine shows the smallest rate, 8.6 per cent; Vermont slightly more, 9.2 per cent; Wisconsin, Idaho, Minnesota, all have less than 11 per cent. New York stands far above the average in the proportion of dark brown eyes found in the population; Pennsylvania is slightly below the average, and Illinois and Michigan are far below the average, with only 15 per cent.

Table 125.-Absolute and relative numbers of veterans with light brourn cycs, by States of nativity in order of incidence, demobilization, 1919.

State.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { cases. } \end{gathered}$	Ratio.	State.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { cases. } \end{gathered}$	Ratio.
Nevada.	7	388, 89	Oklahoma	404	174. 43
Idaho.	46	250.49	California.	84	173.91
Wyoming	20	250.00	Oregon...	184	171.96
New Hampshire	101	243.96	Maryland.	191	167.25
Montana.	64	240.60	Kansas.	167	164. 53
New Mexico	54	23.78	North Dakota	58	162.01
Maine.	162	233.43	Tennessee	$4{ }^{42}$	157.02
Utah..	24	228. 57	Iowa.	251	155.90
Vermont.	99	221. 48	South Carolina	128	154. 40
Pennsyivania	2,409	220.99	South Dakota	63	151.4
Rhode Island.	89	220.84	Nebraska.	124	150.67
Massachusetts	1,043	217.52	Arkansas.	381	147.56
New Jersey.	665	208. 59	Mlnnesota.	280	143.51
Coiorado..	47	207.05	Florida..	146	142. 58
Ohio.	1,387	195. 52	Alabama.	274	141.82
Michigan	728	195. 27	Georgia..	460	135. 17
Connecticut.	192	192.57	District of Columbia	31	134. 20
West Virginla	317	186.80	Vlrginia.	243	125.90
Louisiana.	387	186.14	North Carolina	210	115.70
New York	1,716	185.71	Indlana..	450	113.78
Arizona.	24	184.61	Delaware.	29	96.67
Iilinois.	1,221	182.02	Kentucky	250	95. 43
W1sconsin	483	180.42	Missourl..	266	93.43
Texas.	787	179.92	Alaska	1	76.92
Masshingion	375 361	178.40 178.27	Total.	17,955	175.05

Table 126.-Absolute and relative numbers of veterans with dark broun cyes, by States of nativity in order of incidence, demobilization, 1919.

State.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { cases. } \end{aligned}$	Ratlo.	Ratio.	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { cases. } \end{aligned}$	Ratio.
Louisiana.	1,006	483.88	Ohio.	1,297	182. 83
North Caroilna	734	404. 41	Coiorado	41	180.61
District of Columbia.	78	341.99	Missouri.	190	177.57
Georgia..	1,138	334.41	Washington	334	164.94
Mississippi	694	330. 16	Tennessee.	462	164.12
Florlda..	328	320. 31	Wyoming.	13	162.50
South Caroina	257	310.01	Kansas....	157	154.68
New Mexlco.	68	295.65	Massachusetts	739	154. 12
Maryland.	331	2 2 9.84	Nebraska.	126	153.09
Arkansas.	701	271.50	Indians.	593	151.19
Aiabama.	515	266.56	Ililnois.	995	148.33
Texas:	1,14.3.	261.77	Michigan.	538	144.31
New York.	2,384	258.01	South Dakota	60	144.23
Delaware.	72	240. 00	Montana.	38	142. 86
Alaska..	3	230.77	Iowa...	220	136.65
Arizona.	30	230.77	North Dakota	41	114. 52
Nevada.	4	222.22	Utah	12	114. 28
Okiahoma.	448	209.84	New Hampshire	47	113.53
Rhodie Island.	84	208.44	Minnesota	211	108. 15
Pennsyivania	2,257	207. 05	Idaho.	17	103, 66
New Jersey	653	204.83	Wisconsin	273	101.98
California.	97	200.83	Vermont.	41	91.72
Connecticu	198	198. 60	Maine.	60	86.45
West Virginia	311	183.27	Total.	21,824	212.76

(d) Eye color in eight European races.-Table 127 shows the absolute and proportional occurrence of eye color in each of the eight races, of each of which more than 1,000 men were observed. According to this table the Irish show the largest percentage of clear blue eyes, the Scotch second, followed by the Polish, English, German, French, Hebrew, and Italian. If we combine clear blue and blue with brown spots, the highest proportion of blue eyes still remains with the Irish, 73 per cent; next come the Scotch with 71 per cent; next the Polish and English, each about 66 per cent; then come the German with 65 per cent, French with 49 per cent, Hebrews 37 per cent, and Italian 20 per cent. Dark brown eyes naturally run for the most part in inverse order. Italians stand at the head with 51 per cent; Hebrews next with 38 per cent, French 25 per cent, Germans 15 per cent, English 15 per cent, Scotch 14 per cent, Polish 13 per cent, and Irish 11 per cent.

Table 127.-Comparative frequency distribution of eye color in each of eight European races, demobilization.

SECTION A: ABSOLUTE NUMBERS.

Race.	Total.	Clear blue.	Blue and brown spots.	Light brown.	Dark brown.
English.	4,194	1,852	920	794	623
Scotch.	2,049	978	484	310	277
Irish..	6,144	3,279	1,224	964	677
German.	7,059	3,008	1,572	1,400	1,079
French.	1,429	490	212	376	351
Italian.	3,486	389	319	999	1,779
Polish..	2,399	1,124	480	485	310
Hebrew	1,685	389	232	426	638
	28,445 225	11,509	5,443	5,754	5,739
Total..	28,670				

SECTION B: RACE DISTRIBUTION PER 1,000 OF EACH EYE COLOR.

Race.	4	Total.	Clear blue.	Blue and brown spots.	Light brown.	Dark brown.
English.		147.44	160.92	169.03	137.99	109.43
Scotch..		7203	84.98	88.92	53.88	48. 27
Irish....		216. 00	284.91	224.88	167.54	117.97
German.		248. 16	261.36	288.81	243.31	188.02
French.		50.24	42.58	38.95	65.35	61.17
Italian.		122.55	33.80	58.61	173.62	309.98
Polish.		84.34	97.66	88, 19	84.29	54.02
Hebrew		59.24	33. 80	42.62	74.04	111.17
Total.		1,000.00	1,000. 01	1,000. 01	1,000.02	1,000,03

SECTION C: EYE-COLOR DISTRIBUTION PER 1,000 OF EACH RACE.

Race.	Total.	Clear blue.	Blue and brown spots.	Light brown.	Dark brown.	Total.
English.	147. 44	441.57	219.37	189.32	149.74	1,000
Scotch.	72. 03	477.29	236.21	151.30	135. 20	1,000
Irish..	216. 00	533.70	199. 21	156. 89	110.20	1,000
German	248.16	426.14	222.69	198. 32	152. 85	1,000
French	50.24	342.90	148. 35	263.12	245.62	1,000
Italian.	122. 55	111.59	91.51	286.56	510.32	1,000
Polish.	84.34	468. 50	200.08	202.18	129.23	1,000
Hebrew.	59.24	230.86	137.69	252.81	378.63	1,000

(e) Comparison with Civil War data.-These results may be compared with those given by Baxter and Gould for Civil War recruits. According to Baxter, ${ }^{1}$ the examination of 9,649 Englishmen gave a ratio of 71 per cent for blue or gray eyes combined with light hair, and 29 per cent for dark or hazel eyes and dark hair. Assuming that the examiners of recruits did not distinguish between clear blue eyes and those with small brown spots, the ratio of 71 per cent in Civil War times is to be contrasted with 66 per cent among the English at demobilization of the troops of the World War.

The statistics of Baxter for 28,995 Irishmen give a proportion of blue or gray eyes combined with light hair of 70 per cent, to be compared with 73 per cent of our statistics. Baxter finds in an examination of 29,600 Germans a ratio of blue or gray eyes and light hair of 69 per cent; our statistics give 65 per cent. There are copied from Gould ${ }^{2}$ (pp. 196-201) in our Tables 128 and 129 data concerning the color of the eyes of United States soldiers by States and of volunteers by nativity.

Table 128.-Color of cyes: I'roportional numbers for different States in 1865 (Gould, ${ }^{2}$ p. :200).

State of enlistment.	Blue.	Gray.	Hazel.	Dark.	Blaek.	Total.
Maine	458	171	193	70	108	1,000
New Hampshire.	494	193	168	75	70	1,000
Vermont.........	555	148	82	98	117	1,000
Massachusetts.	506	184	173	76	61	1,000
Connecticut....	476	225	124	103	69	1,000
New York.	467	255	75	140	63	1,000
Pennsylvania.	319	356	142	150	33	1,000
West Virginia.	430	258	84	126	102	1,000
Kentueky....	406	220	91	97	126	1,000
Ohio.......	393	293	120	112	82	1,000
Indiana.	422	258	139	94	87	
Illinois....	447	245	121	106	81	1,000
Miehigan..	522	224	93	85	76	1,000
Wisconsin	533	202	106	93	66	1,000
Iowa....	462	239	129	86	84	1,000
Missourl	460	245	115	107	73	1,000
Total.	449	243	12s	104	76	1,000

Table 129.-Color of eyes: Proportional numbers for different nativities in l'nited States in 1865 (Gould, ${ }^{2}$ p. 201).

Nativity.	Blue.	Gray.	Hazel.	Dark.	Black.	Total.
Six New England States	499	175	150	83	93	1,000
New York, New Jersey, Pennsylvania	415	280	119	126	60	1,000
Ohlo, Indiana.	417	266	127	102	88	1,000
Michigan, Wisconsin, Illinols.	449	237	121	96	97	1,000
Slave States*...........	432	249	112	110	97	1,000
Kentucky and Tennessee	464	221	105	94	116	1,000
Free States west of the Mississippi.	396	2 SH	159	84	77	1,000
Slave States west of the Mississ ppi.	435	243	128	96	98	1,000
British America excluslve of Canada	464	203	194	78	61	1,000
Canada.....	432	218	154	107	s9	1,000
England.	472	238	142	94	54	1,000
Seotiand	47 N	254	129	83	56	1,000
Ireland.	505	274	119	69	33	1,000
France, Belgium, and Swit	328	225	192	151	104	1,000
Germany.....	445	262	107	141	45	
Scandinavia.	684	172	63	60	21	1,000
Spain, Portugal, and Spa	239	185	164	197	215	1,000
Miscellaneous.	349	250	149	158	94	1,000
Total.	449	243	128	104	76	1,000

[^17]A comparison of the proportions of the population having different colored eyes may be made between Civil War times and those of the demobilization in the recent war. The order of proportion of blue eye color in the Civil War in the different States is as follows: Vermont, 555; Wisconsin, 533; Michigan, 522; Massachusetts, 506; New Hampshire, 494; Connecticut, 476; New York, 467; Kentucky, 466; Iowa, 462; Missouri, 460; Maine, 458; Illinois, 447; West Virginia, 430; Indiana, 422; Ohio, 393; Pennsylvania, 319. The average for the States named is 449 in Civil War times, as contrasted with 375 in the World War. This suggests a marked decrease in the proportion of blue eyes, namely, from 45 to 37 per cent. However, it is to be remembered that the Southern States were not included in the Civil War statistics, and these are just the States that show the smallest proportion of clear bluc eyes. The inclusion of such States would inevitably tend to lower the average in the World War statistics. Indeed, if we compare the States which are mentioned both in the Civil War records and in those of the World War we find some cases of marked agreement. Thus Wisconsin was 533 ; is 539 , per 1,000 , blue-eyed; Vermont was 555 , and has become darker, 512; Massachusetts was 506, has become a trifle darker, 493; Michigan has fallen from 522 to 488; New Hampshire from 494 to 486 ; Connecticut from 476 to 465 ; Illinois has increased from 447 to 463 , due, no doubt, to the coming in of Scandinavians in recent decades. West Virginia has remained nearly constant at 430 then and 428 now. Ohio was 393, is 427; New York was 467, is 416; a great decrease, due to the immigration from the south and east of Europe. Pennsylvania, on the other hand, has increased enormously from 319 to 401 , the meaning of which is not perfectly clear, but is it possibly due to the coming in of large numbers of blue-cyed Poles and Lithuanians. Kentucky was 466 and is 193 , which indicates that the recruits from Kentucky to the Northern Army in Civil War times were a highly selected lot of Nordics from the mountain regions and largely excluded Negroes. Indiana has fallen from 447 to 320 , again a marked decline.

Since the categories are not the same in 1866 and 1919, it is difficult to compare the darker eyes. It is clear that the West Virginians, however, had a prevalence of dark eye color which is hardly recognized to-day. In general, persons who have much pigment in the iris are more numerous in the United States to-day than they were 55 years ago. It is possible to compare some of the races described in Gould's book with those examined in 1919. Among the English the proportion of blue eyes was 472, is now 442; among the Scotch, then 478, now 477; among the Irish, then 505, now 534; among the French, Belgians, and Swiss, then 328, now 343; among the Germans, then 445, now 426. If we add together the "dark" and the "black" eye colors of Gould, we have a total for the English of 148 , as opposed to 150 " of our "dark browns"; for the Scotch, 139, as opposed to 135 in 1919; for the Irish, 102, as opposed to 110 at the later date; for the French, 255, as opposed to 246; for the Germans 186, as opposed to 153 . It is clear that the dark and black are nearly equivalent to our dark brown, and it is probable that Gould's hazel corresponds nearly with our light brown as well as with our blue with brown spots. The comparison is of interest, showing the comparative stability of proportions in racial populations. But there have been great changes in sections of our country due to extensive immigration.

Table 130.-Comparative frequency distribution of eye color by Q. M. C. distribution zones, based on nativity of demobilized troops.
SECTION A: ABSOLUTE NUMBERS.

Eye color.	Total.	Zone 1.	Zone 2.	Zone 4.	Zone 5.	Zone 7.	Zone 8.	Zone9.	Zone 10.	Zone 11.	Zone 12.	Zone 13.
Clear blue.	32, 34	1,996	7,421	1,050	1,764	12,002	3,175	952	1,452	774	112	1,647
1 lue with brown spots.	23,917	1,174	4,395	623	4, 820	7,804	2,198	767	865	479	70	692
Light brown	23, 585	1,236	S, 614	1,060	4,082	5,607	1,679	1,848	1,243	348	78	760
Dark brown.	10, 528	496	2,548	425	916	3,137	1, 133	519	579	185	98	492
Numbermeasured. Not measured.	$\begin{aligned} & 90,405 \\ & 11,928 \end{aligned}$	4,902	20,008	3,158	11, 582	28,610	8,185	4,086	4, 139	1,786	358	3, 391
Total.	102, 333											

SECTION B: EYE-COLOR DISTRIBUTION PER 1,000 OF EACH ZONE.

Clear blue.	357.78	407.18	370.90	332. 49	152.31	419.50	387.90	232.99	350.81	433.37	312.8)	4.88 .65
Blue with brown												
spots.	264.89	239. 49	219.66	197.28	416.16	274.87	208.54	187.71	208.99	268. 19	195. 53	192. 70
Light brown	260.88	252.14	2×2.08	335. 66	352.44	195. 98	205. 13	452.28	500.31	194.85	217.88	211.64
Dark brown	116. 45	101.18	127.35	134.58	79.09	109.65	138. 42	127.02	139. 89	103.58	273.74	137.01
Total.	1,000.00	1,000. 00	,000.00	1,000.00	1,000.00	1,000.00	1,000. 00	1,000.00	1,000.00	1,000. 00	1,000.00	1,000,00

[^18]
H. DISTRIBUTION OF HAIR COLOR.

(a) General discussion.-The directions given to the anthropologists called for the use of the following terms in describing hair color: Flaxen, light brown, medium brown, dark brown, red, red and black. The last was explained to mean the presence of melanic pigment mixed with the red as opposed to pure red. The terms used by Gould are light, brown, dark, black, red, sandy, and gray. There were 4,000 , or 1 per cent of all, in Gould's statistics returned as gray. In our statistics the term gray was not used, as the color before graying was to be recorded. Tables 131-135 show the proportion of cases of the different hair colors in the different States. In each table the States are arranged in descending order of frequency of the stated hair color.
(b) Flaxen hair.-Table 131 gives the list of States in descending order of the population having flaxen hair. From this table it appears that there are proportionally more persons with flaxen hair in Oregon than any other State, 28 per cent; Montana follows with 23 per cent; and Utah with 14 per cent. Minnesota and South Dakota have about 10 per cent each, and this result is largely due to the Scandinavian population. Then follow Alaska, Iowa, and Michigan. At the opposite end of the table stand the Southern Atlantic and Gulf States, with their large Negro and mulatto populations; Florida, Alabama, and Georgia, each with less than 1 per cent; South Carolina, Louisiana, Mississippi, North Carolina, and Kentucky with 2 per cent or less. In the middle of the series lie the New England States and the more densely populated States of the Mississippi Valley, such as Ohio, New Hampshire, Connecticut, Indiana, Wisconsin, Massachusetts, Vermont, Maine, Illinois, Pennsylvania, New Jersey, Rhode Island, Maryland, and New York. One may be quite sure that the presence of flaxen hair is indicative of Nordic blood, and one draws the conclusion that there is a larger proportion of this in Oregon, Montana, and Utah than in the other States. The relative absence of light hair in the Southern States is to be attributed to the colored part of the population (see Plate XXX, Figs. 1, 8, p. 295).

Table 131.-Absolute and relative number of veterans with flaxen hair, by States of nativity in order of incidence, demobilization, 1919.

States.	Number of cases.	Ratios.	States.	Number of cases.	Ratios.
Oregon.	302	282.24	Illinois.	329	49. 05
Montana	62	233.08	Pennsylvania.	529	48. 53
Utah.	15	142.86	New Mexico..	11	47. 83
Minnesota.	195	99.95	New Jersey.	152	47.68
South Dakota.	40	96.15	Rhode Island	19	47.15
Alaska.	1	76.92	Maryland.	53	46.41
lowa.	122	75.78	Oklahoma.	103	44.47
Michigan	280	75.11	California.	20	41.41
Texas...	310	70.87	New York	347	37.55
North Dakota.	25	69.83	Virginia.....	67	34.72
Idaho..........	11	67.07	District of Columbia.	8	34.63
Ohio.	472	66.54	Missouri......	97	34.07
Wyoming	5	62.50	Kentucky.	63	21.47
Nebraska.	51	61.97	North Carolina.	38	20.94
Colorado.	14	61.67	Mississippi.	43	20.46
Kansas..	62	61.08	Arizona..	2	15.38
New Hampshire	25	60.39	Tennessee.	40	14.21
Connecticut....	60	60.18	Louisiana.	29	13.95
Indiana.	237	59.92	South Carolina	9	- 10.86
Wisconsin.	157	58.65	Delaware.....	3	10.00
Massachusetts	281	58. 60	Georgia. .	29	8.52
Vermont	26	58.17	Alabama	16	8.28
Maine.......	38	54. 76	Florida.	8	7.81
Washington..	107	52.84			
West Virginia.	88 131	51.86 50.74	Total.	5,132	50.03

Table 132.-Absolute and relative number of veterans with red hair, by States of nativity in order of incidence, demobilization, 1919.

States.	Number of cases.	Ratios.	States.	Number of cases.	Ratios.
Montana.	14	52.63	Pennsylvania.	136	12.48
Oregon. ${ }^{\text {P }}$	32	29.91	ludiana.	49	12.39
Wyoming.	2	25.00	1daho.	2	12.20
Minnesota.	40	20.50	Oklahoma	28	12.09
New llampshire.	8	19.32	Arkansas.	31	12.01
Utah............	2	19.05	Missouri.	34	11.94
North Dakota.	6	16.76	Vermont.	5	11.19
Maryland.	19	16. 64	Michigan.	40	10.73
Florida.	17	16.60	Virginia..	20	10.36
Washington.	33	16. 30	Alabama.	20	10.35
Illinols.	109	16.25	California.	5	10.35
Connecticut.	16	16.05	South Dakota	4	9.62
New Jersey.	50	15. 68	Ohio.	67	9.44
Texas.....	68	15. 55	lowa.	15	9.32
New York.	138	14.94	North Carolina	14	7.71
Rhode 1sland.	6	14.89	Wisconsin....	20	7.47
Massachusetts.	67	13.97	South Carolina	6	7.24
Tennessee.	39	13.85	Mississippl.	15	7.14
Kansas.	14	13.79	Delaware..	2	6.67
West Virginia.	23	13. 55	Loulsiana.	13	
Nebraska......	11	13.37	District of Columbia	1	4.33
Kentucky	39 3	13.29 13.22	Maine.	3	4.32
Georgia..	43	12.64	Total.	1,329	12.96

(c) Dark brown hair.-Turning to the dark brown hair, we find that the Southern States are at the head of the list, North Carolina and Louisiana at the very top, and Virginia, Mississippi, Maryland, South Carolina, and Georgia stand above the average in percentage of population with dark brown hair. On the other hand, there is less of this in Montana and Oregon relatively than in any other States (see Plate XXX, Fig. 5, p. 295).
(d) Red hair.-Red hair was so relatively uncommon that it becomes almost futile to compare the proportions secured. On the face of the returns there are proportionately more red heads in Montana than in any other State, and Oregon comes second-that is, there is a clese correlation between the proportion of flaxen and of red hair. However, Maine stands near the middle of the series for flaxen hair and at the bottom of the series for red, indicating that the association is not absolute. The Southern States tend to lie at the bottom of the list of the rates of red hair. Thus Louisiana, Mississippi, South Carolina, North Carolina, Alabama, and Virginia are markedly below the mean of the whole population. On the other hand, Florida stands relatively high at 1.6 per cent (mean of United States, 1.3 per cent). (See Plate XXX, Fig. 1, p. 295).

Table 133.-Absolute and relative number of veterans with light brown hair, by States of nativity in order of incidence, demobilization, 1919.

States.	Number of cases.	Ratlos.	States.	Number of cases.	Ratios.
Alaska.	5	384.62	Mississippi.	411	195. 53
Nevada.	6	333.33	Arizona...	25	192.31
Wisconsill.	850	328.73	Kentucky	563	191.89
Michigan.	1,190	319.21	New York.	1,765	191. 02
Ohio..	2,183	307.72	Arkansas.	-490	189.78
Minnesota	587	300.87	Delaware.	55	183.33
Illinols.	2,000	298. 15	Maryland.	201	176. 01
North Dakota	, 102	284.92	Tennessee.	488	173.36
Utah.........	29	276. 19	District of Columbia	40	173.16
W yoming.	22	275.00	Maine..	118	170.03
	45	274. 39	Texas...	742	169.64
Washington	550	271.60	Montana...	45	169.17
Nebraska....	219	266. 10	Massachusetts	804	167.67
Iowa..	422	262.11	New Hampshirc	67	161.84
California.	126	260.87	Connecticut....	160	160.48
South Dakota.	107	257.21	Virginia.	309	160.10
Kansas	261	257.14	Alabama.	287	148. 55
Indlana	995	251. 58	Florlda.	152	148.44
Missourl.	646	226.91	South Carolina	110	132, 69
New Jcrsey...	723	226.79	Georgia.....	449	131.94
West Virginla	382	225.10	Louisiana....	270	129.87
Oregon. Colorado	234 49	218.69 215.86	Rhode Island.	52	129.03
Pennsylvania	49 2,329	215.86 213,65	Now Mexico.	228 28	125.62 121.74
Vermont....	-90	201. 34			
Oklahoma.	465	200.78	Total.	22,506	219.40

Table 134.-Absolute and relative number of veterans with medium brown hair, by States of nativity in order of incidence, demobilization, 1919.

States.	Number of cases.	Ratios.	States.	Number of cases.	Ratios.
Alaska.	7	538.46	Arkansas.	471	182.42
Tennessee	1,255	445. 83	Mississippi.	381	181.26
Montana.	116	436.09	California..	87	180. 12
Alabama	782	404. 76	Delaware.	54	180.00
Oregon.	414	386.92	Massachusetts	849	177.06
Kentucky	1,083	369.12	Michigan.	646	173.28
Missouri.	1,003	352.30	Utah.	18	171.43
Georgia.	1,183	347.63	Ohio.	1,176	165. 77
Florida.	351	342.77	Vermont	73	163.31
South Carolina	261	314. 84	Maryland	186	162. 87
Indiana.	1,241	313.78	Texas.	712	162. 78
Wisconsin.	686	256.26	Arizona.	20	153. 85
Illinois.	1,649	245.83	North Carolina	278	153.17
W yoming	19	237. 50	Idaho.	25	152.44
Iowa.	376	233. 54	Pennsylvanla.	1,588	145.67
Washington.	450	222.22	West Virginia	244	143.78
South Dakota	92	221.15	Virginia..	275	142.49
Minnesota.	430	220.40	New Jersey.	431	135. 19
North Dakota	78	217.88	New Mexlco.	31	134.78
Maine.	147	211.82	New York.	1,224	132. 47
Rhode Island.	84	208. 44	Louisiana.	237	114.00
New IIampshire	85	205.31	Dlstrict of Columbia	23	99.57
Nebraska....	162	196. 84	Nevad	1	55.56
Oklahoma.	441	190. 41	Total.	21,656	213.12
Connecticut.	187	187.56			

Table 135.-Absolute and relative number of veterans with dark brown hair, by States of nativity in order of incidence, demobilization, 1919.

States.	Number of cases.	Ratios.	States.	Number of cases.	12atlos.
North Carolina.	1,207	685.01	Arkansas.	1,146	433.84
Louisjana.	1,360	654.16	California.	213	440.99
New Mexico.	144	626,09	Colorado.	100	440.53
Disirlet of Columbia	143	619.05	Nebraska.	350	425. 27
Nevada.	11	611.11	Ohio.	3,007	423.88
Virginla	1,143	592.23	Kansas.	425	418.72
New York	5,212	564.07	Alabama	776	401.66
Delaware.	168	560.00	Washington	811	400. 49
Arizona.	72	553.85	Michigan...	1,44	398. 07
Mlssisslppi	1,159	551.38	lowa.	, 622	3×6.34
12hode Island.	219	543.42	North Dakota.	134	374.30
Maryland.	604	$52 \mathrm{x}, 90$	Utah..........	39	371.43
Pennsylvania	5,703	523.16	South Dakota	154	370. 19
New Jersey...	1,667	522.90	Kentucky....	1,01	365.44
Massachusetts.	2, 498	520.96	Indiana..	1,343	339.57
Connecticut.	51 K	519.56	Missouri.	962	337.90
Malne	300	518.73	lllinois.	2,238	333. 63
West Virginla.	\$71	513.28	Tennessce.	930	330.37
New Hampshire	205	495. 17	Minnesota.	629	322.40
South Carolina.	400	482.51	Wisconsin.	799	298. 47
Vermont	214	478.75	Wyoming	23	297. 50
Georgla.	1,619	475. 76	Montana.	6	22. 56
Idaho...	, 78	475.61	Oregon	21	19.63
Texas...	2,044	467.31 465.82	Total.	46,446	452.79
Oklahoma.	1,057	456.39		, 41	452.79

(e) Comparison with Civil War recruits.-A comparison of the proportion of kind of hair color found in the different States in 1919 with that found in corresponding States in 1866 will be of interest. Assuming that the light hair of Gould's statistics corresponds with the flaxen hair of the statistics of 1919, then we have for the whole territory considered in 1866 a rate of 235 per 1,000 of hair colors belonging to the category of light, and, in 1919,50 per 1,000 belonging to the category of light. On the face of it, this is an enormous reduction in the proportion of flaxen hair as compared with the light hair of half a century earlier. Fifty years ago the State with the largest percentage of light hair color was Kentucky, with 381 per 1,000 ; in 1919 the proportion of flaxen hair in Kentucky was 21 per 1,000, and of light brown hair 192 per 1,000, or together 213 per 1,000 ; in any case an enormous decrease of light hair in the population. This is probably due to the fact that the recruits from Kentucky during the Civil War were drawn especially from the mountain regions and contained few or no colored men, whereas in the World War they were uniformly from the whole State and included colored as well as white.

In the series of light hair in the Civil War we find West Virginia standing second, with 311 per 1,000 ; in 1919 there are 52 per 1,000 with flaxen hair and 225 per 1,000 with light brown hair; a total of 277 with light hair. This is a marked reduction in the proportion of light hair in this State, due no doubt to the inclusion of many colored men in the present series. Next in the Civil War series of light hair stands Indiana, with a ratio of 294 per 1,000 . In the World War this State had a ratio for flaxen hair of 60 per 1,000 and of lightbrown hair of 252 per 1,000 , or together 312 per 1,000 . This indicates no great change in the proportion of light hair in this State. In 1866, of men from Missouri, 291 per 1,000 had light hair; in 1919, 34 per 1,000 of the men from this State were stated to have flaxen hair and 227 per 1,000 light-brown hair; a total of 261 per 1,000 , a slight decrease during 50 years. In 1866 the ratio
for light-brown hair for Illinois was 286 ; in 1919 for flaxen hair it is 49 , for light-brown hair 298; a total of 347, apparently an increase in the proportion of blonds in this State, probably due to the immigration of Scandinavians and Germans. Similarly the proportion of blonds has probably risen in Ohio and Wisconsin, remained stationary or fallen in Massachusetts, and increased somewhat in Pennsylvania from 204 to 262. The apparent increases of the lighter colors of hair in Vermont, New York, Connecticut, and Maine may very likely be due to the fact that the categories were not quantitatively distinguished either for Civil War recruits or World War troops, and hence the limits were not drawn uniformly.

In regard to the distribution of light hair color by races, we find that of World War troops there is a larger proportion of flaxen hair in the Polish than in any of the other eight races considered. It is to be noted that Scandinavians were not included in the study, as there were relatively few of them. The proportion of flaxen and light-brown hair together in 1919 is 374 per 1,000 in Germans; for light hair color in 1866 it was 290. In the Civil War soldiers, as in those of the World War, the proportion of light hair stands highest in Germans, if we omit Scandinavians and Polish from consideration. Third in position of World War troops in proportion of light hair are the English, and this position is the same that they occupied in the Civil War. Next in both Civil War and World War series stand the Scotch, then come the Irish and French. The Hebrews come next in the World War series; last come the Italians, with 6 per 1,000 flaxen hair, or 65 per 1,000 of flaxen and light-brown hair together. This proportion agrees pretty well with the proportion of Spanish and Portuguese recruits in the Civil War of 42 per 1,000 .

Table 136.-Comparative frequency distribution of hair color in each of 8 races, demobilization, 1919.
SECTION A: ABSOLUTE NUMBERS.

Race.	Total.	Flaxen.	Light brown.	Medium brown.	Dark brown.	Clear red.	Red and black.
English.	4,196	231	989	959	1,826	58	133
Scotch.	2,045	108	468	459	863	41	106
Irish.	6,137	232	1,157	1,140	3,138	156	314
German	7,067	484	2,163	1,467	2,711	48	194
French.	1,434	39	199	237	885	11	63
Italian.	3,488	21	206	278	2,636	6	341
Polish.	2,402	182	801	470	863	17	69
Hebrew	1,686	27	186	188	1,131	15	139
Number measured.	28,455	1,324	6, 169	5,198	14,053	352	1,359
Not measured.	215						
Total.	28,670						

SECTION B: HAIR-COLOR DISTRIBUTION PER 1,000 OF EACH RACE.

Race.	Total.	Flaxen.	Light brown.	Medium brown.	Dark brown.	Clear red.	Red and black.	Total.
English.	147.46	55. 05	235.70	228.55	435.20	13. 82	31.69	1,000
Scotch.	71.87	52.81	228.85	224. 44	422.00	20.05	51.83	1,000
Irish.	215.67	37. 80	188. 54	185. 77	511.32	25. 42	51.17	1,000
German	248.36	68.49	306.08	207.60	383.61	6.79	27.45	1,000
French.	50.40	27.19	138. 77	165.27	617.19	7.67	43.93	1,000
Italian.	122.58	6.02	59. 06	79.70	755.73	1.72	97.76	1,000
Polish.	84.41	75. 77	333. 47	195. 67	359.28	7.08	28.72	1,000
Hebrew	59.25	16.01	110.31	111.51	670.81	8.90	82.44	1,000

Clear red hair is perhaps the most satisfactory color to serve as a basis for comparison between Civil War and World War troops. In the Civil War the rate for Scotland was higher than that for any other country, namely, 27 per 1,000 , and Ireland came next with 23 per 1,000 . In the World War series Ireland stands first with 25 per 1,000 , and the Scotch second with 20 per 1,000. It is probable that the more recent Scotch immigrants have been drawn from a different part of Scotland than the earlier one. Third in the Civil War series stands England with a rate of 22, whereas for England in the World War series the rate is 14 . Next in the Civil War series comes Germany with a rate of 19 , but the rate is 6.8 in the case of World War troops, and this rate is exceeded by Hebrews, 9 per 1,000 ; French, 8 per 1,000 , and by the Polish, 7 per 1,000 . The rate for the French, Belgians, and Swiss together in the Civil War was 16 per 1,000 . The smallest ratio of red hair is found in troops of Italian origin, namely, 1.7 per 1,000 . In the case of Civil War troops the smallest ratio was in the Spanish and Portuguese, 3 per 1,000 . Red hair seems to be getting rarer in all European stocks.
(f) By Quartermaster distribution zones.-Table 137 gives the distribution of the various hair colors in the Quartermaster's distribution zones. The rate for flaxen hair reaches a maximum in zone 11, including the Dakotas, Nebraska, and the three central Mountain States, 75 per 1,000 . The next highest rate is in zone 7, surrounding the Great Lakes; next in zone 1, the New England States except Connecticut; next zone 13, the Pacific and northern Rocky Mountain States. The zone with the smallest proportion of flaxen hair, 12 per cent, is zone 5, including the Southeastern States. Just above in order stand zone 9, zone 4, and zone 12, including Arizona and New Mexico, 37 per 1,000 . Of clear red hair the largest proportion is found in zone 13, Pacific and northern Rocky Mountain States, 17 per 1,000 . Next is zone 10, 16 per 1,000 ; then comes zone 11, the Dakotas and central Rocky Mountain States, 14 per 1,000 ; and zone 2, the Middle Atlantic States, also 14 per 1,000 . The smallest rate is found in zone 12 , from which no case is recorded; and the next is zone 9, the States of Louisiana and Mississippi.
(g) Hair color in eight European races.-Table 136-B gives the relative proportion of different classes of hair pigmentation for each of the eight races. This table shows that among the Irish the clear red hair forms a larger proportion of the total than in the case of any other race. Similarly, flaxen hair forms a larger proportion of all hair colors among the Polish than it does among the Germans or any other of the eight races. This table shows strikingly the small amounts of flaxen, light brown, and medium brown hair color among the Italians and the large percentage of dark browns among them.

The table brings out strongly that the Poles in America, probably largely from a restricted area of Polish territory in Europe, are more nearly Nordic in their blue eyes and light hair than are the English, who have suffered so large an admixture of other races. As far as hair color goes, Poles are blonder than the Scotch or the English. It is noteworthy also that among the Scotch, Irish, and Polish, the proportion of clear blue eyes far exceeds the total of flaxen and light brown and clear red hair together. In fact, among the Irish the clear blue eye constitutes 534 per 1,000 , whereas the sum of flaxen, light
brown, and medium brown and clear red hair is 438 per 1,000. In so far this accords with a common view that among the Irish the dark brown or black hair is often combined with the clear blue eyes.

Table 137.-Comparative frequency distribution of hair color by Q. M. C. distribution zones, based on nativity of demobilized troops.
SECTION A : ABSOLUTE NUMBERS.

Hair color.	Total.	Zone 1.	Zone 2.	Zone 4.	Zone 5.	Zone 7.	Zone 8.	Zone 9.	Zone 10.	$\begin{gathered} \text { Zone } \\ 11 . \end{gathered}$	$\begin{aligned} & \text { Zone } \\ & 12 . \end{aligned}$	Zone $13 .$
Flaxen.	4,742	389	1,093	123	140	1,945	393	73	199	150	13	224
Light brown	22,636	1,128	4,979	565	1,715	9, 206	1,862	681	829	528	53	1,090
Medium brow	21,600	1,233	3,428	513	4,112	7,533	2, 122	618	736	413	51	841
Dark brown	46, 812	3, 502	13, 099	1,919	5, 408	12,081	3, 582	2, 519	2,044	800	216	1,642
Clear red.	1,286	87	339	40	139	384	107	27	68	28		67
Red and black	4,536	230	1,270	191	174	1,073	639	240	479	78	23	139
Number measured Not measured......	101,612	6,569	24, 208	3,351	11,688	32, 222	8,705	4,158	4,355	1,997	356	4,003
Total.	102, 333											

SECTION B: HAIR-COLOR DISTRIBUTION PER 1,000 OF EACH ZONE.

Flaxen	46.67	59. 22	45.15	36. 71	11.98	60.36	45. 15	17.56	45. 69	75.11	36. 52	55.96
Light brown	222. 77	171.72	205.68	168.61	146.73	285.71	213.90	163.78	190.36	264.40	148.88	272.30
Medium brow	212.57	187.70	141.61	153.09	351.81	233.78	243.77	148.63	169.00	206.81	143.26	210.09
Dark brown	460.69	533.11	541.10	572.66	462.70	374.93	411.49	605.82	469.35	400.60	606.74	410.19
Clear red.	12. 66	13. 24	14.00	11.94	11.89	11.92	12. 29	6.49	15.61	14.02		16.74
Red and black.	44.64	35.01	52.46	57.00	14.89	33.30	73.41	57.72	109.99	39.06	64.61	34.72
Tota	1,000.00\% $1,000.00$		1,000.00	1,000.00	$1,000.00$	1,000.00	1,000. 00	1,000.00 1,000.00		$1,000.00$	$1,000.001,000.00$	

DISTRIBUTION, HAIR, AND EYE COLOR DEM.-1919 STATES OF NATIVITY
 HAIR
 EYES

FLAXEN AND RED

- 7

LINES OF EQUAL PROP. OF fLAXEN HAIR

clear bue ano buie wit brown spots

LIGHT BROWN

DARK BROWN

LINES OF EQUAL PROP. Of CLEAR blUE EyES

SECTION II.

HEIGHT, WEIGHT, AND CHEST CIRCUMFERENCE OF RECRUITS IN relation to various diseases and defects.

I. INTRODUCTORY.

The following study is based upon the physical measurements of defective men from among approximately $2,000,000$ men sent to mobilization camps in the United States in connection with the selective drafts of 1917 and 1918. Tabulations have been made separately for those in the first and second million men. The first million include men sent to mobilization camps between September, 1917, and the 1st of May, 1918; the second million of the $1,666,867$ who were entrained for mobilization camps between the early part of May, 1918, and November 11, 1918. The second million includes a large (though unknown) proportion of men of the second registration, or of those who had reached the age of 21 subsequent to the first registration.
In studying the results, it must be noted, first of all, that the men measured had already been examined and selected by local boards. They represent the cases accepted by local boards. Presumably all who were rejected on physical grounds fall outside certain limits of acceptance designated in the physical examination standards. On the other hand, some men, whose physical dimensions lay outside the ordinary limits of acceptance, nevertheless got to camp under various broad interpretations of the standards, and a few were sent through accident.

II. STANDARDS OF MEASUREMENTS OF DRAFTED MEN.

(a) Stature.-The changing military standards for stature during the period of the draft have been referred to in detail in an earlier chapter. Always men under 60 inches and over 78 inches were to be rejected; but apparently some were sent to camp who were outside the regulation limits, because of exceptional qualifications in other respects.
The mean stature of the first million recruits, including defectives, sent to camp, is 67.49 ; the standard deviation, or measure of variability, 2.71 inches. The mean is not that of adult males in general, but that of a selected lot, from whom the shortest and tallest has been eliminated. Not until the measurement of the men rejected by the local boards shall have been tabulated will we be able to estimate the true mean stature of young adult American males.
(b) Weight.-From the beginning of the selective draft stress was laid upon securing for the Army men of proper weight. Experience indicates that men who are below a certain standard of weight are unable, ordinarily, to carry a heavy pack, and that those over a certain weight are too unwieldy for rapid movement.

The standards of the War Department in the years before the draft provided a minimum weight for all branches of the service of 128 pounds. But it was provided that men 64 inches in height might be accepted who weighed only 120 pounds, if otherwise sound and apparently healthy. It was necessary to obtain special permission from The Adjutant General to enlist a man who weighed less than 120 pounds. The maximum weight was placed at 190 pounds for Infantry, Engineers, Coast Artillery, and Field Artillery, and 165 pounds for Cavalry. At the beginning of the draft local boards were instructed that the minimum weight was 118 pounds and the maximum 211 pounds. But it was provided that, "when the applicant is active, has firm muscles, and is evidently vigorous and healthy" a weight of 8 pounds below the minimum would be accepted for men 61 to 64 inches; of 24 pounds below the minimum for men 73 inches and upward, and for intermediates permissible variations below the standard were given. The regulations further state: "Variations in weight above the standard would not disqualify unless sufficient to constitute obesity."

III. PHYSICAL-EXAMINATION STANDARDS.

(a) Stature and weight.-The physical-examination standards for local boards of November, 1917, gave a table (Table 138) showing the relations between standard accepted measurements and the permissible variations from the standard.

Table 138.-Standards of height, weight, chest circumference, and mobility of chest, adopted for draft recruits, United States Army, 1917.a

Column A.				The following variations from the standard shown in Column A are permissible when the applicant is active, has firm muscles, and is cvidently vigorous and healthy.			
Standard accepted measurements.							
Stature.	Weight.	Chest measurement: Expiration mobility.		Stature.	Weight.	Chest measurement: Expiration mobility.	
Inches.	Pounds.	Inches.	Inches.	Inches.	Pounds.	Inches.	Inches.
61	118	31	2	61	110	30	2
62	120	31	2	62	110	30	2
63	124	31	2	63	112	30	2
64	128	32	2	64	113	30	2
65	130	32	2	65	114	30	2
66	132	32.1	2	66	116	304	2
67	134	33	2	67	118	301	2
68	141	331	$2{ }^{2}$	68	121	30.	2
69	148	334	2	69 70	124	31	2
71	162	34	2	71	133	31.	2
72	169	अ	3	72	138	32	21
73	176	354	3	73	143	32.	2.
74	183	36	3	74	148	33.	2
75	190	36	34	75	155	34	2
76	197	371	3.	76	161	34	21
77	204	37.	3	77	168	35	3
78	211	38.	4	78	175	358	3

a Selective Service Regulations, Nov. 8, 1917.
It was moreover specified:
Variations in weight above the standard are not disqualifying, unless sufficient to constitute such well-marked obesity as to interfere permanently with normal physical activity.

The standards for local boards of January, 1918, reduced the minimum height from 61 to 60 inches and raised the minimum weight to 120 pounds, but in other
respects did not vary from the table of November, 1917. It was further specified:

Abstract

Reject registrants whose weight is less than 100 pounds, unless it is plainly due to some recent illness and otherwise the registrants have no disqualifying defect.

Registrants whose weight is more than 100 pounds and less than 114 pounds and who have no other disqualifying defect are to be referred to the Medical Advisory Boards.

Registrants underweight in proportion to their height (see table), unless it is plainly due to some temporary cause, are referred to the Medical Advisory Board. When this underweight can reasonably be explained and the registrant is otherwise physically fit, accept.

Registrants with overweight are to be accepted unless the obesity interferes with normal physical activity. Refer all doubtful cases to the Medical Advisory Board.

For the Medical Advisory Boards there were issued in March, 1918, standards similar to those furnished the local boards in January. It is moreover stated:

> Registrants who weigh less than 114 pounds shall not be accepted for general military service unless in the opinion of the Medical Advisory Board it is a remediable defect. > Registrants who weigh more than 120 pounds, but less than the prescribed weight for the height indicated in the table of measurements of height and weight, may be accepted when in the opinion of the Advisory Board the defect is remediable by camp life. If, however, in the opinion of the Advisory Board the defect is not remediable these registrants, if otherwise physically and mentally fit, shall be accepted for special and limited military service. (Group ('.)

From the foregoing extracts from the standards we see that though the weights for each height and the minimum and maximum weights are clearly stated, yet examining boards were permitted considerable latitude in rejecting men whose weight lay outside the standards, and there is internal evidence that boards exercised the discretion thus given to them. For example, in Table I there are recorded over 10,000 men who were under the minimum weight of 114 pounds, and nearly 4,700 men who weighed 200 pounds, which was too great a weight for men even of the maximum stature of 78 inches, of whom there were, indeed, only about 550 .
(b) Chest circumference.-The Army Regulations require that the circumference of the chest of recruits shall be measured at the time of the physical examination. Ordinarily the circumference of the chest is measured while fully deflated and then when fully expanded. The difference between the two measurements is known as mobility.

The local boards were directed in the first of the physical examination standards (1917) that "all chest measurements are to be taken on a level just above the nipple." Standard chest measurements at expiration for each inch of stature are given in Table 138. The same standards were continued throughout the year. It was prescribed, "All chest measurements to be taken on a level just above the nipple and with the tape horizontal." In January, 1918, there was added to the table as a standard measurement, "Height, 60 inches; weight, 120 pounds; chest at expiration, 31 inches; mobility, 2 inches."

It was further specified: "Registrants whose chest measurements do not come within the limits of the table and who have no disqualifying defect are to be referred to the Medical Advisory Board. Examiners were moreover warned that "Measurements should be taken with the greatest care."

Instructions to the Medical Advisory Boards of February, 1918, repeated these regulations for the local boards and added:

[^19]to ignorance and lack of practice. If in the opinion of the Advisory Board the lack of the prescribed expansion is remediable by camp life and the registrant is otherwise physically and mentally fit he shall be accepted. If, however, in the opinion of the Advisory Board the defect of expansion is not remediable and the registrant is otherwise physically and mentally fit he shall be accepted for special and limited military service. (Group C.)

The growing precision and emphasis in physical examination requirements of later date indicate a realization by the board responsible for the standards that the chest circumference was not always taken adequately by local boards. During the earlier period under consideration when examination at camps were made by regimental medical officers, the instructions given to them was that weight, height, and chest measurements will be copied from data on physical forms (No. 14 P. M. G. O.) furnished by the local boards, except in those cases referred to the specialist for retaking of weight, height, and chest measurements, in which case the specialist will note his findings in the proper place on record card. Subsequently, however, when the examinations were conducted at each camp by a central examining board, it was the custom for each such board to retake and record the weight, height, and chest measurements.

In the tables referred to in the following sections there are considered only the measurements of chest at expiration, which is certainly somewhat less than the chest circumference at rest. The measurement of the chest circumference at rest was not taken by the medical examiners. The chest circumference at expiration is taken as most nearly representing the circumference of the chest at rest. It may be here mentioned that the average chest circumference found at demobilization, when the chest circumference was taken while at rest, is 34.96 for whites and 34.63 for colored, or probably not far from 34.9 for the whole population. The chest circumference at expiration for the 873,000 men examined by camp boards is given as 33.22 ; part of the excess of the men at demobilization is to be attributed to exercise and Army training which are adapted to produce an enlargement of the chest. About three-fourths of an inch, however, of the greater size at demobilization is due to the fact that, as stated, the chest was measured at demobilization in a quiescent condition, whereas in the case of recruits it was measured with the lungs deflated as far as possible. As stated, for the entire 873,000 men measured in the early part of the draft, the chest circumference is found on the average to be 33.22 inches at expiration. The standard deviation of this chest circumference is 2.01 inches.

IV. THE DIMENSIONS OF MEN WITH SPECIFIC DEFECTS AND DISEASES.

We now pass to a detailed consideration of the three physical measurements in men with the different classes of defects and diseases and the interpretation of the peculiarities that these dimensions show.

1. PULMONARY TUBERCULOSIS.

There are included in our statistics 10,701 men found at mobilization camps to have pulmonary tuberculosis.
(a) Stature.-The average stature of such men is 68.07 inches, which is 0.58 inch greater than the average height of the first million men as shown at the bottom of Table I. The standard deviation in stature of these men is 2.74, which is 0.03 more than the standard deviation of all statures as given in

Table I. That is to say, in respect to stature men with pulmonary tuberculosis are not a random sample of the population, but on the average are selected from the taller men. The significance of tall stature of men with pulmonary tuberculosis is probably not that the organism induces extra growth, but that the tall races of men are less resistant to the Bacillus tuberculosis than are the shorter races of stockier build. That the taller races are more susceptible to tuberculosis of the lungs is indicated by a study of Dublin and Baker. ${ }^{24}$ They show that the rate of mortality from pulmonary tuberculosis is: Among persons born in England, Scotland, and Wales and living in Pennsylvania, 150 per 100,000; living in New York State, 215 per 100,000. Of persons born in Ireland the respective rates are 343 and 589. For persons born in Italy the corresponding rates are 82 and 112, and for persons born in Russia (largely Russian Jews) 107 and 115. This observation then supports the view that pulmonary tuberculosis affects particularly taller races.

Of the 6,048 men found with pulmonary tuberculosis in the second million examined at mobilization camps, the mean stature is 68.12 , which is even taller than in the case of the first million. This second group includes more young men, of the age of 21 . The standard deviation of stature of men with pulmonary tuberculosis among men of the second million is 2.76 inches, which is 0.06 inch larger than for the first million men.

The distribution of statures in the population of men found with pulmonary tuberculosis is shown in Plate XXXI. This shows at a glance that the modal stature is over one-half an inch greater in this group than in the population at large, and that, on the whole, men with tuberculosis form a group characterized by tall stature.
(b) Weight.-Of the 10,701 men found with pulmonary tuberculosis at mobilization camps among the first and second million, the average weight is 130.44 pounds. This is about 11 pounds below the average. This deficiency in weight is the more remarkable inasmuch as the men with tuberculosis are an exceptionally tall lot of men, over half an inch taller than the average. The index of build is important in this connection. As shown in Table 189, the index of build for pulmonary tuberculosis is 28.15 , the lowest index, except that of underweight cases, of any class of defects. The reduced weight of men found with pulmonary tuberculosis is in accordance with general experience, since loss of weight is one of the most marked symptoms of active tuberculosis. That the loss of mean weight is not greater is due to the fact that the more advanced cases of active pulmonary tuberculosis were eliminated by local boards and are not included in our statistical tables. It is only the residuum that was sent to camp and there diagnosed as having pulmonary tuberculosis, which is considered in our tables.

The standard deviation of the mean weight is 14.95 pounds for the first million, 14.36 for the second million, and 14.74 for the two combined. This is about 2.75 to 3 pounds below the standard deviation for the whole population. This small standard deviation is partly in consequence of the reduced mean weight, but largely because the men with pulmonary tuberculosis practically all show loss of weight, and relatively few of them show a deviation in the positive direction. They are mostly men of low mean weight, and show comparatively little variation therefrom.

The relation between the distribution of weights of the population of men with pulmonary tuberculosis and the population of recruits in general is graphically shown in Plate XXXIV. This curve brings out strikingly the great weight deficiency of men with pulmonary tuberculosis, and this is the more striking in view of the fact that they have a stature that is above the average. The modal weight is about 10 pounds below the average, and there is almost an entire absence of the greater weights, above 185 pounds.
(c) Chest circumference.-In the 10,649 men found having pulmonary tuberculosis at mobilization camps the average chest circumference is 32.09 inches, or 1.13 inch less than the average for the whole population examined. For the first million men the average chest circumference is 32.33 inches; for the second million 31.90 inches. That for the second million is nearly half an inch less than that for the first million. This is a somewhat remarkable result in view of the fact that the men of the second million are taller than those of the first and indicates that the men with tuberculosis in the second million were much slenderer than those of the first million. These facts show that, as ordinary observation confirms, persons with pulmonary tuberculosis tend to have relatively small chest circumference despite their great stature. The low variability suggests that the small chest circumference is not necessarily the consequence of tuberculosis, for if it were, we should have persons with large chest circumference who were beginning to show signs of pulmonary tuberculosis, and those with small chest circumference in whom the disease had progressed far. Consequently were the small chest circumference merely caused by pulmonary tuberculosis, variable chest circumference would be expected. On the other hand, the low variability suggests that the small chest circumference is a constitutional trait; that is, those in whom the chest developed inadequately are apt to acquire active symptoms of tuberculosis, or, to put it in another way, persons with a tuberculous diathesis are characterized from youth on by small development of the chest, as well as by tall stature.

The relation between the distribution of chest circumference in the population found with pulmonary tuberculosis and the population of recruits in general is shown 'graphically in Plate XXXVII. It appears that the chest girth of the population with tuberculosis is far below that of the population of recruits in general.
(d) Robustness.-The index of build, as determined by using the second power of the height as a divisor, for the group of men with pulmonary tuberculosis is 28.15 , which is 2.82 units below the average of the United States. This, as stated above, is the smallest index of build of any of the groups of defects, except that of underweight.

Pignet's ${ }^{20}$ index of robustness for men with pulmonary tuberculosis is 30.27 . This brings the group into Pignet's class of very weak constitution. For each inch of the average height there are 1.92 pounds of weight as compared with the normal 2.097 , and 0.472 inch of chest measure (expiration) as compared with the normal 0.492 . In summary, the average tuberculous subject is tall, narrow chested. and underweight.
Table 139.-Correlation between height and weight in recruits with tuberculosis (pulmonary), first $\left(P_{1}\right)$ and second (P_{2}) million draft recruits.

Table 140.-Correlation between height and chest circumference (expiration) in recruits with tuberculosis (pulmonary), first (P_{1}) and second (P_{2}) million draft

2. SIMPLE GOITER.

The dimensions of men who show simple goiter are of very great interest, because goiter is a disease of the thyroid gland and the secretions of this gland are believed to have important relations to the growth of the body. It is commonly accepted that persons with a thyroid that is especially active during early years of development tend to a large stature, whereas those with less active thyroid secretions remain relatively short. The tall groups are relatively slender, the short groups relatively stout. It is to be noted, however, that goiter usually first makes its appearance after adolescence, when the form of the body is already established, and hence its influence is less than though the disturbance of the thyroid gland occurred at an earlier age.
(a) Stature.-The mean stature of 7,099 men found at mobilization camps among the first and second million to have goiter is 67.94 inches, which is 0.45 inch greater than the average stature of the first million men, as indicated in Table I. Thus the men with hypertrophied thyroid gland show themselves to be nearly half an inch taller than the average. Since enlargement of the thyroid gland, in its early stage at least, may possibly be accompanied by an excessive secretion, the tall stature of the goitrous cases may be in part due to this excessive secretion. On the other hand, it must be recognized that the persons affected with goiter belong especially to the taller races in the United States. As pointed out in another publication, ${ }^{9}$ goiter is found especially in the extreme northwest, in Washington and Oregon, and in the region of the Great Lakes. The extreme northwest is certainly characterized by tall stature, and in the States of Wisconsin and Minnesota, both States with a high proportion of goiter, there are many representatives of the Scandinavians and Germans, who belong to the taller races. So it is impossible to ascribe the exceptional height of men found with goiter exclusively, if at all, to the hypersecretion of the thyroid gland. The standard deviation in stature of the goitrous cases is 2.58 , which is slightly less than the standard deviation of all statures (2.71) shown in Table I. This restricted variability of stature indicates that the goitrous population is selected for high stature more than the population as a whole, and this is because the goitrous localities contain a rather homogeneous population of tall men as compared with the population of the United States as a whole. Indeed a comparison of the distribution of statures in men with simple goiter, as shown in Table 141, with the distribution in Table I (which shows the distribution of statures for the unselected population), reveals a marked deficiency in the lower statures and a corresponding excess in the tall statures. The mean height of men found with goiter in the second million is practically the same as the first million-namely, 67.95 -so that there was no important change in the stature of the men selected for this disease in the two periods of examination.

The relation between the distribution of height of men with simple goiter and its distribution in the population at large is shown in Plate XXXI. It appears at a glance that the men with goiter are markedly taller than the population at large. This is probably because such tall men have come to inhabit the goitrous districts, or that the taller races, such as Scandinavians, are more often affected.
(b) Weight.- Of the $7,099 \mathrm{men}$ in whom simple goiter was found at mobilization camps among the first and second million recruits, the average weight is 142.36 pounds. The average weight is only 0.82 pound above the average for the whole population, which is about six times the probable error. The index of build is 30.84 , which is slightly less than that of the first million men as a whole. The population with goiter is a tall and slender one. The sliglit deficiency in build is, however, probably no grenter than the deficiency in build that characterizes tall men in general.

The standard deviation of the mean weight is 16.50 pounds for the first and second million men. This standard deviation is 0.92 pound less than the standard deviation of the whole population of the first million which is not a very significant difference. The weight and standard deviation for the second million are not significantly different from those of the first million.

The relation between the distribution of weights in the population of men with simple goiter and that of recruits in general is shown in Plate XXXIV. The graph shows that the population with simple goiter is a heavy population as compared with the population of recruits in general. This is, however, associated with the great stature of the population with simple goiter, the significance of which has been referred to in the preceding paragraph.
(c) Chest circumference.-In the 7,085 men found with goiter among the the first and second million the average chest circumference is 33.11 inches, or 0.11 below the average of the whole population, as shown in Table II. The standard deviation of this dimension is 1.95 , or about 0.06 inch below the average of the whole population. The average chest circumference for this group in the second million men is 33.13 , which is slightly greater than for both million men, and is slightly less for the first million, 33.04.

The relation between the distribution of chest circumference in the population found with simple goiter and that of the recruits in general is shown graphically in Plate XXXVII. There is no great difference between the two distributions, though there is a slight inferiority in chest girth in the case of the goitrous population, and this is more striking in view of the large stature of this population.
(d) Robustness.-The index of build of men with simple goiter is 30.84, or 0.23 unit below that of the average for the United States. Pignet's index of robustness for this group is 21.94 , which places them in the class of medium constitution. For each inch of the average height there are 2.10 pounds of weight, as compared with the normal 2.097 ; and 0.487 inch of chest measurement (expiration), as compared with the normal 0.492.
Table 141.-Correlation between height and weight in recruits uith goiter (simple), first (P_{1}) and second (P_{2}) million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																												
		89 and	$\begin{aligned} & 90- \\ & 94 \end{aligned}$	$\stackrel{95-}{99}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{gathered} 105- \\ 109 \end{gathered}$	$\begin{array}{\|c} 110- \\ 114 \end{array}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\left\|\begin{array}{c} 120- \\ 124 \end{array}\right\|$	$\left.\begin{gathered} 125- \\ 129 \end{gathered} \right\rvert\,$	$\left.\begin{gathered} 130- \\ 134 \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|} 135- \\ 139 \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 140- \\ 144 \end{array}\right\|$	$\begin{gathered} 145- \\ 149 \end{gathered}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{array}{r} 155- \\ 159 \end{array}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 165- \\ & 169 \\ & 165 \end{aligned}$		$\begin{gathered} 175 \\ 179 \end{gathered}$	$\begin{gathered} 180 \\ 184 \\ 180 \end{gathered}$	$\stackrel{185-}{189}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{gathered} 195- \\ 199 \end{gathered}$	$\begin{gathered} 200- \\ 200 \end{gathered}$	$\begin{aligned} & 205- \\ & 209 \end{aligned}$	$\begin{gathered} 210- \\ 214 \end{gathered}$	${ }_{219}^{215-}$	$\begin{aligned} & 220- \\ & 224 \end{aligned}$	$\begin{aligned} & 225- \\ & 229 \end{aligned}$
58 and under.	4	1									1	1			1															
	${ }_{9}^{10}$				1			1	3	2	i		4				1				1									
61.	33					3	5	8	4	5	2	2	2		1															
63	70				2	5	10	13	10	13	${ }_{6}^{6}$	${ }^{6}$	2	1	1	1														
	165				1	\pm	19	${ }_{39}^{33}$	${ }_{5} 3$	${ }_{53}^{26}$	17 38	13	10	${ }^{2}$	5	${ }_{2}^{2}$	3	${ }_{2}^{2}$						2						
65.	529				1	$\stackrel{1}{2}$	${ }_{21}^{25}$	36	83	${ }_{92}^{53}$	88	71	46	41	19	9	15			i	1		1	2					1	
66	871					6	23	63	85	142	126	121	107	78	49	27	18	12	4	5	1		1	2						
67.	1,059				2	4	14	36	84	136	154	161	149	${ }^{99}$	89	42	30	26	14		6	${ }_{3}$,	1						
	1,143				2		8	21	67	107	151	160	174	156	106	77	43	24	20	12	6	3	5	1						
	1,021						7	15 4	47	${ }_{24}^{74}$	87	124	118	${ }_{105}^{139}$	${ }_{108}^{118}$	$\begin{array}{r}107 \\ 80 \\ \hline\end{array}$	52	28	20	16	8	${ }_{9}^{2}$	3	1	1		1			1
71	515								3	7	28	43	67	90	69	49	55	37	33	10	7	4		4	2	1				1
72	305									3	10	20	31	49	41	42	32	33	13	10	7	5	4	4	1					
	143						,					10	7	13	23	15	19	16	15	13	5	2	2			2				
	${ }^{61}$								1			1	1		5	10	12	7	3	2	4	1	4		1					
	14											1	1		1	2	2	4	2	1	4	5	2		1					
77	7																	2		1	1	1								
78	6											1	1	1					1	1		1								
																	1													
Total.	7,099	1			12	31	133	271	489	684	771	859		801	646	465	348	245	166	103	63	35	37	16	8	3	1		1	1
																				${ }_{1}$ and	P_{2}									
Number of eases: 1,813 .								inches.													Height: Mean, br.97 inehes; standard deviation, 2.58 ± 0.01 inches.									± 0.01
Weight: Mean, 142.39 pounds; standard deviation, $16.28 \pm$ 0.18 pounds.								Weight: Mean, 142.35 pounds; standard deviation, 16.57 ± 0.11 pounds.												Weight: Mean. 142.36 pounds; standard deviation $\mathbf{1}_{2} 16.50 \pm 0.09$ pounds.										

Table 142.-Correlation between height and chest circumference (expiration) in recruits with goiter (simple), first (P_{1}) and second (P_{2}) million draft recrutts.

[^20]
3. EXOPHTHALMIC GOITER.

Exophthalmic goiter is the name applied to a set of symptoms that accompanies hypersecretion of the thyroid gland. It is characterized by some swelling of the gland itself, which, however, may be very slight, and it induces a rapid heart beat, cardiac hyperirritability, and protrusion of the eyeballs in advanced cases. The geographical distribution indicates that the exogenous causes that induce it are similar to those which induce simple goiter.
(a) Stature.-The average stature of 2,620 men found in mobilization camps with exophthalmic goiter, among the first and second million men examined, is 67.97 inches, which is 0.48 inch greater than the average of the first million men, as indicated in Table I. This excess of stature is about the same as for simple goiter and is to be explained on similar grounds, especially on the ground of high racial stature found in the population subject to it or inhabiting the goitrous districts. The average stature of the 439 cases of goiter found among the first million men is 67.94 and for the 2,181 in the second million, 67.97. The standard deviation of men with exophthalmic goiter is 2.65 inches, or 0.06 inch less than the standard deviation of all the first million men measured. The low standard deviation is due to the fact that exophthalmic goiter is especially prevalent in regions occupied by tall men.
A comparison of the statures of men with exophthalmic goiter as compared with the population at large is given in Plate XXXI. This shows that on the whole the selected population with exophthalmic goiter is strikingly taller than the population at large. This is probably because tall persons either have come to inhabit the regions especially subject to exophthalmic goiter or are more subject to the disease.
(b) Weight.-Of the 2,620 men found at mobilization camps, among the first and second million, with exophthalmic goiter the mean weight was 138.82 pounds, or 2.72 pounds below the average for the first million men. This difference indicates that exophthalmic goiter has some influence upon the weight. The standard weight associated with 68 inches of stature is 142.6 pounds. The men found with exophthalmic goiter were, therefore, 3.72 pounds below the average of men of their stature. This difference indicates that patients with exophthalmic goiter are slenderer than the men of their size; and it is not improbable that this reduction in weight is due to the disease. It is noteworthy that the correlation between stature and weight is 0.516 for simple goiter, and only 0.476 for exophthalmic, indicating that stature and weight are more closely associated in simple goiter than in exophthalmic. The index of build for men of exophthalmic goiter is 30.05 , as contrasted with the index of 30.84 for men of simple goiter. This leads to the conclusion that men with exophthalmic goiter are of slender build, probably in consequence of the disease itself.

The relation between the distribution of weights in the population with exophthalmic goiter and that of the population of recruits in general is shown graphically in Plate XXXIV. The mode is about 132 pounds, which is 5 pounds below the mode of recruits in general. In view of the fact that persons
with exophthalmic goiter have on the whole a stature greater than the average, this suggests that a large proportion of persons afflicted with the disease are underweight because of the effects of the disease, and this would seem to be an explanation of the marked excess of persons with exophthalmic goiter having weights between 132 and 112 pounds. The irregularity in the curve at 142 pounds, or 5 pounds above the average, is possibly due to some error in recording or in tabulating. The cases are too few to give satisfactory averages.
(c) Chest circumference.-Of the 2,622 men found with exophthalmic goiter among the first and second million, the average chest circumference is 32.85 inches, or 0.37 inch less than the average of the whole population, as shown in Table II, and this despite the fact that the men with exophthalnic goiter are taller than the average. The relation of chest circumference to height is 0.483 , which is less than 0.487 in the case of simple goiter and much less than 0.492 in the population as a whole. This again leads to the conclusion that men with exophthalmic goiter are a slender, small-chested type. The standard deviation of chest circumference is 1.98 , which is a relatively small standard deviation. The small size of this standard deviation is partly due to the small absolute size of the chest, but in part is probably due to the effect of the disease itself.

The relation between the distribution of chest circumferences in the population with exophthalmic goiter and in the population of recruits in general is shown graphically in Plate XXXVII. This shows a marked deficiency in chest girth of the population with exophthalmic goiter, despite the fact that it is, on the whole, above the average in stature, and supports the conclusion that exophthalmic goiter results in malnutrition.
(d) Robustness.-The index of build of men with exophthalmic goiter is 30.05 , which is 0.79 unit less than that of the group with simple goiter and 1.02 units less than the average for the United States. Pignet's index of robustness for this group is 24.28 . This index places men with exophthalmic goiter in Pignet's group of medium constitution. For each inch of the average height there are 2.04 pounds of weight as compared with the normal 2.097 , and 0.483 inch of chest as compared with the normal 0.492.
Table 143.-Correlation between height and weight in recruits with exophthalmic goiter, first (I_{1}) and second $\left(P_{2}\right)$ million draft recruits.

Table 144.-Correlation between height and chest circumference (expiration) in recruits with exophthalmic goiter, first $\left(I_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 145.-Correlation between height and weight in recruits with myopia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 146.-Correlation between height and chest circumference (expiration) in recruits with myopia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

4. MYOPIA.

Myopia, or short-sightedness, is a constitutional hereditary defect of the lens; not that all myopics are born so, but that there is in many persons a constitutional tendency for the eye to become myopic under the influence of bad conditions of life, especially such as lead to abuse of the eyes.
(a) Stature.-The mean stature of 2,420 men found at mobilization camps in the first and second million with myopia is 67.08 inches, or 0.41 inch below the average stature of Table 1 for the first million. The mean stature for the myopics among the first million men was 67.23 , and the second, 67.01. This group and that of hyperopics constitutes the shortest groups associated with the various defects other than that of astigmatics. The reason for the short stature of men with myopia is not difficult to infer. They were not rendered short because of eyesight, but many of them belong to races which have an especial tendency toward developing the myopic condition in the environment in which they prefer to live. As shown in "Defects Found in Drafted Men," 1920, defective vision in general has an especially high rate in the eastern manufacturing sections of the country, which include many French-Canadian and Polish Jews. Errors of refraction, of which myopia is the most common of the specified types, occur especially in urban districts and reach a maximum in New York City, a city characterized by a large proportion of Polish Jews. Indeed, it is well known that this race, which is one of the shortest races in the United States, is especially liable to this defect. Thus in the British report upon physical examinations of men of military age, 1917-1918 (Ministry of National Service ${ }^{25}$, Vol.1, p. 107), it is said that the very large Jewish population of Leeds helps to swell the number of cases of myopia, etc. We may conclude, therefore, that the short stature of persons with myopia is due in part to the high incidence of this defect in persons of short race.

Plate XXXIII gives a comparison between the statures of men found with myopia and the population at large. It is apparent that the population with myopia consists of a group of short men, some of whom are Russian and Polish Jews, who have a tendency toward myopia and short stature.
(b) Weight.-Of 2,420 men found with myopia at mobilization camps among the first and second million examined, the average weight was 139.23 pounds, or 2.31 pounds below the average. For the first million men the weight is 140.23 pounds and for the second million 138.75 pounds. This low weight of men with myopia is, of course, associated with their low mean stature. They are light in weight as a whole, not because myopia affects the weight, but because the myopics are commoner among certain small races than in the population at large. The standard deviation of weight in men with myopia was for the first million 18.07 , or 0.65 above the average of the whole first million. The standard deviation of weight in men with myopia among the second million is 18.61 , which tends to raise the excess of the standard deviation. The high standard deviation (or index of variability) of the weight of the myopics is, like the high standard deviations in respect to stature, due to the fact that the myopies constitute a marked deviation from the normal distribution inasmuch as it is weighted with excess of men of short stature.

The relation between the distribution of weights of the population with myopia and that of the population of recruits in general is shown graphically in Plate XXXVI. From this graph it appears that the population with myopia is characterized by small weight as, indeed, it is by small stature. This result merely supports the conclusion reached above that men with myopia include a racial group of small persons.
(c) Chest circumference.-Of 776 men found with myopia at mobilization camps among the first million, the average chest circumference at expiration is 33.13 inches. In the 1,641 men among the second million the average chest circumference is 32.89 inches. For the two groups together, 2,417 inen, the mean chest circumference is 32.97 . This average is somewhat less than the average chest circumference of the first million men, 33.22 ; the smaller chest circums ference of the myopic men is doubtless to be attributed to the large proportion of smaller men found among them. That the chest circumference is only slightly less than the average is due to the fact that just these shorter men have a relatively high chest circumference, in accordance with the generally greater robustness of shorter men.

The standard deviation of chest circumference is 2.12 for the first million men and 2.12 ± 0.02 for the second million men. The standard deviation for the myopic men among the first and second million combined is 2.12 ± 0.02. Thus the standard deviation is considerably greater than the average, which is to be explained on the same ground as the greater standarl deviation of stature and weight, namely, on account of the excess of small men with absolutely small chest circumference.

In general, then, the conclusion to be drawn concerning the dimensions of myopic men is that myopia is especially characteristic of certain small races (especially the Polish and Russian Jews).

The relation between the distribution of chest circumferences in the population with myopia and the population of recruits in general is shown graphically in Plate XXXVII. Here we see that the chest girth for the population with myopia is slightly less than that of recruits in general, which is no doubt due to the fact that the population with myopia contains an excess of individuals of small races.
(d) Robustness.-The index of build of men with myopia is 30.95 , which is 0.13 below the average for the United States. Pignet's index is 21.52. The men of this group belong in the class with medium constitution. For each inch of the average height there are 2.08 pounds of weight, as compared with the normal 2.097 ; and 0.492 inch of chest measure (expiration), as compared with the normal 0.492.

5. HYPEROPIA.

(a) Stature.-The average stature of 188 men found with hyperopia at mobilization camps among the first million is 67.28 inches; among the second million, 67.03 inches for 781 men ; or for the total of 969 the mean stature is 67.0 inches, which is 0.41 inch below the average of all. This indicates that the hyperopic group contains an excess of short men. This is probably, as in the case of myopia, due less to any influence that hyperopia has upon growth than to the circumstance that hyperopia occurs in men that belong to the short races.
Table 147.-Correlation between height and weight in recruits with hyperopia, first $\left(I_{1}\right)$ and second $\left(I_{2}\right)$ million draft recruits.

Height, in inches.	Total.	Weight. in pounds.																								
		89 and under.	${ }_{94}^{90-}$	${ }_{99}^{95-}$	$\begin{gathered} 100- \\ 104 \end{gathered}$	${ }_{109}^{105-}$	$\begin{gathered} 110- \\ 114 \end{gathered}$	$\begin{gathered} 115- \\ 119 \end{gathered}$	$\begin{aligned} & 120- \\ & 124 \end{aligned}$	${ }_{129}^{125-}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{array}{\|c} 135- \\ 139 \end{array}$	$\begin{gathered} 140- \\ 144 \end{gathered}$	$\begin{gathered} 145- \\ 149 \end{gathered}$	$\begin{gathered} 150- \\ 154 \end{gathered}$	$\begin{array}{r} 155- \\ 159 \end{array}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{array}{r} 170- \\ 174 \end{array}$	$\begin{array}{\|} 175- \\ 179 \end{array}$	$\begin{gathered} 180- \\ 184 \end{gathered}$	$\begin{gathered} 185- \\ 189 \end{gathered}$	$\begin{gathered} 190- \\ 19.4 \end{gathered}$	$\underset{199}{195-}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$	
58 and under.	3											1	1					1								
60.	6				1	i	7	1	3	1	2		1		1											
	17 21						6	3	3	4		1	2	1	1											
63.	38						5	4	8	9	5	2	3													
64.	70100				1	1	5	12	8	13	9	9	4	2	3			1								
66.						1	3	7	16	15	17	16	10	7	2	3 3	1	1	1							
67.	100					2	6	8	16	24	15	${ }^{23}$	${ }_{23}^{15}$	${ }_{10}^{6}$	11 10	3 6	1	${ }_{3}^{2}$				1	1			
	133 134 1						1	8	$\stackrel{9}{7}$	15 17	20 29 29	16 17	${ }_{25}^{23}$	${ }_{21}^{10}$	$\begin{array}{r}10 \\ 8 \\ \hline\end{array}$	${ }_{3}^{6}$	4	5	5	3	2		1			
69.	150							,	4	9	13	12	20	24	?	3	9	6	1	2	1		1	1	i	
70.	116 86								2	3	5	11	18	16	9	8	4	3	2	3		1				
72.	86 48							.	1	2	1	8	8	3		4	4	2	2	2			1	1	1	
73.	29 9									1	2	3	2 1	${ }_{1}^{2}$	7	$\stackrel{4}{2}$	1	${ }_{2}^{2}$	1	I						
	${ }_{5}^{9}$											1			1	1			1	1						
76..........	1														1											
	969				2	7	38	50	77	114	118	120	133	94	71	37	35	28	17	13	4	2	3	3	3	
P_{1}																										
Number of cases: 188.						Number of cases: 781.																				
Height: Mean, 67.28 inches; standard deviation, 2.65 ± 0.09 inches.							inclies.									Height: Mean, 67.08 inches; standaro deviation, $2.72 \pm 0.0-$ inches.										
Weight: Mean, 139.13 pounds; standard deviation, 17.23土 0.60 pounds.						Weight: Mean, 138.98 pounds; standard deviation, $16.10 \pm$ 0.27 pounds.										Weight: Mean, 138.96 pounds: stanaard deviation, $18.29 \pm$ 0.25 pounds. Correlation: 0.4511 ± 0.0173.										

Table 148.-Correlation between height and chest circumference (expiration) in recruits with hyperopia, first (P_{1}) and second (P_{2}) million draft recruits.

The standard deviation in stature of hyperopics is 2.65 for the first million men and 2.73 for the second million men, or 2.72 ± 0.04 for the two combined. This is only slightly greater than the standard deviation of stature for the whole of the first million men; the difference is much less than the probable error. Apparently, even though the mean stature of the hyperopics is slightly depressed, they conform closely to the average distribution of frequencies and hence possess the average variability in stature, of the population in general. The normal variability oscillates about a low mode.
(b) Weight.-Of the 188 men found with hyperopia in mobilization camps among the first million men, the mean weight is 139.13 pounds, or 2.41 pounds below the mean weight of the first million. This deficiency in weight is doubtless associated with the small size of hyperopics. The mean weight for the hyperopics among the second million is 138.98 pounds. For the two groups together it is 138.96 pounds; 2.58 pounds below the mean weight of the whole of the first million. This low weight is again doubtless associated with the small mean stature. The variability of hyperopics is indicated by the standard deviation of 16.29 ± 0.25, which is more than 1 pound below the standard deviation for the whole of the first million men. This markedly low standard deviation for weight indicates that we have in hyperopics a fairly homogeneous group of men of slightly less than normal weight.

The relation between the distribution of weights in the population found with hyperopia and the population of recruits in general is shown in Plate XXXIV. As the number of persons in this population is small, the irregularity of the curve of distribution is probably not significant. On the whole the curve of weights of persons with hyperopia falls below that of the population in general.
(c) Chest circumference.-In 188 men found with hyperopia at mobilization camps among the first million, the average chest circumference is 33.26 inches, or 0.4 inch above the average chest circumference of the whole first million. In the 781 men found with hyperopia in the second million, the average chest circumference is 33.00 inches. For the 969 men in both, the chest circumference is 33.05 inches, or 0.17 inch below the mean chest circumference for the whole of the first million men. This relatively small mean chest circumference is doubtless associated with the generally small size of men with hyperopia. The standard deviation of chest circumference of men with hyperopia among the first million is 2.03 , for the second million 1.96 ± 0.03; for the total $968,1.98 \pm 0.03$; a variability which again is slightly, but hardly less significantly, than the standard deviation of the first million men, which is 2.01 .

We may conclude that the hyperopics, like the myopics, include an especially large proportion of short men; in fact, they constitute more nearly a distinct lot of short men than the myopics. It is probable that this also is a matter of race.

The distribution of chest circumference in the population with hyperopia and the population of recruits in general is shown graphically in Plate XXXVII. It appears that the chest girth is slightly less than that of the population of recruits in general, which is probably associated with the smaller average size of the population with hyperopia.
(d) Robustness.-Men with hyperopia have an index of build of 30.88, or slightly less than that of men with myopia, and 0.19 less than the average of the United States. Pignet's index is 21.44 , which places them in the medium group. For each inch of the average height there are 2.07 pounds of weight as compared with the normal 2.097 , and 0.493 inch of chest measurement expirations, as compared with the normal 0.492 .

6. ASTIGMATISM.

(a) Stature.-The average stature of 517 men found with astigmatism at mobilization camps among the first million is 66.95 inches; for the 1,075 among the second million it is 67.13 ; for the two groups combined, 1,592 men had the mean height of 67.07 , which is 0.42 below the mean stature of the whole population of the first million mell. The stature of astigmatics among the first million is 0.54 inch below the average stature of men of the first million. This is certainly a significant difference. Indeed if one compares in Table 184 relative distribution of statures in the line labeled at the left "Astigmatism" with the bottom line of the table, it will be seen that the short statures, 62-66 inches, inclusive, are uniformily in excess, whereas the taller statures, 68 inches upward, are for the most part in deficiency. However, there are relatively few astigmatics among the very short men, 61 inches and under (except a few cases 58 inches and under). This deficiency in frequencies of statures 61 and 59 inches strikingly separates astigmatics from the myopics, which have an excess in these stature classes. The excess of myopics in the lower stature classes does not extend above 65 inches, whereas in the astigmatics the excess extends to 66 inches. Astigmatics form a group that is as short on the average as the myopics, but it does not include so many of the very short men. The standard deviation for the astigmatics found among the $2,000,000$ men is 2.71 , which is probably not significantly less than the standard deviation of myopics of 2.79 inches. This indicates that though the astigmatics are a short people they do not include so many of an extremely short race as do the myopics.

There are several possible explanations of this extraordinary deficiency in stature of men with astigmatism found in mobilization camps. First, the hypothesis may be entertained that astigmatism is especially common in cities and that the population in cities contains men of inferior nutrition and consequently shorter stature than those of rural districts. This hypothesis may be tested by comparing the statures of men of eastern manufacturing sections with those of the population at large. For the eastern manufacturing group the mean stature is 66.77 inches; for the population as a whole, 67.49 . But it bas been already pointed out that this deficiency of eastern manufacturing sections can not be ascribed merely to conditions of life in these sections, but doubtless to the fact that shorter races, immigrated from Europe, have remained in these sections. The stature of people from Chicago is 67.09, which is only 0.04 inch below the average of the whole country, and from Denver is 67.67 , which is slightly greater than the average of the whole country. Recruits from St. Paul and Mimenpolis average-still higher, 67.83. It is clearly not urbanity, but race, that chiefly determines the smaller stature of
some cities. The association of astigmatic persons with cities is to be ascribed rather to the short races living therein than to the fact that conditions of life in cities may be bad for the eyes. Perhaps one may say that peoples with hereditary tendency toward astigmatism are more.apt to develop the tendency in cities than when they live in rural districts.
The deficiency in stature in men found with astigmatism may be due to racial factors. It is indecd well known that defects of vision, including astigmatism, are exceptionally frequent in recruits coming from New York city ("Defects Found in Drafted Men," ${ }^{\prime}{ }^{9}$ p. 366). The rate for errors of refraction is given for New York city as 68.8 per 1,000 . It was, however, still greater in Boston, 73.6. The high rate of errors of refraction of the classified cases of which astigmatism, next to myopia, is the largest item, is, as pointed out, probably due to the exceptionally large number of Hebrews in the cities. However, astigmatism is less predominantly found among the Hebrews than myopia, and that is probably why Boston exceeds New York city in the proportion of errors of refraction. Possibly there are other short races which are pecularily subject to astigmatism (as, for example, South Italians, French Canadians, and Portuguese) which may occur in greater proportion in Boston than in New York city.

We may conclude, therefore, that the association of short stature with astigmatism is an association of two independent traits which are both racial characteristics.
(b) Weight.-In 517 men found with astigmatism at demobilization camps among the first million, the average weight is 138.59 pounds; for 1,075 men in the second million, 139.43 pounds; and for 1,592 men in both groups together, 139.16, or 2.38 pounds below the average for the whole of the first million men. This deficiency is, of course, associated with generally smallex size of the men found to have astigmatism. The standard deviation of this weight is for the first million men 17.25 pounds; for the second million 16.87 pounds; and for both together it is 17.00 ± 0.20, which is 0.42 of a pound below the average of the whole of the first million men, a difference which is not very significant, being only a little more than twice the probable error. It is, however, in line with the low standard deviation found in men with eye defects, indicating one or more short racial groups.
The relation between the distribution of weights in the population found with astigmatism and that of the population of recruits in general is shown in Plate XXXIV. It appears from this graph that the population with astigmatism has a weight that is below the average of the population in general, a condition which is associated with the small stature of many of them. The mode of the astigmatic population is 2 or 3 pounds less than that of the population at large and stands much higher than the average population. This indicates that astigmatics are less variable in weight than the average, although it appears that they are more variable in stature than the population at large. The conclusion is justified, that in the population with astigmatism there is an excess of small persons, doubtless belonging to one or more small races.
Table 149.-Correlation between height and weight in recruits with astigmatism, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 150.-Correlation between height and chest circumference (expiration) in recruits with astigmatism, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Height, in inches.	Total.	Chest, in inches.														
		28 and under.	29	30	31	32	33	34	35	36	37	38	39	40	41	42
58 and under.	2						1			1						
59..........	2				1			1								
$60 . .$.	5					1	1	2	1							
61.	14		1	1	2 8	$\begin{array}{r}5 \\ 12 \\ \hline\end{array}$. 8	4		1				1		
63.	88		2	12	16	14	20	11	10	2	1			1	
64.	129		6	16	18	26	28	19	6	6	1	2	1			
65.	162		5	14	31	35	30	20	17	6	3		1			
66.	230		2	23	40	48	47	36	15	10	5		1	1	1	
67.	220		3	14	25	60	36	36	20	14	5	5	1			1
68.	226	.	2	9	36	49	42	31	31	20	3	2	1		
69............	170	.	4	3	18	25	48	26	21	12	7		2	2		
70...........	130			4	18	26	30	18	12	6	10	4	1	1		...
71.	90		2	6	10	20	11	17	7	9	4	1	2	1
72.	44			1	1	5	11	14	6	4	1	1				
73.	20					2	5	7	3	2			1			
74............	9			1		1	1	1	2	2	1					
75..............	3							1	1				1			
77.																
78. .	1							1								
Total..	1,587		28	105	224	329	319	251	154	96	41	17	13	8	1	1

$\mathrm{P}_{1}-$ Number of cases: 517. Height: Mean, 66.95 inches; standard deviation, 2.77 ± 0.06 inches. Chest circumference (expiration): Mean, 33.06 inches; standard deviation, 2.02 ± 0.04 inches.
Correlation: 0.2515 ± 0.0278.
$\mathrm{P}_{2}-$ Number of cases: 1,070 .
Height: Mean, 67.13 inches; standard deviation, 2.68 ± 0.04 inches.
Chest circumference (expiration) Mean, 33.01 inches; standard deviation, 2.01 ± 0.03 inches.
Correlation: 0.1641 ± 0.0201.
P_{1} and $F_{2}-$ Number of cases: 1,587 . Height: Mean, 67.07 inches; standard deviation, 2.71 ± 0.03 inches. Chest circumference ${ }^{(\text {expiration }): ~}$ Mean, 33.03 inches; standard deviation, 2.01 ± 0.02 inches. Correiation: 0.1928 ± 0.0163.
(c) Chest circumference.-Of the 517 men found with astigmatism at mobilization camps among the first million, the average chest circumference is 33.06 inches; that of the 1,070 astigmatics found in the second million is 33.01 ; and for 1,587 men in both together it is 33.03 , or 0.19 inch less than the average mean chest circumference of the first million men. This small chest circumference is associated with the low average stature and weight. The standard deviation of the chest circumference is for astigmatics among the first million men, 2.02 ; for the second million, 2.01 ; and for both groups together, 2.01 ± 0.02. This is the same as the standard deviation in chest circumference for the whole of the first million men and indicates that the astigmatics form, on the whole, quite as homogeneous a group as the population at large, although a group slightly below the average in size.

The relation between the distribution of chest circumference in the population found with astigmatism and the population of recruits in general is shown graphically in Plate XXXVII. It appears that the population with astigmatism has, on the average, a small chest circumference, which is no doubt associated with their prevailingly small height and weight, owing to the fact that this part of this population contains an excess of small races.
(d) Robustness.-The index of build of men with astigmatism is 30.94 , or only 0.13 unit below the average of the United States. This index of robustness (Pignet ${ }^{20}$) is 21.38 , which is close to that of men with hyperopia. For each inch of the average height there are 2.08 pounds of weight, as compared with the normal 2.097 , and 0.493 inch of chest measurement (expiration), as compared with the normal 0.492 .

It will be observed that the foregoing three groups of men with errors of refraction have all an index of build and robustness slightly inferior to the average of the United States. This inferiority is to be ascribed less to any influence of errors in refraction upon the body than to the fact that errors of refraction are especially marked in certain races, especially Polish and Russian Jews, who are physically less well developed than the average.

7. HYPEIRTROPHIC TONSILLITIS.

Enlarged tonsils of such degree as to warrant record were found in 23,732 men at mobilization camps among the first million, and 28,299 among the second million draft recruits.
(a). Stature.-The average stature of men found among the first million to be affected with hypertrophic tonsillitis is 67.47 inches, which is 0.02 inch below the average stature of the whole population. The average stature of men found in the second million to have hypertrophied tonsils is 67.48 . For the two combined, 52,031 men, the average is 67.48 , which is practically the mean stature. We may conclude that, so far as stature is concerned, men with hypertrophic tonsils are typical of the whole population. This indicates that there is probably no race that is especially subject to this disease, and that apparently it has not affected the body nutrition, and hence the development. The standard deviation of height in the two groups is 2.71 and 2.74 , respectively, and for the two combined, 2.73 . The index of variability is practically the same as for the population as a whole, which confirms the conclusion that hypertrophic tonsils are fairly uniformly distributed through the population, so far as stature is concerned.

The distribution of statures in the population with hypertrophic tonsillitis as compared with the whole population of recruits is indicated graphically in Plate XXXIII. The distribution of statures nearly coincides in the two groups, but there are more men slightly above mediocre stature than below in the tonsillitis population than in that at large.
(b) Weight.-Of 23,732 men found with hypertrophic tonsils among the first million at mobilization camps the average weight is 142.19 , and among $28,299 \mathrm{men}$ in the second million 141.46. Taking both groups together, 52,031 , we have a mean weight of 141.79 , which is 0.25 above the average weight of the whole of the first million men examined. This is a real difference, though not a large one. The standard deviation in weight is for the first million men, 17.77 pounds; for the second million, 17.84 pounds; and for the two combined, 17.80 ± 0.04. This is an excess of 0.38 pound over the average for the whole population of the first million men, a difference which is about nine times the probable error, and hence is significant. This indicates that in respect to weight, men with hypertrophic tonsils are more variable than the average population and suggests that the group includes an excess of men whose weight is above and a group whose weight is below the average. By comparing the distribution of weights in the hypertrophic tonsil group with that of the totals in the last line of Table I we find that the commonest weight for both the total and the hypertrophic tonsil group is 137 pounds and that, though there is a larger proportion of men in the modal group among those with large tonsils
Table 151.-Correlation between height and weight in recruits with tonsillitis (hypertrophic), first $\left(I_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 152.-Correlation between height and chest circumference (expiration) in recruits with tonsillitis (hypertrophic), first $\left(P_{1}\right)$ and second (P_{2}) million draft recruits.

than in the total, yet men of 177 pounds are likewise in excess among those with enlarged tonsils, and the same is true of all weights above 192 pounds. There is, therefore, a clear excess of very heavy men with hypertrophic tonsils, and this accounts at once for the high mean weight and the high standard deviation of such men. That inflamed and enlarged tonsils should be more prevalent in heavy (though not tall men) is a point which should attract the attention of the physiologist and pathologist and be of help in understanding the causes of this condition. As shown in "Defects Found in Drafted Men," (1920, p. 132), the States with the highest ratio of hypertrophic tonsils are West Virginia, Virginia, and Pennsylvania, containing a large proportion of tall men, especially the mountaineers of the first two named States. Men from these States were examined at one camp where special attention was paid to infections of the head and throat, and it seems probable that there were thus brought into the total an exceptionally large number of tall men recorded with tonsillitis. Another center of high incidence of tonsillitis comprised the States of Mississippi, Arkansas, Oklahoma, and the contiguous States of Louisiana and Alabama. Southern whites are known to show a high ratio of this disease. The southern agricultural whites at least are above the average in stature, and this again contributes to the result. Finally, exceptionally high rates for tonsillitis (more than double the average) were found in the mining, Indian, and Scotch sections of the country, in all of which the average weight is high. Tonsillitis may possibly be associated with conditions in the mining groups, but the same explanation would not hold in the case of groups occupying Indian reservations and the Scotch. The large amount of tonsillitis found in New Mexico, Colorado, and California may perhaps be associated with the large amount of tuberculosis found in these States, due to the immigration thither of persons with this disease, but that there is a causal relation between the two diseases must not be hastily concluded, both because the defect rate for tonsillitis in Arizona, in which the rate for tuberculosis is highest, is below the average, but also because men with tuberculosis have a weight far below the average, while those with tonsillitis have a weight slightly above the average.

The relation between the distribution of weights of the population with hypertrophic tonsillitis and that of recruits in general is shown in Plate XXXVI. The graph brings out strikingly the fact that the population with hypertrophic tonsillitis differs in weight, as indeed in stature, in no important respect from the population at large.
(c) Chest circumference. -In the 23,712 men found with hypertrophic tonsils at mobilization camps among the first million, the average chest circumference is 33.29 inches, or 0.07 inch above the average of the first million. The average chest circumference for the 28,273 men with tonsillitis among the second million is 33.08 , and the average for the two lots, 51,985 men, is 33.18 inches, which is close to the average for the whole of the first million men examined (33.22). Despite the slight excess of weight of these men, therefore, we have a slight deficiency of chest circumference. It is doubtful, however, if this is significant. The standard deviation of chest circumference of men with tonsillitis among the first million was 2.03 ± 0.01; for the second million, 2.10 ± 0.01; and for the two groups it is 2.07 ± 0.004, which is 0.06 above the standard deviation
of chest circumference for the whole. This indicates a slight lack of homogeneity in the chest circumference, suggestive of possibly two groups. There is a very slight excess in the proportion of men of 35 inches upward with hypertrophic tonsillitis, and a corresponding slight deficiency of men 32 inches and under.

The relation between the distribution of chest circumference in the population with hypertrophic tonsillitis and the population of recruits in general is shown graphically in Plate XXXVII. The two curves nearly coincide, as is the case also in height and weight, indicating that the population with hypertrophic tonsillitis is nearly a random sample of the whole population.
(d) Robustness.-The index of build of men with hypertrophic tonsillitis is 31.14 , which is 0.07 above the average of the United States. Pignet's index is 20.85 . Pignet's index places the men with hypertrophic tonsillitis in the class with good constitution. For each inch of the average height there are 2.10 pounds of weight, as compared with the normal 2.097 , and 0.492 inch of chest measurement (expiration), as compared with the normal 0.492 .

8. TACHYCARIIA, SMPLE.

Exceptionally rapid heart beat without other indientions of organic disease was assigned to this category.
(a) Stature.-Of the 447 men with this defect among the first million the average stature is 67.73 inches, and in the 1,700 men found with the defeet among the second million it is 67.76 inches. Of both groups together, 2,147 men, the mean stature is 67.76 , which is 0.27 inch above the average stature of the whole of the first million men. The average stature of men found with tachycardia among the first million men is 0.24 inch above the average of the whole. This excess in stature of men with tachycardia is of the same order as the excess stature of men with exophthalmic goiter, with which some cases of simple tachycardia are probably associated. As shown in "Defects Found in Drafted Men" (p. 137), the highest rate for tachycardia is found in the State of Michigan. High rates are found also in South Dakota, Washington, and Wisconsin. These are all States occupied by men of exceptionally tall stature, and they have, therefore, influenced the average stature of men found with tachycardia. Tachycardia is indeed found especially among the Scandinavian, German, and Finn sections, which are those in the central Northern States in the Great Lakes region. It seems clear that the tall stature of some of the men with tachycardia is due to thyroid disturbance, which is again due to the fact that some races of men of prevailingly tall stature are especially predisposed to goiter or have settled in the geographic districts in which goiter is induced. The standard deviation of stature of men found with simple tachycardia among the first million is 2.71 inches, among the second million 2.66. For both groups it is 2.68 ± 0.03. The small standard deviation of the tachycardia group is possibly significant, indicating that there has been something of a selection of tall men and that the tendency to tachycardia is not uniformly distributed through all statures. This is shown also in Table 184 through a comparison of the rates in the line "Simple tachycardia" with the total rates at the bottom of the table. Here we see that the rates for tachycardia are abnormally high in men with stature of 69 inches and over, and abnormally low in men with stature of less than 69 inches.
Table 153.-Correlation between height and weight in recruits with tachycardia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 154.-Correlation between height and chest circumference (expiration) in recruits with tachycardia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Height, in inches.	Total.	Chest, in inches.																
		$\begin{array}{\|l} 28 \text { and } \\ \text { under. } \end{array}$	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43 and over.	
58 and under. $59 . \ldots$.	${ }_{2}^{2}$			2	1			1										
	7			3	2	${ }_{3}^{2}$	4	1	1									
62.	26		5	2	5	6	3			2								
63.	${ }_{109}^{67}$		6 5	6 15	10 29	${ }_{11}^{13}$	${ }_{21}^{11}$	$\stackrel{13}{8}$	${ }_{9}^{2}$	2	4	,		,	1	,		
65.	187		8	19	39	38	${ }_{44}^{21}$	15	11	9	i	1	i	1	1	1		
67.	265		14	23	50	52	48	36	22	15	3		. 1	1				
68.	309		9	${ }_{31}$	34	${ }_{6} 6$	68	51	30	10	5	13		1		1		
70.	330		9	20	47	72	53	68	30	16	7	5	2		i			
71.	242 129		${ }_{3}^{5}$	17	11	${ }_{27}^{46}$	52 30	39 16	27 16	13 10	4	${ }_{2}^{4}$	$\frac{1}{2}$	1		1		
772	74			4	4	9	22	19	76 7	4		2			1	1	1	
73.	54		1	1	6	10 3 3	13	10	9	$\stackrel{2}{3}$		1		1				
75.	11				1	1	3	2	4									
78.	3					1		1	1									
Total																		
	2,143		79	168	330	411	447	311	209	104	37	24	9	6	3	4	1	
I'-Number of cases: 447. Height: Mean, 67.73 inches; standard deviation, 2.72 ± 0.06 inches.			i'z-Number of cases: 1,696 . Height: Mean, 67.76 inches; standard deviation, 2.66 ± 0.0 3 inches.								P_{1} and P_{5}-Niumber of cases: 2,143 , Height: Mean, 67.76 inches' standard deviation, 2.68 ± 0.01 inehes.							
Chest circumference standard deviation, ${ }^{\text {(expiration }}$ (03 ± 0.05	2.79 in		Chest circumferenee (expiration): Mean, 32.81 inches;standard deviation								Chest circumference (expiration): Mcan, 32.81 inches;							
Correlation: 0.2597 ± 0.0298.			Correlation: 0.1548 ± 0.0160								Correiat	de.17						

The relation between the distribution of statures in the population with simple tachycardia and that of the population of drafted men in general is shown in Plate XXXIII. The graph shows at a glance that the population with simple tachycardia consists of men strikingly taller than the average. There are relatively fewer men with statures from 61 to 68 inches and relatively more men with statures 69 to 76 inches. The mode is shifted from $67 \frac{1}{2}$ to 69 inches. This shows that men with simple tachycardia are prevailingly tall men. This result is, as stated, probably not due to the influence of tallness, but to the fact that simple tachycardia is in some cases associated with disturbances of the thyroid gland, and this in turn by conditions in those sections that are inhabited by tall races, largely the Scandinavians. However, the possibility that great size of the body may be responsible for rapid heart beat, apart from thyroid disturbance, must not be overlooked.
(b) Weight.-Of 447 men found with simple tachycardia in the first million examined at camps the average weight is 137.06 pounds, which is 4.48 below the average for the whole first million men. Of tachycardia cases among the second million, 1,700 men, the mean weight is 137.45 pounds; and for both combined, 2,147 men, it is 137.37 pounds, which is 4.17 pounds below that of all the first million men. This marked deficiency in weight, despite tall stature, must certainly be significant and suggests an insufficiency in metabolism. The standard deviation in weight of tachycardia cases in the first million men is 17.36 ; in the second million men, 17.63; and for both lots together, 17.57 ± 0.18. The difference from the standard deviation for the average of the whole first million is only 0.15 , or about once the probable error, so that the difference is probably not a significant one, and the group of tall but slender men, who are especially liable to tachycardia, constitutes a group which has nearly the same distribution about the mode as has the whole population.

The relation between the distribution of weight of the population found with simple tachycardia and the population of recruits in general is shown graphically in Plate XXXVI. This indicates that the population with tachycardia is below average weight. The irregularity in the curve is probably due to the small number of cases. This deficiency in weight of the population with tachycardia is the more striking in view of the fact that persons with the disease are on the whole taller than the average. The result is probably due to an insufficiency of nutrition caused by the condition itself.
(c) Chest circumference.-Of 447 men found with simple tachycardia at mobilization camps among the first million the average chest circumference is 32.79 inches, or 0.43 inch less than the average chest circumference of the whole first million men. In the 1,696 men found among the second million the average chest circumference is' 32.81 , and for the two lots together, 2,143 men, the average chest circumference is 32.81 , which is 0.41 inch below the average. This low mean chest circumference of men with tachycardia is associated with their low weight. The standard deviation of chest circumference was for men of the first million 2.03, and for the second million 2.05, and for the two combined 2.04 ± 0.02. This is only 0.03 inch above the average for the whole first million, a difference which is probably not significant, indicating that the chest circumference of the slender men was not more variable around the new mode than the population in general.

The relation between the distribution of chest girth in the population found with simple tachycardia and that of the population of recruits in general is shown in Plate XXXVIII. One sees that the population with simple tachycardia has a chest circumference which is below the average, corresponding with the low average weight, despite the high average stature. The slender form is probably due to the disturbance of nutrition consequent upon the disease.
(d) Robustness.-Men with simple tachycardia have an index of build of 29.92, which is 1.15 below the average index of build of recruits. Pignet's index is 24.50 . It places such men among the worst of the groups with medium constitution. It appears, then, that men with simple tachycardia have inferior constitution. For each inch of the average height there are 2.03 pounds of weight, as compared with the normal 2.097 , and 0.484 inch of chest measurement (expiration), as compared with the normal 0.492 .

9. CARDIAC HYPERTROPHY.

(a) Stature.-An enlargement of the heart sufficient to warrant recording was found among the first million men at mobilization camps in 503 cases, the average stature being 67.68 inches, or 0.19 inch above the average of the stature of the first mittion men. For the 840 cases found among the second million the average stature is 67.79 , and for the two groups, 1,343 men, 67.75 , or 0.26 inch above the mean of the whole first million men. The excess in stature of men with cardiac hypertrophy is a little less than twice the probable error of the standard deviation of the height of the population and is possibly significant. It indicates that men of large stature had enlarged hearts, probably in part because the larger bodies throw more work upon the heart, which has to enlarge to meet the functional demand made upon it. At least it is probable that one class of cases of enlarged hearts belong to this category. The standard deviation of men with enlarged hearts of the first million is 2.86; among men of the second million it is 2.64 ; and for both groups together 2.73 ± 0.04. The standard deviation of stature in the cases of cardiac hypertrophy is thus 0.02 inch more than the average for the whole of the first million men. The mode has moved to a higher level than found in the whole population, yet the distribution around this mode is typical of the whole population. The details of distribution of statures of men with cardiac hypertrophy are given in Table 155.

The relation between the distribution of stature in the population with cardiac hypertrophy and of drafted men in general is shown graphically in Plate XXXIII. It appears at once that men with cardiac hypertrophy are a taller group than that of the general population. This is shown by the deficiency of short men and the excess of tall men, especially of men from 69 to 74 inches. It is shown also by the fact that the mode is one-half inch above the average.
(b) Weight.-Of the 503 men found with cardiac hypertrophy among the first million examined at mobilization camps, the average weight is 139.23 pounds, or 2.31 pounds less than the mean weight of the whole of the first million men. The mean weight of 840 men with enlarged hearts found in the second million is 141.24 , and of both lots, $1,343 \mathrm{men}, 140.49$. This is about 1 pound less than the average weight of the whole of the first million men.
Table 155.-Correlation between height and weight in recruits with cardiac hypertrophy, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 156.-Correlation between height and chest circumference (expiration) in recruits with cardiac hypertrophy, first $\left(P_{1}\right)$ and second (P_{2}) million draft recmils.

These men, then, are taller than the average and of slightly less weight. Their index of build is 30.61 , as contrasted with 31.07 , which is the index of robustness of the whole of the first million men. In other words, men with cardiac hypertrophy are prevailingly tall and slender. The standard deviation of the weight for the first million is 16.75 pounds, or about 0.67 less than the standard deviation in weight of the whole population of the first million men. For cases of cardiac hypertrophy among the second million the standard deviation in weight is 16.86 , and for the two groups together it is 16.85 ± 0.22. This is a standard deviation of 0.57 pound less than the average for the whole first million. It appears that men with cardiac hypertrophy are not only a slender group, but that they are less variable about this lower weight mode than the population in general. This suggests that either slender men are most apt on this account to have hypertrophied hearts or else, more probably, that the conditions which have led to enlarged hearts in these tall men have resulted in an abnormal diminution in weight.

The relation between the distribution of weights of the population found with cardiac hypertrophy and the population of recruits in general is shown in Plate XXXVI. On the whole this population is characterized by less than average weight and this despite the fact that the population contains more tall persons than the population at large. The principal mode is the same as for the population at large.
(c) Chest circumference.-Of the 500 men found with cardiac hypertrophy among the first million men examined at mobilization camps the average chest circumference is 32.88 inches, or 0.34 below the mean chest circumference of the first million men. For 839 men in the second million the chest circumference is 33.03 . For 1,339 men in the two groups it is 32.97 , or 0.25 below the mean chest circumference of the whole of the first million men. This low chest circumference is associated with low weight and confirms the conclusion that men with hypertrophied hearts are tall and slender people. The standard deviation of chest circumference is for men with enlarged hearts, among the first million, 2.02; among the second million, 1.99 ; and for both together, 2 ± 0.03. This is very close to the standard deviation of the whole of the first million men and suggests that while the mean chest circumference is low yet the variations around this mode are those typical of the whole population. This result leads to the conclusion that the hypertrophied heart has caused a symmetrical reduction in chest circumference and weight in that part of the population which has been affected.

The relation between the distribution of chest girth in the population found with cardiac hypertrophy and the population of recruits in general is shown graphically in Plate XXXVII. It is obvious that the population with cardiac -hypertrophy has on the whole a smaller chest circumference than the population in general and this is probably associated with the reduced weight which they show, probably as a consequence of the defect.
(d) Robustness.-Men with cardiac hypertrophy have an index of build of 30.61 , or 0.46 below the average for the United States. Pignet's index is 22.66. Thus they are placed in the group with medium constitution. For each inch of average height there are 2.07 pounds of weight, as compared with the normal 2.097, and 0.487 inch of chest measurement (expiration), as compared with the normal 0.492 .

10. MITRAI, INSUFFICIENCY.

(a) Stature.-The average stature of 4,257 men found to have mitral insufficiency at mobilization camps out of the first million examined is 67.86 inches, or 0.37 inch above the mean stature of the first million men. The mean stature of 4,603 cases with mitral insufficiency out of the second million men is 67.82 inches; for both groups, 8,860 men, it is 67.84 inches, or 0.35 inch above the mean stature. It is clear that mitral insufficiency is found especially in tall men. If we examine the distribution of endocarditis and valvular diseases of the heart as given in "Defects Found in Drafted Men" (p. 133), we find that the highest rate occurs in the States of Washington, Utah, Michigan, Maryland, and others, including several States with exceptionally tall men. However, in Texas, in which the average stature is exceptionally high, the ratio of valvular diseases found is below the average. The standard deviation of stature of men found with mitral insufficiency out of the first million is 2.73 ; out of the second million, and for the combined group, it is the same. This standard deviation is not significantly different from that of the population at large. Thus the men with mitral insufficiency constitute a group with a high mode but with essentially the same distribution about that mode as a normal population. The causes then which have lifted the mode have acted similarly and in essentially uniform fashion upon "the run" of the population.

The relation between the distribution of stature in the population with mitral insufficiency and of drafted men in general is shown in Plate XXXIII. Here, as in cardiac hypertrophy, it is obvious that men with mitral insufficiency constitute a group of tall persons. This is shown by the regular deficiency of men below the mode in stature, by the regular excess of men above the mode and by the fact that the mode is $\frac{1}{2}$ inch above the modal stature of the population of drafted men.
(b) Weight.-The mean weight of 4,257 men found to have mitral insufficiency in mobilization camps of the first million examined is 139.11 ; in 4,603 from the second million, 138.87 . The average of the total $\$, 860$ cases is 138.99, which is 2.55 pounds below the mean weight for the whole population of the first million. This places men with mitral insufficiency below the average of the population. The index of build of men with mitral insufficiency is 30.20 , which is decidedly less than that of the average for the whole first million men, 31.07. It appears then that men with mitral insufficiency are on the average tall and slender men, the same type of men we have seen to be affected with cardiac hypertrophy. Cardiac hypertrophy and mitral insufficiency are in a way correlated, for if the valves of the heart are inadequate then the muscles of the heart must make good the deficiency and this hyperactivity leads to increase in size of the muscles of the heart. The hydrostatic problem that the heart has to meet is increased by the increase in stature of the man.

The relation between the distribution of weights in the population found with mitral insufficiency and the population of recruits in general is shown in Plate XXXVI. This graph shows a small but constant inferiority in weight of persons found with mitral insufficiency and this despite the fact that they

$$
3566^{\circ}-21-2
$$

Table 157.-Correlation between height and weight in recruits with mitral insufficiency, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 158.-Correlation between height and chest circumference (expiration) in recruits uith mitral insufficiency, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

										hest, in	uches.							
a	Height, in inehes.	Total.	28 and	29	30	31	32	33	34	3.5	36	37	$3{ }^{3}$	39	40	41	42	43 and over.
5 s and under		8		2		2	,		1		1							
69.		${ }^{9} 9$		1	6	4	$\stackrel{1}{2}$	3	5	2	4							
61.		51	4	2	11	12	7	10	3	2								
62.		115	2	11	16	14	25 57	24 50	${ }_{23}^{10}$	11	${ }_{6}$	4	1	1				
61.		459		31	54	105	92	71	46	42	7	3		2				
63.		730	4	42	95	101	177	143	89	37	25	11	6					
66.		1,032	5	51	109	188	${ }_{272}^{229}$	199	118	-80	32 57	12	${ }_{9}^{6}$	2	2	1	1	1
6.		1,238 1,376	13	35	110	184	293	272	214	147	71	22	7	7				1
69		1,137	3	24	87	156	222	231	194	98	66	36	16	4				
70.		978	1	21	47	115	184	209	167	110	73	37	13	4				
71.		619	6	10	26	65	120	118	127	76	42	15	9	2	1	1		1
72		398	3	3	12	41	64 36	+ 70	${ }_{39}$	${ }_{25}^{55}$	${ }_{20}$	12	+	3	1			
74.		100		2		8	10	18	26	15	13	4	2					
75.		43			1	3	6	7	9	${ }_{6}$	2	4	3	1				1
${ }_{77}^{76}$		19	1				1	1	1	1		1						
		5					1	1	3									
Totai.		8, $\times 30$	57	310	733	1,271	1, 801	1,713	1,336	823	459	199	83	33	5	2	1	4
$P_{1}-$ Number of cases: 4,240. IIeight: Mean, 67.86 inehes; standard deviation, 2.73 ± 0.02 inches. Chest circumference (expiration): Mean, 32.s6 inches; standard deviation, 1.94 ± 0.01 inches. Correlation: 0.1972 ± 0.0100												P_{1} and P_{5} Number of cases: 8,830.						
				Tumber or cases: 4,590 . Height: Mean, 67.82 inches; standard deviation, 2.73 ± 0.02 inches.														
				Height: Mean, 67.84 inches; standard deviation, 2.73 ± 0.01 inches.														
				Chest eircumference (expiration): Mean, 32.6 inches; standard deviation, 2.05 ± 0.01 inches.	Chesteircumference(expiration): Mean, 32.7.5inches; standard deviation, 2.00 ± 0.01 hehes.													

are men on the whole of a stature above the average. This result indicates that the population with mitral insufficiency is undernourished, probably in consequence of the valvular defect.
(c) Chest circumference.-The average chest circumference of 4,240 men found with mitral insufficiency in the first million is 32.86 , and in 4,590 men in the second million 32.65 . The average for the 8,830 in both groups is 32.75 , which is 0.47 inch less than the average chest circumference. This small chest circumference is associated with the slender build which is, as we have seen, characteristic of the group with mitral insufficiency. The standard deviation of chest circumference for the combined groups is 2.0 , which is essentially the same as that of the whole population. It appears then that, so far as chest circumference goes, if the mode has been diminished, the distribution about the mode is about the same as the mode of the whole population. It seems probable, therefore, that tall and short persons are affected in equal degree, so that the reduction in chest circumference of that part of the population with mitral insufficiency has affected them in equal proportion.

The relation between the distribution of chest girth in the population found with mitral insufficiency and the population of recruits in general is shown graphically in Plate XXXVIII. It appears at once that the population with mitral insufficiency has a chest girth strikingly below that of the population in general-a fact which is associated with their low average weight, despite the high average stature. This result is therefore probably due to malnutrition in consequence of the disease.
(d) Robustness.-Men with mitral insufficiency have an index of build of 30.20 , or 0.87 below the average for the United States. Pignet's index is 24.12. Thus they fall into the group with medium constitution. For each inch of the average height there are 2.05 pounds of weight, as compared with the normal 2.097 , and 0.483 inch of chest measurement (expiration), as compared with the normal 0.492 .

11. Mitral Stenosis.

(a) Stature.-Of 1,521 , in the first million men, affected with mitral stenosis, the mean height is 67.71 inches, which is 0.22 inch above the average stature for the first million men. The mean stature for 991 men in the second million, 67.50 , is somewhat less than for the first million. For the 2,512 men in the two groups it is 67.63 inches, or 0.14 inch above the average. The standard deviation of stature of men with mitral stenosis is 2.72 for the first million, and 2.73 for the second, and 2.72 ± 0.03 for the two groups, which is about the same as the standard deviation of the whole population of the first million given in Table I.

The relation between the distribution of stature in the population with mitral stenosis and that of drafted men in general is shown in Plate XXXIII. This graph indicates that the population with mitral stenosis contains on the whole a slightly greater stature than the population of drafted men in general. However, the contrast is much less than the case of either mitral insufficiency or cardiac hypertrophy. The mode for the population with mitral stenosis is the same as that of the drafted men in general.
(b) Weight.-The weight of 1,521 men with mitral stenosis among the first million is 137.46 ; and for the 991 men among the second million, 135.93 ; and for the 2,512 in both groups, 136.85 pounds, which is 4.69 pounds below the average of the first million men. The standard deviation is extraordinarily $\mathrm{I}_{\text {ow }}$, being 15.24 for the first million men; 16.16 for the second million; and 15.63 ± 0.15 for the two groups, which is strikingly below the standard deviation for the population in general. This means that tall, slender men are prevailingly affected with mitral stenosis. The reduced weight is not merely a consequence of the mitral stenosis, for if it were the standard deviation would be large. Rather the men with mitral stenosis are a selected lot of the population characterized by their tall and slender form.

The relation between the distribution of weights in the population found with mitral stenosis and that of the population of recruits in general is shown in Plate XXXVI. This graph shows clearly that the population with initral stenosis is inferior in weight on the average to the population in general and this despite the fact that they are on the average slightly taller than the population of recruits in general. This reduction in weight is therefore probably due to imperfect development resulting from the disease.
(c) Chest circumference.-Of the 1,516 men found with mitral stenosis at mobilization camps among the first million men, the average chest circumference is 32.77 inches, which is 0.45 inch less than the average of the whole population, and of the 991 men found in the second million the average chest circumference is 32.47 . Of 2,507 men in the two groups together the average is 32.65 , which is 0.57 inch less than the average for the first million as shown in Table I. This small chest circumference accords with the evidence derived from weight that men with mitral stenosis are tall and slender.

The standard deviation of chest circumference is 1.89 for the two groups, which is 0.12 less than the standard deviation of the chest circumference of the population of Table II. This accords also with the small standard deviation for weight and suggests the conclusion that men with mitral stenosis are not a random sample of the population, but are (in part) a selected group, characterized by tall stature, small weight, and narrow chest circumference, and that their peculiarities are associated constitutionally, to at least a certain extent, with a diseased or defective condition of the valves.
(d) Robustness.-Men with mitral stenosis have an index of build of 29.93, or 1.14 below the average of the United States. This is the lowest index of build of the groups with heart defects excepting the group with simple tachycardia. Pignet's index of robustness is 24.81 , which places it in the lower part of the medium group. For each inch of the average height there are 2.02 pounds of weight, as compared with the normal 2.097 , and 0.483 inch of chest measurement (expiration), as compared with the normal 0.492.
Table 159.-Correlation between height and weight in recruits with mitral stenosis, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 160.-Correlation between height and chest circumference (expiration) in recruits uith müral stenosis, first $\left(P_{1}\right)$ and second (I_{2}) million draft recruits.

12. VAIVULAR DISEASES OF THE HEART (UNCLASSIFIED).

(a) Stature.-The mean stature of men found at mobilization camps, in the 3,419 men in the first and second million draft recruits, with unclassified valvular disease of the heart, is 67.60 inches, or 0.11 inch greater than the population in Table I. The standard deviation of the height of these men with unclassified valvular diseases of the heart is 2.67 , which is practically the same as the variability of the whole population as shown in Table I.

The relation of distribution of statures in the population with valvular diseases of the heart as compared with the whole population of drafted men is shown in the graph on Plate XXXII. While the two curves of distribution are intertwined to a considerable extent, yet it is clear that there are certain elements of the population with valvular diseases of the heart that are above average stature. Thus there is a clear excess of such diseases in men 69 to 72 inches tall. However, the mode in the population with valvular diseases of the heart lies at 67 inches, or $\frac{1}{2}$ inch below that of the population of drafted men in general.
(b) Weight.-Of 909 men found with unclassified valvular diseases of the heart among the first million at mobilization camps, the average weight is 138.49 pounds, or 3.05 pounds below the average of the population in Table I; for the 2,510 in the second million it is 136.78 ; and for 3,419 men in both groups 137.24 , being 4.30 pounds below the mean weight for the first million men. The standard deviation in weight for the first million is 16.49 pounds, or 0.93 pound below the standard deviation of the population in Table I; for the second million it is 17.40 ; for the two combined it is 17.35 ± 0.14. This is less than the standard deviation for the whole of the first million as given in Table I, but as the difference is only equal to one-half of the probable error it is probably not very significant.

The relation between the distribution of weights in the population with unclassified valvular diseases of the heart and the population of recruits in general is shown graphically in Plate XXXV. It appears at once that the affected population has a weight clearly below the average and this despite the fact that the statures are practically the same as the average. We have, therefore, evidence of a lack of nutrition in the population with unclassified valvular diseases of the heart, no doubt partly due to the disease itself.
(c) Chest circumference.-Of 906 men found with unclassified valvular diseases of the heart among the first million at mobilization camps, the average chest circumference is 32.77 inches, or 0.45 inch less than the population in Table II; for the 2,500 such men found in the second million the chest circumference is 32.49 inches; and for the $3,406 \mathrm{men}$ in both groups combined it is 32.56 , which is 0.66 less than the mean chest circumference of the average for the first million men. The standard deviation of chest circumference of those in the first million men is 1.88 , or 0.13 below the standard deviation of the whole population in Table II; for the second million it is 2.01 ± 0.02; and for the two groups combined 1.98 ± 0.02.

From these measurements we find that men with unclassified valvular diseases of the heart are tall men with smaller chest circumference and with somewhat less variability than the population as a whole.

Table 162.-Correlation between height and chest circumference (expiration) in recruits with valvular disease of heart (unclassified), first (P_{1}) and second (P_{2}) million draft recruits.

Thus in the four categories of heart defects-cardiac hypertrophy, mitral insufficiency, mitral stenosis, and unclassified valvular diseases of the heartwe see that the stature of the affected population is clearly in excess of the average of the whole population. What is the significance of this excess of persons showing valvular diseases of the heart? The first suggestion that occurs to one is that the heart as a pump has to raise fluid about 2 feet above its own level and has to force it through a complicated system of capillaries that occurs in all parts of the body. The taller the individual the more work does the heart have to do and the more back pressure there is upon the valves, both in carrying the fluid to a higher level and in forcing it through a greater number of capillaries. Because of the extra work involved in pumping the blood in persons of large stature, when the muscles or valves of the heart become diseased or crippled as the result of any cause, then the valves or the muscles may become insufficient and show organic disturbance, sooner than in shorter men.

The relation between the distribution of chest girths in men found with unclassified valvular diseases of the heart and in recruits in general is shown graphically in Plate XXXVIII. This graph shows strikingly the abnormally small chest girth of the populations found with unclassified valvular diseases of the heart. This result is associated with the low average weight in this part of the population, despite their average stature. The resulting slender build is no doubt largely the effect of malnutrition consequent upon the disease.
(d) Robustness.-Men with unclassified valvular diseases of the heart have an index build of 30.04 , or 1.03 below the average of the United States. Pignet's index is 24.78 , which places them in the group with medium constitution. For each inch of the average height there are 2.03 pounds of weight, as compared with the average 2.097, and 0.482 inches of chest measurement (expiration), as compared with the normal 0.492 .

13. Varicose veins and varicocele.

(a) Stature.-The average stature of men found at mobilization camps, among 1,409 men in the first million, is 68.34 inches, with varicose veins, which is 0.85 inch above the average of the first million men, as indicated in Table I. The average stature of 2,014 men with this defect found among the second million is 68.49 ; and for the 3,423 men in the two groups is 68.43 , or 0.94 inch above the average height of the whole population. The standard deviation of stature of men with varicose veins among the first million is 2.70 ; among the second million, 2.77; and among the two groups combined, 2.74 ± 0.02 inches. This is essentially the same as the variability of the statures of the whole population as shown in Table I.

The average stature of 3,453 men among the first million at mobilization camps with varicocele is 68.32 inches, which is 0.83 inch above the average stature of the population in Table I. For the 2,396 men in the second million the average stature is 68.44 , and for the 5,849 men in the two groups together 68.37 , which is 0.88 inch above the mean stature of the whole population. The standard deviation of the mean stature of men with varicocele among the first million is 2.78 ; among the second million, 2.71 ; and for the two groups together, 2.75 ± 0.02 inches, which is somewhat higher than the average for the
whole population, but not significantly so. What is clear in the stature of men having the two defects mentioned is that they are strikingly tall.

The relation between the distribution of stature of the population with varicose veins and the population of recruits in general is shown graphically in Plate XXXII. It appears at once that the population with varicose veins is characterized by great stature. There is a marked deficiency of men below modal stature and a marked excess of men above. The modal stature for the population with varicose veins is at 68 inches, or 0.5 inch above the population of drafted men in general. As in the case of hemorrhoids, so here the mode has a relatively high frequency, indicating relatively small variability in the population with varicose veins and enforcing the conclusion that men with varicose veins are those afflicted primarily because of their tall stature.

The relation between the distribution of statures of men with varicocele as compared with the population of recruits in general is shown graphically in Plate XXXII. Here we see, as in the case of the population with varicose veins, that the population is one of tall men. There is a marked deficiency of men with stature below the average and a marked excess of men with stature above the average. Also the mode is at 68 inches, or 0.5 inch above that of recruits in general, and the fact that it is strikingly higher than the mode of recruits in general indicates a relatively small variability in stature of men with varicocele and enforces the conclusion that men with this defect are affected primarily because of their great stature.
(b) Weight.-In 1,409 men found with varicose veins among the first million at mobilization camps the average weight is 146.43 pounds, or 4.89 above the average of the population of Table II. For the 2,014 among the second million the average weight is 146.45 , and for the $3,423 \mathrm{men}$ in both lots it is $\mathbf{1 4 6 . 4 4}$, or 4.90 above the mean weight of the whole population. This abnormally great weight is in part associated with the great height, nearly an inch above the average, found in these men. By comparing Table 163, showing the relation of stature to weight in men with varicose veins, with Table I, showing the relation of stature to weight among the whole of the first million men, it appears that men with varicose veins are heavy for their height. Thus the mean weight of men 68 inches tall in the whole population is 142.61 pounds, while the mean weight of men 68 inches tall who have varicose veins is 145.52 pounds, or 2.91 above the average of the whole population.

The standard deviation in weight of men found with varicose veins is for the first million 18.39 , or 0.97 pounds above the standard deviation in weight of the population in Table I. For the second million the standard deviation in weight is 18.62 , and for the two groups together, 18.53 ± 0.15. This is 1.11 pounds above the standard deviation and over seven times the probable error. It is with one exception the largest standard deviation found. This measures the remarkable variability in weight of men with varicose veins and suggests that this defect is found not merely in a particular stature-weight class, but that it is found in a considerable range of stature classes all of which comprise abnormally stout.

In 3,453 men found with varicocele among the first million examined at mobilization camps the average weight is 141.88 pounds, or 0.34 pound above the average of the population of Table I; for the 2,396 men in the second million the average weight is 141.55 ; and for the 5,849 in both groups combined it is
141.75, which is 0.26 pound above the average of the first million as shown in Table I. The standard deviation for varicocele in the first million men is 16.68 pounds, or 0.74 below that of the whole population. For varicocele in the second million the standard deviation is 16.18 , and for both groups together it is $16.47+0.10$. This is 0.95 pound below the standard deviation of the average population of the first million, as shown in Table I. This low standard deviation is, therefore, in striking contrast with that of varicose veins, and indicates that men affected with varicocele constitute probably a special type and this special type includes exceptionally tall men, though only of average weight; hence men exceptionally tall and slender.

The relation between the distribution of weights in the population with varicose veins and in the population of recruits in general is shown graphically in Plate XXXV. It appears at once that the population with varicose veins is a heavy population, as it is also a tall population. Hence it appears that persons with varicose veins are prevailingly larger persons than the population in general.

The relation between the distribution of weight of persons with varicocele and of recruits in general is shown graphically also in Plate XXXV. It appears that on the whole the population with varicocele is slightly heavier than that of recruits in general, a result which is sufficiently accounted for by the clear excess in stature of the population with varicocele.
(c) Chest ciocumference.-In 1,412 men found among the first million men examined at mobilization camps with varicose veins the average chest circumference is 33.70 inches, or 0.48 inch above the average chest circumference of men of Table II; for 2,014 men in the second million the average chest circumference is 33.64 , and for the 3,426 men in both groups together, 33.67 . This is 0.45 inch above the average mean chest circumference, which is correlated with the great weight of men found with varicose veins. The standard deviation of chest circumference is for the first million 2.14 , or 0.13 above the standard deviation of the population of Table II. For the second million and the two groups combined it is the same (2.14). Men with varicose veins are accordingly not only taller than the average, but have a greater chest circumference and are more variable in this respect than the average of the population, indicating that the defect is found not only in a particular chest circumferencestature class, but that it is found in a considerable range of height classes all of which have large chests just because they are abnormally stout.

Varicocele was found in 3,441 men among the first million examined at mobilization camps. In them the average chest circumference is 33.24 inches, or 0.02 above the average of the whole population of Table II. For the 2,395 men in the second million the average chest circumference is 32.79 , and for the 5,835 men in both groups the average is 33.06 , or 0.16 below the average for the first million as shown in Table II. The standard deviation of chest circumference of men of the first million is 1.95 inches, or 0.06 inch below the standard deviation of the whole population of Table II. For the cases of varicocele found among the second million the standard deviation in chest circumference is 1.95 , and for the two groups together 1.97 ± 0.01. This is 0.04 inch below the standard deviation for the average of the first million as shown in Table II, and this difference is probably a significant one. Owing to the fact that men showing varicocele are taller than the average, the slight
deficiency of chest circumference indicates that they are not stout, as is confirmed also by their weight. Their reduced variability suggests that the selected tall men having varicocele belong for the most part to a race of such men.

To sum up, it appears that both varicose veins and varicocele are associated with excess stature and that this result is probably primarily a hydrostatic one. The blood vessels of the lower part of the body have to support columns of fluid which are longer in taller men. It is to be expected that veins will give way more commonly where the hydrostatic pressure is greater than where it is less.

From the large size of the standard deviation of weight associated with varicose veins, it seems probable that varicose veins, though found prevailingly in heavy men, are found also in some slender men of very tall stature, and in some prevailingly short men of great weight, so that both weight and stature are concerned in the production of varicose veins. In the case of varicocele, on the other hand, the hypothesis seems to be favored that chiefly tall men, prevailingly of average or slightly less than average robustness, show the defect.

The relation between the distribution of chest girths in the population found with varicose veins and that of the population of recruits in general is shown graphically in Plate XXXVIII. Here there is a clear excess of persons with large chest circumference which is no doubt associated with the generally large size of persons with varicose veins and suggests that the defect has little influence on nutrition, or vice versa.

The relation between the distribution of chest girths in the population with varicocele and the population of recruits in general is also shown graphically in plate XXXVIII. It appears that there is no very important difference between the two populations, though there is a slight, but fairly constant, deficiency in chest girths in the population with varicocele, and this despite the fact that that population contains an excess of tall and heavy men. It appears then that the population with varicocele is characterized by slenderness of build.
(d) Robustness.-Men with varicose veins have an index of build of 31.28, or 0.21 unit above the average of the United States. Pignet's index is 19.90. This places them in the group with good constitutions.

Men with varicocele have an index of build of 30.33 , or 0.74 unit below the average of the United States. Pignet's index is 23.43 . This places them in the group with medium constitution. One notes then that men with varicocele are strikingly inferior in build and robustness to those with varicose veins.

For the men with varicose veins for each inch of the average height there are 2.14 pounds of weight, as compared with the normal 2.097 , and 0.492 inch of chest measurement (expiration), as compared with the normal 0.492 ; while in men with varicocele the weight per inch is 2.07 pounds and the chest measurement 0.484 inch. Thus both sets of men are abnormally tall, but while those with varicose veins are of normal chest and overweight those with varicocele are small chested and underweight.

Table 164.-Correlation between height and chest circumference (expiration) in recruits with raricose veins, first $\left(I_{2}\right)$ and sccond $\left(I_{2}\right)$ million draft reernits.

Table 166.-Correlation between height and chest cirtumference (expiration) in recruits with varicocele, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

14. HEMORRHOIIS.

(a) Stature.-The average stature of 1,027 men among the first million found at mobilization camps to have hemorrhoids is 67.82 inches, or 0.33 inch above the average of the stature of the population of Table I; for the 797 men in the second million the average is 67.77 inches; and for the 1,824 men in both groups combined 67.80 inches, which is 0.31 inch above the mean stature for the whole of the first million men as shown in Table I.

The standard deviation of stature of men found with hemorrhoids is for the first million 2.68 , which is 0.03 less than the standard deviation of the whole population of Table I; for the second million it is 2.91 ; and for both lots combined it is 2.78 ± 0.03, a value which differs from the standard deviation of the first million by a little more than twice the probable error.

Men found with hemorrhoids are therefore a somewhat selected lot, being taller than the average. This excess stature is probably one of the causes of hemorrhoids, just as it is of varicose veins and varicocele. Since the variability of the population with hemorrhoids is the same as that of the general population, we may conclude that the men with hemorrhoids constitute a normally distributed part of the population, only distributed about a higher mean stature.

The relation between the distribution of stature in the population with hemorrhoids and the population of recruits in general is shown in Plate XXXII. It appears at once that the population with hemorrhoids consists of men taller than the average. This is indicated both by the constant deficiency of short men 60 to 67 inches tall and the constant excess of tall men 68 to 76 inches tall. The mode in the distribution curve of the population with hemorrhoids is at 68 inches, or one-half inch above that of recruits in general. Moreover, this mode is relatively high and acute, enforcing the lesson that the population with hemorrhoids is affected with this condition largely because of their tall stature.
(b) Weight.-The average weight of the 1,027 men found with hemorrhoids among the first million examined at mobilization camps is 141.44 pounds, or 0.10 below the average of the population of Table I; for 797 men in the second million the mean weight is 139.06 ; and for the 1,824 men in both groups it is 140.39 (Table 167), which is 1.15 below the average of the first million as shown in Table I. This low average weight is associated with abnormally high stature, so that men with hemorrhoids are a tall and slender group. The standard deviation for the first million is 16.78 , or 0.64 below the standard deviation of Table I; for the second million it is 16.75 ; and for both together it is 16.76 pounds, which is 0.66 pound below the standard deviation of the first million men as indicated in Table I. This result indicates that the population with hemorrhoids is a specially selected population, selected tall and slender men, and that this build is in some way causally related to hemorrhoids and has not been induced merely by the hemorrhoids.

The relation between the distribution of weights of the population found with hemorrhoids and that of the whole population of recruits is shown graphically in Plate XXXV. The flattening at the top of the curve is possibly due to the small number of cases.
Table 167.-Correlation between height and weight in recruits with hemorrhoids, first $\left(P_{1}\right)$ and second (P_{2}) million draft recruits.

Table 168.-Correlation between height and chest circumference (expiration) in recruits with hemorrhoids, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

(c) Chest circumference.-The average chest circumference found in the 1,024 men with hemorrhoids among the first million at mobilization camps is 33.22 inches. or the same as the average of the whole population of Table II. In the 795 men with the defect among the second million the mean chest circumference is 32.94, and for the 1,918 men in both groups together it is 33.10 , which is 0.12 inch below the average for the first million men, as shown in Table II. Since these men, however, are taller than the average, we may say that the smaller chest circumference means that the men are tall and slender.

The standard deviation for chest circumference for men with hemorrhoids for the first million is 1.87 , or 0.14 less than the standard deviation of the whole population of Table II. For the second million it is 1.89 . Combining these with the first million we have a standard deviation of 1.88 , or 0.13 less than the standard deviation of the first million, shown in Table II. This again indicates that the men with hemorrhoids constitute in respect to chest circumference also a selected class, and that their tall, slender form is antecedent to the incidence of hemorrhoids.

The relation between the distribution of chest girths in the population found with hemorrhoids and the population in general is shown graphically in Plate XXXVIII. Though there is no very striking difference between the two distributions, yet there is a slight excess of men undersize, which is associated with a slight deficiency in weight found in the same population, despite the fact that they are of slightly greater height than the average.
(d) Robustness.-The group of men with hemorrhoids has an index of build of 30.54 , or 0.53 below the average for the United States. Pignet's index of robustness is 22.50 . This places them in the group with medium constitution, and they are thus shown to be between the group with varicose veins and varicocele in physical development.

For each inch of the average height there are 2.07 pounds of weight, as compared with the average 2.097, and 0.488 inch of chest measurement (expiration), as compared with the normal 0.492 .

15. ASTHMA.

(a) Stature.-The average stature of 614 men with asthma in the first million men examined at mobilization camps was 67.22 inches, or 0.27 less than the average of the whole population in Table I. In 967 men in the second million men the average is 67.26 inches, and for the $1,581 \mathrm{men}$ in both lots together it is 67.24 inches (Table 169), which is 0.25 inch below the mean stature of the first million men. Men with asthma are of slightly less than mean average stature and this is probably indicative of their environmental or racial selection or both. It appears that asthma is much commoner in the Northern States than in the Southern and the Northern States contain a larger proportion of short men. In the mountain regions of Tennessee and Kentucky, where there are very tall men, asthma is relatively uncommon. The short stature of men found with asthma is not due to the disease itself, but to the fact that the larger part of the population is found in that environment of the country in which the causative factors for asthma are especially found.
(b) Weight.-In 614 men found with asthma among the first million at mobilization camps the average weight is 139.38 pounds (Table 169), or 2.16
pounds below the average of the population of Table I; for the 967 men in the second million the mean weight is 138.78 pounds, and for the 1,581 men in both groups together it is 139.01 pounds, or 2.53 pounds below the mean weight for the whole of the first million. This low weight is only in part accounted for by the low average stature, since the average weight for a stature of 67.24 inches is 141.02 pounds, while for asthmatics it is 139.01 pounds. The standard deviation for the first million is 17.28 pounds, or 0.14 pound below the standard deviation in weight of the population of Table I. The standard deviation for the second million is 18.35 , an extraordinary increase over the standard deviation for the first million men. The average of the two lots is 17.94 ± 0.22, which is 0.52 above the standard deviation of the entire first million men, as shown in Table I. This result suggests the tentative conclusion that asthma is partly responsible for the small size; that it reduces the weight.

The relation between the distribution of weights in the population found with asthma and that of the population of recruits in general is shown graphically in Plate XXXIV. It appears from the graph that there is an excess of men underweight in the population with asthma, but this is associated with the deficiency in average stature of such men. The mode in the distribution of weights of asthmatics agrees with that of the population at large-about 137 pounds. It may be, however, that there is a deficiency of build among the asthmatics which is determined by the disease itself. In any case there is a marked deficiency of men between 142 and 169 pounds of weight.
(c) Chest circumference.-The average chest circumference of the 612 men found with asthma among the first million is 33.57 , or 0.35 inch above the average chest circumference of the population of Table I; for the 967 men in the second million (Table 170) it is 33.19 ; and for the 1,579 men in both combined (Table 170) it is 33.34 . This is 0.12 inch above the average chest circumference of all recruits. Since the average stature of men with asthma is less than the average of the whole population studied, and since they are below the average in weight, this large average chest circumference would seem to be in some way determined by the disease. This conclusion is confirmed by the circumstance that the standard deviation for chest circumference for the two combined is 2.12 , or 0.11 above the average, an excess which is about four times the probable error. This high variability suggests that the enlarged chest circumference of asthmatic men has been superimposed upon both large and small men, doubtless in consequence of the disease. We may conclude, then, that just the tendency to violent inhalations and expansions of the chest are responsible for the extraordinary development of the chest even in the relatively short and slender asthmatics.

The relation between the distribution of the chest circumference (expiration) in the population found with asthma among the draft recruits and in the population of recruits in general is shown in Plate XXXVII. It appears from this graph that the curve, although somewhat irregular, is moved to the right, showing a greater chest circumference (expiration). The apparent mode is, however, between 32 and 33 inches, or about one-half an inch to the left of the mode of the population of the recruits in general. This shifting of the mode to the left is expected from the small size of asthmatics. It represents the part of the asthmatic population whose chest is not yet abnormally enlarged.
Table 169.-Correlation between height and weight in recruits with asthma, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Height, in inehes.	Total.	Weight, in pounds.																														
		89 and under	$\frac{90}{94}$	${ }^{95}$	$\left.\begin{gathered} 100 \\ 104 \end{gathered} \right\rvert\,$			${ }_{119}^{11,}$	$\left\|\begin{array}{c} 120- \\ 124 \end{array}\right\|$	$\begin{array}{\|c} 125- \\ 129 \end{array}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	$\begin{gathered} 135- \\ 139 \\ \hline \end{gathered}$	$\begin{gathered} 140- \\ 144 \end{gathered}$	$\begin{gathered} 14.5- \\ 149 \end{gathered}$	15	159		$165-$ 169	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	${ }_{179}^{175-}$		${ }_{159}^{185}$	194	199-	204	209	210	$\stackrel{15}{215}$	224	229	$\begin{aligned} & 230- \\ & 234 \end{aligned}$	$235 \text { and }$ over.
58 and under	2						1											1														
	${ }_{7}$				1				1	1		1	3					1														
61.	15				\ldots	$\stackrel{-}{ }$	4	$\stackrel{1}{2}$		1	1		2		1	1																
62	21			i	i	1	3	2	3	4	1		2	2	1	1		1														
63.	72				2	5	5	15	9	11	10	6	2	1		2	1	2				1										
	112			1	1	5	${ }_{11}^{5}$	12	${ }_{26}^{24}$	${ }_{21}^{25}$	${ }_{23}^{9}$	${ }^{9} 8$	17	115	2	2			1	1		1			1							
66.	196					4	4	17	17	26	29	27	26	16	${ }^{5}$	12	6		3	2				1		1						
67	242				i	2	10	13	25	28	31	39	27	25	14	5	5	5	4	4		1	3									
68	231					2	2	11	18	23	${ }_{21}^{25}$	33	28	31	17	12	11	,	5	2	4	1		2								
70.	188				1		${ }_{3}^{8}$	13 6	17 9	13	20	$\stackrel{29}{29}$	18 13	19 10	${ }_{9}^{12}$	${ }_{13}^{5}$	${ }_{5}^{7}$	5	$\stackrel{2}{3}$	1	,	2									
71	93									9	6	13	${ }_{8}$	15	${ }_{22}$	4		4	7	2	2	1			1							
72	40						-			2	1	$\stackrel{7}{7}$,	7	4	3	5	1	3	1	-						1					i
	27 7								1	1	3	1	1	4	3 1	2	1	2	2	1	1	2		1	1			1				
	3															1				1	1											
													1	1			1		1													
	1																															
																,																
	1,581			2	10	27	50	97	14.5	171	174	207	17.5	150	106	69	62	38	40	20		11	5	4	3	1	1	1				2
$\stackrel{P_{1}-}{\text { Number of cases: 614. }} \stackrel{\mathrm{P}_{2}-\text { Number of cases: } 967 .}{\mathrm{P}_{1} \text { and } \mathrm{P}_{2}-} \quad$ Number of cases																																
Height: Mean, 67.22 inehes; standard deviation, 2.77 ± 0.05 ineh.							Height: Mean, 67.26 inehes; standard deviation, 2.67 ± 0.04 inch.													Height: Mean, 67.24 inehes; standard deviation, 2.71 ± 0.03 inch.												
Weihht: Mean, 139.38 pounds; standard deviation, $17.28 \pm$0.33 pound.Correlation: 0.3833 ± 0.0232.							Weight: Mean, 138.7 s pounds; standard deviation, $18.35 \pm$ 0.28 pound.													Weight: Mean, 139.01 pounds; standard deviation, 17.94土 0.22 pound. Correlation: 0.4069 ± 0.0142.												

Table 170.-Correlation between height and chest circumference (expiration) in recruits uith asthma, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

(d) Robustness.-Men with asthma have an index of build of 30.75 , which is 0.32 below the average of the United States. Pignet's index is 21.09, which places them in the class with good constitution. For each inch of the average height there are 2.07 pounds of weight, as compared with the normal 2.097 and 0.496 inch of chest measurement (expiration), as compared with the average 0.492.

16. DEFECTIVE AND DEFICIENT TEETH.

(a) Stature.-The average stature of the population found with defective and deficient teeth among the 5,166 men in the first million at mobilization camps is 67.26 inches, or 0.23 inch below the average; for 12,817 men in the second million (Table 171) the average stature is 67.26 ; and for the 17,983 in both together, 67.26 , or 0.23 below the average stature for the first million. It appears that men with defective and deficient teeth are strikingly shorter than the average. It does not follow that the short stature is due to the bad teeth.

The standard deviation of stature of men found with defective and deficient teeth is for the first million 2.68, which is only 0.03 less than the standard deviation of the whole population in Table I; for the second million it is 2.69 ; and for the two combined it is 2.69 ± 0.01, which is 0.02 below the average standard deviation for the first million. The difference is very slight, but so far as it goes, it suggests that the small stature of men with defective and deficient teeth is due rather to a racial characteristic than to any direct influence upon stature by the teeth. The study, "Defects Found in Drafted Men," ${ }^{\circ}$ shows that there is an exceptionally low rate for defective and deficient teeth among the white agriculturists of the South, among the mountain whites, native whites of Scotch origin, and areas having a large proportion of Scandinavians, Germans, and Austrians. On the other hand, the rate is high in the eastern manufacturing, commuting, and maritime groups, and especially in those sections containing French Canadians. Thus, in general, the defective teeth are found in small proportions in those parts of the country occupied by tall men and in large proportions in those parts of the country occupied by short men. It seems probable that we have to do here with a varying racial resistance to dental caries.

The relation between the distribution of stature in men with defective and deficient teeth and that of the population of recruits at large is shown graphically in Plate XXXII. One sees at a glance that men with defective and deficient teeth are somewhat shorter on the whole than the population of recruits in general. This is shown by the uniform excess of men 62 to 67 inches in stature and the uniform deficiency of men 68 to 72 inches tall. The modal stature of men with defective and deficient teeth is 67 inches, or one-half inch below the mode of the population of recruits in general; this indicates that the population with defective and deficient teeth is shorter than recruits in general, probably racially shorter, for reasons given above.
(b) Weight.-The average weight of the 5,166 men found with defective and deficient teeth among the first million at mobilization camps is 139.18 pounds, or 2.36 below the average of the population; for the 12,817 men in the second million it is 137.97 pounds; and for the 17,983 men in both groups togetlier (Table 171) 138.32 pounds, or 3.22 pounds below the mean weight of the first million. This deficiency in weight is only in part accounted for by the low

Height, in inches.	Total.	Weight, in pounds.																										
		89 and under	$\left\lvert\, \begin{gathered} 90- \\ 94 \end{gathered}\right.$	$\begin{gathered} 95- \\ 99 \end{gathered}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 10 i- \\ & 109 \end{aligned}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	115-119	120-124	125-129	130-134	135-139	140-144	145-149	150-154	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\begin{array}{\|c} 175- \\ 179 \end{array}$	150-	${ }_{1}^{185}$	194	193	204	209	210	${ }_{219}^{215-}$
58 and und	19	2			1		2	${ }_{3}^{2}$	${ }_{4}^{2}$	2 4	3 5	$\frac{1}{2}$	2	${ }_{3}^{2}$	1													
	73		1	1		7	17	10	7	3	9	3	3		1	i		1	1				1	1				
1.	155	1		3	7	18	27	32	23	16	11	7	1		1	2			,		1			1				
	343		1	3	13	35	61	64	56	49	24	10	9	6	5	2		1		3								
	788		1	6	19	49	86	144	130	133	75	48	36	18	17	7	6		6									
4	1,210		3	2	3	16	112	306	${ }_{2} 215$	187	136	127	85	51	31	16	6	7	3		1				1			
	1,949			1	17	51	123	227	276	250	278	${ }_{232}^{232}$	170	115	69	42	23	18	9	7	4	2	3	2				
6	2,416				16	29	100	181	322	369	374	326	${ }_{2}^{241}$	163	118	69	42	23	20	8	8	2		5				
	2,722			1	10	19	58	151	246	353	367	389	377	273	177	114	74	41	30	15	15					1		
8	2,594				4	11	34	88	180	238	322	410	356	310	261	139	106	46	33	21	11	7	9	4	2	2		
	2,159			1	1	3	17	40	118	176	235	301	296	273	246	160	115	78	32	21	22	9	5	6	1	2	1	
0	1,497				3	3	5	23	41	80	131	177	211	202	176	154	85	55	53	34	25	14	12	4	4	5		
1	985						1	8	19	44	59	106	122	130	136	112	75	67	38	22	16	13	5	,	9		1	
	549				1	1	1	2	6	10	28	4	68	77	90	73	59	42	34	22	14	10	3		3		1	
	278									${ }_{6}^{6}$	10	14	23	33	38	40	31	${ }^{26}$	18	6	9	7	6	1	5	i	2	1
	101					1	1	1	4		2	4	7	11	10	11	12	12	8	${ }_{6}$		5	2	1	2			
	12								1			2	3	1	7	7	3 2 2	5	3	3	2	4		3				
	9														1	4	1	3	3		1							
	5															2		2	1									
									1									3							1			
	1														1													
Total	17,983	5	6	19	102	244	646	1,183	1,651	1,9.51	2,069	2, 203	2,012	1,674	1,385	955	641	434	294	172	130	so	48	30	29	11	5	1

inch. Mean, 138.32 pounds; standard deviation, $16.59 \pm$
Weight:
0.06 pound. Correlation: 0.5067 ± 0.0037. Weight: Mean, 137.97 pounds: standard deviation, $16.90 \pm$ Correlation: $0.505 \mathrm{H} \pm 0.0044$.

Number of cases: 5,166 .
Height: Mean, 67.26 inches; standard deviation, 2.08 ± 0.02 Weikht: Mean, 139.18 pounds; standard deviation, $16.84 \pm$
O.11 pound. Correlation: 0.5107 ± 0.0069.
Table 172.-Correlation between height and chest circumference (expiration) in recruits with defective and deficient teeth and dental caries, first (P_{1}) and second (P_{2}) million draft recruits.

average stature of the group, since men with a height of 67.24 inches are expected to have an average weight of 141.02 pounds. There is thus a deficiency in weight of men with defective and deficient teeth even when regard is taken for their short stature.

The standard deviation in weight for both groups combined is 16.89 ± 0.06, or 0.53 pound below the average of the first million. This low standard deviation indicates that defective and deficient teeth are found predominantly in men belonging to a short and slender race. It is to be noted that the highest State rates for defective and deficient teeth are found in Vermont, New Hampshire, Rhode Island, Massachusetts, and Maine, all of which have about three times the average rate. Now these are just the States occupied by an excess of French Canadian groups that lave a rate of 40.01 for defective and deficient teeth, which is by far the largest ratio of any of the groups. At the same time this group is characterized by exceptionally low stature.

The relation between the distribution of weight of the population found with defective and deficient teeth and that of the population of recruits in general is shown graphically in Plate XXXV. It appears at once that the population with defective and deficient teeth is on the whole characterized by having a weight inferior to the average; but they are, however, prevailingly short persons, so that there is little evidence that they are badly nourished on account of the defective teeth.
(c) Chest circumference.-The average chest circumference in the 5,150 men found with defective and deficient teeth among the first million at mobilization camps is 33.25 , or 0.03 above the average of the whole population. For the 12,782 men in the second million it is 32.89 , and for the 17,932 men in the two groups combined (Table 172) it is 33.00 , or 0.22 inch less than the average for the whole of the first million. The standard deviation of chest circumference for the two groups is 2.00 , or 0.01 below the standard deviation for the first million. This is not a significant difference.

The relation between the distribution of chest girths in the population found with defective and deficient teeth and recruits in general is shown graphically in Plate XXXVIII. This shows that, on the whole, persons with defective and deficient teeth have a smaller chest girth than the average, as indeed thay have a smaller weight and stature. On the whole, they contain an excess of men of small size, belonging to small races.
(d) Robustness.-Men with defective and deficient teeth have an index of build of 30.33 , which is 0.74 below the average for the United States. Pignet's index is 22.31, which places them in the class with the mediuni constitution. For each incla of the average height there are 2.06 pounds of weight, as compared with the normal 2.097 , and 0.491 inch of chest measurement (expiration), as compared with the normal 0.492 .

17. HERNIA.

(a) Stature.-The average stature of 13,822 men with hernia found among the first million men at mobilization camps is 67.40 , which is only 0.09 inch below the mean stature of the population of Table I; for the $20,39 \mathrm{~s}$ men in the second million it is 67.47 ; for the 34,220 men in both combined (Table 173),
67.44 , or 0.05 less than the average for the first million. The standard deviation of stature of men with hernia is for both groups 2.76 ± 0.01, which is 0.05 inch above the average for the first million as shown in Table I. One may conclude, therefore, that hernia occurs in the different statures in about the same proportion as the different statures occur in the whole population.

The relation between the distribution of stature in the population with hernia and that of the population of drafted men in general is shown graphically in Plate XXXII. This curve indicates that men with hernia are not far from a fair sample of the whole population in respect to stature. There is, however, a slight excess of men shorter than the average. This is shown by the deficiency in the population with hernia between 67 and 70 inches, which overbalances the shift of the modal point from $\frac{1}{4}$ to $\frac{1}{2}$ inch to the right. The excess of short men is, however, not at all marked.
(b) Weight.-In 13,822 men found with hernia among the first million at mobilization camps, the average weight is 141.69 pounds, or 0.15 pound above the average; for the 20,398 men in the second million the weight is 140.91 pounds, and for the 34,220 men in both groups combined (Table 173), 141.23, which is 0.31 pound below the average of the first million. Since the men with hernia are slightly below the average stature, this result in the case of such men shows about normal build. The standard deviation of weight for both groups combined is 17.17 , or 0.25 pound below the standard deviation in weight of the population of Table I. This indicates that hernia is especially apt to affect persons who are slightly under weight, although stature has practically nothing to do with its occurrence. This result might have been anticipated since it is just the men who are below normal vigor, as indicated partly by underweight, who, whatever their size, are most apt to show the effects of a strain in the abdominal muscles and the ligaments of the inguinal region.

The relation between the distribution of weights in the population found with hernia and that of the population of recruits in general is shown graphically in Plate XXXV. It appears that there is no important difference in the distribution of weights in the two populations, as indeed we have found there is no important difference in stature.
(c) Chest circumference.-The average chest circumference in the 13,822 men found with hernia among the first million at mobilization camps is 33.23 inches, or 0.01 inch greater than the average chest circumference for the whole population of Table II; for the 20,398 men in the second million it is 33.04 ; and for the 34,220 men in both groups combined (Table 174) it is 33.11 , which is 0.11 less than the average of the first million as shown in Table II. The standard deviation of chest circumference for both groups combined is 2.00 ± 0.01, which is practically that of all of the first million men, as shown in Table II. It appears, then, that men in whom hernia is found have slightly less average weight and chest circumference than men of their height, which is almost exactly the average.
Table 173.-Correlation between height and chest circumference (expiration) in recruits with hernia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

									hest,	ineh							
		28 and under.	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43 and over.
58 and under.	46		1	3	7	10	11	5	7	2							
60.......	69 118		1	11	10	13	14	7	5	4	3		1				
61.	118 340	6	20	12 39	$\stackrel{21}{66}$	29 67	20 70	12	8	6 13	5	1					
62.	639	5	34	19 65	115	67 163	102	37 85	15 44	13	5	2	2	1			
63.	1,243	14	55	139	213	2×2	226	164	91	32	24	6	6	1			
65.	2,233 3,312	${ }_{9}^{9}$	85 89	219	396	476	422	315	159	100	31	13	6	2			
66.	3,312 4,420	21 10	99 108 108	276 310	569 064	706	${ }^{631}$	478	299	137	6.5	33	15	1	2		
67.	4,858	13	103	314	666	934 988	918 1,055	659 789	430 525	238	96 113	${ }_{66} 6$	24	3	4		1
68.	5, 007	11	60	268	577	949	1,046	915	567	238 349	115	66 60	32	$\begin{array}{r} 2 \\ 12 \end{array}$			
69	4,227	7	38	191	451	780	8.56	806	551	301	161	56	34	$\begin{array}{r} 12 \\ 5 \end{array}$			1
70.	3,245	5	20	114	303	520	701	590	482	286	138	46	24	11	3		
72.	2,130	6	20	61	153	303	459	438	323	218	77	44	18	4	2		
73.	1,606	1	6 2	20	90 30	168	222	252	194	134	69	21	21	5	2		
74.	281	1	1	0	16	22	121 43	123	111	68	39	16	10	2	3		1
75	109				2	11	11	22	24	17	13	5	5 3	1	1		
77.	49				5	5	8	9	7	4	6	2	3				
78.	11					1	1	3 2	4		4		3				
80 and	7					1		1	2	1	1		1				
so and	6			1	1	1		2	,								
Total	34,220	110	6.59	2, 052	4, 3*5	6, 444	6,940	5,776	3, 888	2,198	1,034	407	235	53	25		9
			$\mathrm{P}_{\text {- }}$								P_{1} and $\mathrm{P}_{5}-$						
Number of eases: 13,522 .											Number of cases: 34,220 .						
Height: Mean, $6 \mathbf{6} .40$ inehes; standard deviation, 2.74 ± 0.01 ineh.			Number of cases: 20,398. Height: Mean, 67.47 inehes; standard deviation, 2.77 ± 0.01								Ineh.						
Chest eircumference (expiration): Mean, 33.23 inches; standard deviation, 1.99 ± 0.01 ineh. Correlation: 0.2515 ± 0.0054.			Chest circumferenee (expiration): Mean, 33.04 inches; standard deviation, 2.01 ± 0.01 ineh.								neh. ard cire de	crenc tion, 0.24	xpira ± 0.0 0.013		, 33	nch	stand-

														eight,	pou															
Height in inches.	Total.	89 and	$\frac{90}{94}$	$\begin{gathered} 95- \\ 99 \end{gathered}$	$100-1$			$\begin{gathered} 115 . \\ 119 \end{gathered}$	${ }_{124}^{120-}$	$\begin{gathered} 125- \\ 129 \end{gathered}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{gathered} 140- \\ 144 \end{gathered}$	$\begin{gathered} 145 \\ 149 \end{gathered}$	$\begin{gathered} 150- \\ 154 \end{gathered}$	$\begin{gathered} 155- \\ 159 \end{gathered}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	179	180	185		195	200	209	214	${ }_{219}^{215}$	224	229
38 and un	47	1	3	2	3		3	2	3	3	3	1	2	4	3	4	1	\pm	1	2										
60	120	1			1	11	25	${ }^{5}$	19	8	${ }_{10}^{3}$	11	6	${ }_{2}^{3}$	4	${ }_{3}^{2}$	1		2											
61.	341			4	18	26	38	59	53	46	27	24	20	12	5	3	1	2	2					1						
	642			2	23	31	86	95	98	104	68	61	24	19	11	9	3	5	1											
63.	1,288		1	3	24	62	118	203	198	214	155	116	87	45	25	14	11	8	2		1									
64	2,249			2	21	61	152	249	336	346	353	278	176	107	75	35	27	14	8	7	t	1		3						
65	3,321		1	1	18	56	159	281	433	515	493	450	${ }_{3}^{330}$	240	123	83	53	40	18	10	23	${ }^{4}$	2							
66.	4,433			2	8	32	133	261	424	635	641	707	${ }^{3} 36$	384	${ }^{267}$	161	87	52	41	18	${ }_{23} 2$	11	4		3					
	4, ${ }^{\text {, }}$, 817				12	11	${ }_{32}^{61}$	227 116	${ }_{283}$	${ }_{7} 776$	690 389	714	778	546 606	308 478	${ }_{321}^{239}$	${ }_{238}^{161}$	102	${ }_{8} 5$	${ }_{62}$	25	${ }_{22}$	7		${ }^{7}$	1				
69.	4,242						12	${ }_{62}$	145	251	417	560	6.51	577	476	409	227	171	109	59	37	25	26		12	1	i			
	3,249						3	18	73	135	255	374	422	462	438	340	257	174	119	64	43	21	23		14	4	1			
71	2,135						1	5	27	62	120	186	231	301	307	250	210	154	111	55	47	24	17	14	11		2			
72	1,209							4	6	16	46	87	${ }_{9}^{96}$	134	$1+2$	15.5	144	120	71	${ }^{67}$	41	${ }^{26}$	17		24	1	1	2	1	
73.	607 283					1		1		3 1	15 1	$\begin{array}{r}13 \\ 8 \\ \hline\end{array}$	49 16	56 19	71 28	${ }_{33}^{80}$	83 35	${ }_{37}^{65}$	${ }_{26}^{48}$	31 27	13	${ }_{8}^{25}$	14	7	11	2	1	i	2	2
75	109											2	2	8	7	6		10	$1+$	12	10	6	9		$+$					
76	49										1	2	3	4	6	2	3	5	${ }_{8}$	2	2	2	3	1	3		2			
77.	17											1				1	3	1		2	2	1	1	1	1					
78.	11									1	1		1		1	2		1		1	2				1					
89.	7											$\begin{aligned} & 2 \\ & 3 \end{aligned}$		1	1				1			1	1		1					
Total	34,324	2	5	19	135	318	227	1,603	2,479	3,391	3,890	4,337	4,101	3,531	2,780	2,152	1,568	1,122	721	452		185		8	114	13	10	3	3	2
P_{1} -									$\mathrm{P}_{2}-$									P_{1} and $\mathrm{P}_{2}-$												
Number of cases: 13,870.								ineh. Weight: Mean, 141.69 pounds; standard deviation, $17.22 \pm \quad$ ineh. Weight:	Height: Mean, 67.47 inches; standard d									Height: Mean, 67.44 inehes; standard deviation, 2.76 ± 0.01 ineh.												
Weight: Mean, 0.07 pound Correlation: 0.5	$\begin{aligned} & 141.69 \mathrm{pc} \\ & 285 \pm 0.00 \end{aligned}$	$\begin{aligned} & \text { ounds; } \\ & \text { ti. } \end{aligned}$				atio	n, 17	.22土	Weight: Mean, 140.91 pounds; standard deviation, 17.12 \pm0.01 pound.									Weight: Mean, 141.23 poun 0.04 pound.												

Table 174.-Correlation between height and weight in recruits with hernia, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 175.-Correlation between height and weight in recruits with enlarged inguinal rings, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Height, in Inches.	Totai.	Weights, in pounds.																							
		89 and under.	$\begin{gathered} 90 \\ 94 \end{gathered}$	$\begin{aligned} & 95- \\ & 99 \end{aligned}$	$\begin{aligned} & 100 \\ & 104 \end{aligned}$	${ }_{109}^{105-}$	$\underset{114}{110-}$	$\begin{gathered} 115- \\ 119 \end{gathered}$	$\begin{gathered} 120- \\ 124 \end{gathered}$	$\begin{gathered} 125- \\ 129 \end{gathered}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\underset{144}{140-}$	$\begin{gathered} 145- \\ 149 \end{gathered}$	$\begin{gathered} 150- \\ 154 \end{gathered}$	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\underset{174}{170}$	${ }_{179}^{175-2}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\underset{1 \leqslant 9}{155-2}$	$\begin{gathered} 190 \\ 194 \end{gathered}$	$\begin{gathered} 195- \\ 199 \end{gathered}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
58 and under.	31					3	$\underline{2}$	1	14	8		3	${ }_{9}^{2}$				2	1							
60.	14.4		1	1	3 7	12 12	19	24	${ }_{21}^{14}$	15	10	7	$\stackrel{9}{7}$	${ }_{7}$	2	${ }_{3}$	1		1		1			2	
61.	400				14	29	63	76	81	40	39	24	12	13			2	1		1	1			2	
62.	749			4	19	46	105	144	123	95	81	51	31	19	7	8	4	2		4				2	
63	1,609			3	27	57	187	262	270	267	206	${ }^{144}$	74	41	24	14	12	${ }^{7}$	4	6	1	1	1	1	
	2, 339			3	20	82	207	366	441	475	44	309	199	107	71	39	32	13	9	8	\pm	2	${ }^{3}$	3	
${ }_{66.5}^{6.5}$	4,085			4	11	55	208	431	554	606	614	533	400	270	154	89	37	37	20	17		4	2	1	1
66	5,341			1	21	48	152	396	662	798	906	794	622	424	27.4	169	101	35	33	${ }^{27}$	30			2	
68.	6,301				15	35	9	250	547	828	946	1,016	891	628	469	316	169	9 9	so	30	24	$1+$	12	5	
68.	6,618				1	17	49	172	372	${ }^{638}$	865	1,005	983	798	603	410	272	191	90	57	33	25	17	12	
69	5,3*3				4	5	29	82	229	${ }^{367}$	573		781	753	${ }_{526}^{592}$	+24	239	199	125	85	50	29	${ }_{15}^{22}$	10	
70						2	13 2	${ }_{11}^{28}$	89 31	214 93	314 163	522 280	537 354 5.4	592 389	-	389 301	${ }_{264}^{304}$	153 179	133 111	71 68	52	31	15	10	17
\%2	1,509					2	1	1	12	25	65	99	172	213	206	176	154	119	101	60	4	18	15	10	
73	778				1		2	1	3	12	13	32	${ }^{73}$	88	107	108	95	69	64	34	32	20	7	7	10
7	334								1		1	6	15	25	36	49	48	41	43	21	16	9	10	9	
	133											5	5	11	6	11	13	23	13	13	11	3	\%	2	6
76.	48								1	1	1	2	2		,	5	5	8	6	6	2	3	2	1	
77.	15											1	1	2	1	2			1		2	1	2	1	
79.............	6									1			1		1	1	1	1				1			
so and over...	3							1						1									1		
Total...	43,619		1	16	143	394	1,140	2,283	3,483	4,488	5,255	5,563	5,212	4,348	3,477	2,518	1,807	1,222	839	509	330	157	147	93	94
P -								P									P_{1} and	P-							
Number of	ses: 20,								ber or	cases:	3,47\%.						Num	ber of	ses: 4	619.					
Height: Me inch.	$n, 67.54$	nches;			eviatio		± 0.01		cht: M	$\text { an, } 67.4$	0 inch	; stan	dard d	intion			$\begin{aligned} & \text { Heigh } \\ & \text { inct } \end{aligned}$	it: Mea	$n, 6 \overline{4}+46$	inche	: stan		eviatio		
Weight: Me 0.03 pound	$\text { n, } 140.17$	pounds		dard	deviat	ion, 10	.64士		Rht: M	$\text { can, } 140$	$.00 \text { pou }$	ds; st	andard	deviat	on, 16.		$\begin{gathered} \text { Weigh } \\ 0.04 \end{gathered}$	ht: Mea pound	$\text { n, } 140 .$	spour	$\text { dis: } \mathrm{s}$		devia		16.54土
Correlation:	. 5174 ± 0	0035.							elatio	0.507\%	± 0.003						Correia	tion: 0	5115 ± 0						

Table 176.-Correlation between height and chest circumference (expiration) in recruits with enlarged inguinal rings, first (P_{1}) and second (P_{2}) million druft recruits.

The relation between the distribution of chest girths in the men found with hernia and the population of recruits in general is shown graphically in Plate XXXVIII. There is very little difference in the two curves, but there is an indication of a slight deficiency in chest girth in men with hernia despite the fact that in stature they are fair samples of the whole population. This deficiency in chest girth is possibly due to the condition of malnutrition which favored the hernia.
(d) Robustness.-Men with hernia show an index of build of 31.05 , or 0.02 under the average of the United States. Pignet's index is 21.17, which places them in the class with good constitution. For each inch of the average height there are 2.09 pounds of weight, as compared with the normal 2.097, and 0.491 inch of chest measurement (expiration), as compared with the averages 0.492 .

18. ENLARGED INGUINAL RINGS.

(a) Stature.-The mean stature of 20,142 men found with enlarged inguinal rings among the first million at mobilization camps is 67.54 inches, or 0.05 above the average for the population of Table 175 ; for the 23,477 men in the second million it is 67.40 ; and for the 43,619 men in both combined 67.46 , or 0.03 below the mean height of the first million men. This is an insignificant difference. The standard deviation of stature for both groups is 2.70, which is again almost exactly the standard deviation for the first million. It appears, therefore, that recruits showing enlarged inguinal rings are typical in their stature of the whole population of recruits; just as are those who show welldeveloped hernia.
(b) Weight.-The average weight of 20,142 men found with enlarged inguinal rings among the first million at mobilization camps (Table 175) is 140.17 pounds, or 1.37 below the average of the population of Table I; for the 23,477 men in the second million it is 140.00 pounds; and for the 43,619 men in both groups combined it is 140.08 , or 1.46 pounds below the average. The standard deviation is 16.54 ± 0.04, or 0.88 pound below the standard deviation for the first million as shown in Table I. This indicates that, as in the case of hernia, so in the case of enlarged inguinal rings, the defect is found prevailingly in slender persons. It is because they are slender that they have enlarged inguinal rings rather than that the weiglit is reduced because they have enlarged inguinal rings.
(c) Chest circumference.-The average chest circumference of the 20,161 men found with enlarged inguinal rings among the first million is 33.03 inches, or 0.19 below the average chest circumference of the population studied; for the 23,464 men in the second million it is 33.09 ; and for the $43,625 \mathrm{men}$ in both combined (Table 176) 33.06, which is 0.16 below the average chest circumference for the first million as shown in Table II. This result indicates again that men with enlarged inguinal rings are slender. The standard deviation for the two groups combined is 1.95 ± 0.004. This small standard deviation combined with the small chest circumference and low weight indicates that the men with enlarged inguinal rings belong prevailingly to a race of average stature, but that is underweight and abnormally slender.
(d) Robustness. -The index of build is 30.78 , or 0.29 below normal. Pignet's index is 21.S9. The pounds of weight to each inch of average height are 2.09, and the inches of chest measurement (expiration) 0.490 .

19. FLAT-FOOT.

(a) Stature.-The average stature of 175,358 men with flat-foot among the first million is 67.30 inches, or 0.19 below the average stature of the population of Table I. For the 94,990 men in the second million (Table 177) the mean stature is 67.28 , and for the 270,348 men in both groups combined it is 67.30 , or 0.19 below the average for the first million as shown in Table I. The standard deviation for the two combined is 2.70 ± 0.003, or 0.01 below the standard deviation for the total of the first million as shown in Table I. Thus men with flat-foot are shorter and less variable in stature than the population at large. This suggests that we have here to do with a prevalence of flat-foot in the short races.
(b) Weight.-The average weight of 175,358 men found with flat-foot among the first million at mobilization camps is 143.24 , or 1.70 pounds above the average of the population of Table I. For 94,990 men in the second million (Table 177) it is 143.31 , and for 270,348 men in both groups combined it is 143.26 , or 1.72 pounds above the average of the first million as shown in Table I. This high mean weight is present despite the fact that the average stature of men found with flat-foot is slightly below the average for the whole population. The standard deviation for weight of men with flat-foot for the two groups combined is 18.41 ± 0.02, or 0.99 pound above the average for the first million shown in Table I. This result shows that men with flat-foot are relatively heavy, and that all physical types of men who become heavy may gain flat-foot.
(c) Chest circumference.-The number of cases of flat-foot were so many and the preliminary inspection indicated that the chest circumference deviated so slightly from the normal that, on account of lack of funds, it was decided not to do the work required to make out the table of relation of height to chest circumference for men with flat-foot.
(d) Robustness.-The index of build of men with flat-foot is 31.63 , or 0.56 above the average of the United States. The chest circumference for men with flat-foot was not calculated, so their index of robustness can not be determined. There are 2.13 pounds of weight for each inch of average height, as compared with the average 2.097 .
Table 177.-Correlation between height and weight in recruits with flat-foot, first (P_{1}) and second $\left(P_{2}\right)$ million draft recruits.

20. DEFECTIVE PHYSICAI DEVELOPMENT.

This term is a vague one used often by the examining boards to avoid recording a more specific diagnosis. It is frequently applied to persons who are far under the normal degree of robustness and also to many cases of malformation of the trunk, such as flat chest or curved spine.
(a) Stature.-The average stature of 758 men found with defective physical development among the first million examined at mobilization camps is 66.34 inches, or 1.15 inches less than the average stature of the population in Table I. For the 534 men in the second million it is 66.91 , and for 1,292 men in both groups together ('Table 178) 66.57, or 0.92 inch below the mean stature of the whole of the first million as given in Table I. We have lere a very striking inferiority in stature of the men with "defective physical development." And there is reason for thinking that many persons who were below the standard minimum stature were on that account given the diagnosis "defective physical development." The standard deviation in stature of men placed in this category is for the two groups 3.84 ± 0.05, which is the largest standard deviation of stature shown in Table 187. This simply means that the diagnosis has a very scattered application through the whole range of the human statures. It is applied, as we have seen, prevailingly to very short persons, but also to tall persons who are very thin, flat chested, or otherwise malformed. A comparison of the range of different statures of men with defective physical development and of the total defective population shows clearly the significance of this high variability. For whereas in the population as a whole there is a larger proportion of men with the stature of 67 inches (14.6 per cent) than of any other inch class; yet, of men diagnosed as having defective physical development, there were in this stature class only 9.8 per cent. Instead of the proportion in the classes at each side of the mean diminishing as in the normal frequency curve, in this selected class the numbers actually increase, being 11.1 per cent for men 66 inches tall and 11.9 per cent for men 68 inches tall. The proportion of men 59 inches tall is nearly 25 times the proportion of such men in the whole population. There are nearly 11 times as many men 60 inches tall in this special group as in the whole population. Also there are disproportionately high ratios for statures 71 inches and above. Of men 79 inches tall, there are nearly 15 times as many in the defective physical development group as in the population at large. It is the extremes, then, that were prevailingly diagnosed as of defective physical development.
(b) Weight.-The average weight of the 758 men found with defective physical development among the first million at mobilization camps (Table 178) is 128.94 pounds, or 12.60 pounds below the average of the population of Table I. For 534 men in the second million the average weight is 123.43 pounds, and for 1,292 in both groups it is 125.51 , which is 16.03 pounds below the average of the first million. This exceptionally low weight is only in part accounted for by the low average stature of this group. The standard deviation of the groups is 18.57 pounds ± 0.25, which is 1.15 pounds above the average standard deviation for the whole first million. These figures show clearly that the group of defective physical development includes men belonging to races of various sizes, victims
Table 178.-Correlation between height and weight in recruits with defective physical derelopment, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 179.-Correlation between height and chest circumference (expiration) in recruits with defective physical development, first $\left(P_{1}\right)$ and second $\left(\boldsymbol{P}_{2}\right)$ million druft

of various environmental conditions which have prevented full physical development or the achievement of the physical standards set for military service. A comparison of the distribution of weights of these men and the distribution of weights in the whole populations shows that there is an extraordinary deficiency of heavy men. Thus the ratios for men over 137 pounds are about half the corresponding normal ratios, from 152 upward about one-third the normal ratios. On the other hand, there are proportionately nearly nine times as many men of 102 pounds found in this group as in the population at large, and of men $95-99$ pounds there are 11 times as many. By comparing these ratios with those of height, we see that men with defective physical development were prevailingly exceedingly slender men.
(c) Chest circumference.-The chest circumference in the 752 men found with defective physical development among the first million (Table 179) is 32.15 inches, or 1.07 inches less than the average chest circumference of the whole population of Table II. For the 532 men in the second million the mean is 31.43 , and for 1,284 men in the two combined 31.85 , or 1.37 less than the average of the total first million. This low mean chest circumference is correlated with the low weight of prevailingly slender men. The standard deviation of the chest circumference in the two groups is 2.18 ± 0.03, or 0.17 inch above the standard deviation of the first million. It appears, then, that the group with defective physical development contains very short and very tall men, all under weight and all of prevailingly small chest circumference and showing a marked variability as contrasted with the population at large. We are not here dealing with a racial trait, but with a mixture of races and of causes having this in common, that they result in men who, in form and proportions, deviate far from military standards.
(d) Robustness.-Men with defective physical development have an index of build of 28.32 , or 2.75 below the average of the United States. Their index of robustness is 29.94 , or 9.06 below the average of the United States, placing them in the class of weak constitution. For each inch of the average height there are 1.89 pounds of weight as compared with the normal 2.097 pounds, and 0.479 inch of chest measurement (expiration), as compared with the normal 0.492.

21. UNDERWEIGHT.

The requirements of weight for each unit of height are griven in Table 138, p. 297, copied from the physical examination standards.
(a) Stature.-The average stature of 2,686 men found to be underweight among the first million at mobilization camps is 66.22 inches, or 1.27 less than the average stature of the population of Table I. For 9,943 in the second million men the average stature is 65.30 ; for 12,129 men, both lots (Table 180), it is 65.50 , or 1.99 inches below the mean height. It will be recalled that local boards, during most of the draft period, were instructed not to send to camp men under 61 (later 60) inches in height. It appears, however, from Table 180 that 241 men 59 inches and under were examined at camp and recorded as being underweight. The low average stature is of course due to the fact that weight and stature are closely correlated and the "underweight" is frequently one who has less than average stature. However, the proportion of men 74-77 inches tall was larger than in the population as a whole, showing that there was an exceptionally large number of very tall men who were below the appropriate
weight for their stature. Of men 61 inches tall, those rejected for underweight were five times the normal proportion of this stature. Of men 60 inches tall, there were about eight times the normal proportion rejected for underweight, and similarly for the shorter groups. The standard deviation of stature of men found at camps to be underweight for both groups is 3.36 ± 0.01, which is 0.65 inch above the standard deviation for the whole population of the first million. This high variability is clearly due to the fact that underweight, while found especially in the short men, was found also in the very tall men. Consequently underweight men are a very variable group with respect to stature.
(b) Weight.-The average weight of 2,686 men diagnosed as underweight among the first million at mobilization camps (Table 180) is 114.67 pounds, or 26.87 pounds below the average of the population of Table I. For 9,443 men in the second million it is 109.88 ; for 12,129 men in both groups together, 110.94 , or 30.60 pounds below the average for the first million. The standard deviation for the groups combined is 9.89 ± 0.04 pounds, which is the lowest standard deviation of weight found in the first million men. This result was, of course, to have been anticipated, since we have in this group one selected for a single feature, namely, weight. It constitutes, therefore, so far as weight goes, a very homogeneous lot, but not so homogencous as would be the case were only the small men considered. The small standard deviation, moreover, combined with the prevailing causes of underweight, indicates that the majority of men concerned belong to the small races.
(c) Chest circumference.-The average chest circumference of the 2,708 men found to be underweight among the first million at mobilization camps is 30.94 inches, or 2.29 inches less than the average. For the 9,424 men among the second million (Table 181) the chest circumference is 30.32 ; and for 12,132 men in both lots (Table 181) it is 30.46 or 2.76 inches less than the mean of the whole population. The standard deviation of chest circumference for the two lots is 1.53 ± 0.01 inches, or 0.48 inch less than the average standard deviation in chest circumference for the first million. It appears, then, that the underweight group is characterized by extremes of statures and by slenderness of body, by small chest circumference, and by relatively slight variability in respect to slenderness. The slight variability in chest circumference is, however, partly due to the small average chest circumference. However, if we divide the standard deviation by the mean we find for this, the coefficient of variability, a ratio of 0.56 , which is much less than that for the population at large, 0.91 . This indicates that the chest circumference of underweight men is not only absolutely but also relatively smaller than that of the population at large. The men of this class had, therefore, an exaggerated and relatively uniform slenderness of build.
(d) Robustness.-The index of build of men classified as underweight is 25.86 , or 5.21 below the average, and the lowest index of the whole United States. Pignet's index is 37.36 , or 16.48 below the average of the whole country, placing them in the class of bad constitution. For each inch of the average height there are 1.69 pounds of weight, as compared with the normal 2.097, and 0.465 inch of chest measurement (expiration), as compared with the normal 0.492 .
Table 180.-Correlation between height and weight in recruits underveight, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

Table 181.-Correlation between height and chest circumference (expiration) in recruits underweight, first $\left(P_{1}\right)$ and second $\left(P_{2}\right)$ million draft recruits.

22. OVERWEIGHT AND OBESITY.

Table 135 specifies the standard weights for each height and the minimum weight for each height which will permit of acceptance. There was a maximum weight for each stature, and this defined the overweight and obese men. The overweight men, however, reached such extremes that it was not feasible to tabulate all of the classes of weight.
(a) Stature. -The mode of stature of recruits as far as tabulated stands at 69 inches or $1 \frac{1}{2}$ inches above the mode of the whole population as shown in Table 1. The group is also clearly a more variable one than the population as a whole.
(b) Weight.-The average weight of the 271 men found with overweight and obesity among the first million at mobilization camps is not calculated because, by the method of tabulating, more than half of the men placed in this class were grouped in the category " 200 pounds and over." For the same reason the standard deviation was not calculated.
(c) Chest circumference.-The average chest circumference of the 271 men found with overweight and obesity among the first million at mobilization camps is 36.92 inches, or 3.70 inch above the average chest circumference of the average male population at large. Owing to the fact that in tabulating chest circumference, 39 inches and over were massed into one class, the standard deviation of chest circumference has not been calculated.
(d) Robustness.-As stated above, the weight of men classified as overweight or obese was grouped in many cases as 200 pounds and over, and as a result the average weight could not be accurately determined. Hence the indices of build and robustness could not be calculated.

23. CRYPTORCHIDISM, HYPOSPADIA, ANORCHISM, AND MONORCHISM.

This group is a heterogeneous one, comprising some cases of accidental mutilation and others of imperfect development of the genitalia, owing to their retention of an infantile condition.
(a) Stature.-The average stature of 1,808 men found with one of these defects among the first million is 67.34 inches, which is only 0.15 inch less than the average stature of the whole population of Table I. For 3,140 men in the second million the stature is 67.49 , and for 4,948 men, both lots together (Table 182), 67.44, or 0.05 inch below the mean height for the first million. The standard deviation for the two lots is 2.81 ± 0.02, which is 0.10 above the standard deviation of the whole first million. It appears, therefore, that in respect to stature, persons with the named defects, though these are of an infantile or undeveloped nature, are typical of the whole population. They are, however, slightly more variable in stature than the rest of the population, and this seems to be due to the fact that there is an excess in this group of very short men under 60 inches and of men $70-75$ inches tall, and a corresponding deficiency in the middle statures of 67 inches. This indicates that there is a slight association with the effects due to internally secreting glands, which influence both stature and the development of the genitalia.
Table 182.-Correlation between height and weight in recruits with cryptorchidism, anorchism, monorchism, and hypospadia, first (P_{1}) and second $\left(P_{2}\right)$ million

Table 183.-Correlation betucen height and chest circumference (expiration) in recruits with cryptorchidism, anorchism, monorchism, and hypospadia, first (I_{1}) and second $\left(P_{2}\right)$ million draft recruits.

Height, in inches.	Total.	Chest, in inches.															
		28 and	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43 and
58 and under	14			1	2	4	4	1		1						1	
60.	31		2	5	${ }^{6}$	10	4	2		1			1				
68.	96		9	9	20	19	14	11	11	1	i	i	.				
63.	202	5	15	16	37	42	35	26	12	9		3	2				
6.4.	290 474	3 3	12	${ }_{51}^{35}$	${ }_{75}^{60}$	- 113	41	${ }_{66}^{46}$	${ }_{28}^{17}$	${ }_{24}^{6}$	${ }_{8}^{6}$	4	5			1	
66.	633		13	46	105	138	121	90	67	29	10	3	7		1		
67.	693	1	15	49	108	145	134	109	68	38	12	5 10	7	- ${ }^{2}$		1	-
69.	589	i	15	${ }_{23}$	${ }_{61}^{94}$	115	123	119	56	34	24	5	10				
70.	452		9	17	47	81	102	86	61	${ }_{3}^{37}$	21	14	4	1	2	
72.	333 171	1	5 1	11	27 16	$\stackrel{48}{26}$	${ }_{38}^{71}$	64 42	15 15	${ }_{8} 8$	17	${ }_{2}$	2	1			
73.	81		1	2	${ }^{6}$	8	12	21	14	9	3	5					
74.	${ }_{21}^{42}$				${ }_{1}$	8	5		4	${ }_{1}^{5}$	1	1	1				i
76.	6			1	1	1			2			1					
77.	1						${ }_{1}^{2}$			1							
$79 .$.						i											
Total.	4,943	19	122	328	679	9×0	926	832	493	287	130	69	56	9	3	4	6

(b) Weight.-Of the 1,808 men found with these defects among the first million, the average weight is 140.81 pounds, or 0.73 below the average of the population of Table I. For 3,140 men in the second million, the average is 139.93, and for 4,948 men in both groups (Table 182), 140.25, which is 1.29 pounds below the average weight of the whole of the first million. The standard deviation in weight for both lots is 17.91 ± 0.12, or 0.49 pounds above the standard deviation in weight of the whole population. This result indicates that the group is a rather heterogencous one so far as weight goes, but characterized on the whole by slightly less than normal weight, despite the fact that the average stature is practically normal. Men with these defects are therefore on the whole slightly slenderer than the average population. The high standard deviation indicates that the defect is more apt to be found in lighter and heavier men than in men of more nearly normal weight. This accords again with the view that these defects are associated with glandular disturbances which are well known to influence weight.
(c) Chest circumference.-The average chest circumference in the 1,808 men found with these defects among the first million at mobilization camps (Table 183) is 33.18 , or 0.04 inch below the average of the population studied. For the 3,135 men found with these defects in the second million the average chest circumference is 32.95 inches, or for 4,943 men in both lots together 33.03 , or 0.19 inch below the mean chest circumference of the first million men.

The standard deviation of the chest circumference for both lots is 2.10 ± 0.01. This is practically the same as the standard deviation for the whole population. We conclude, therefore, that the part of the population with the named defect is very like the population at large, except that it is slightly underweight and slender and that this condition affects different parts of the normal frequency distribution nearly uniformly, so that there is no marked selection of a particular class.
(d) Robustness.-The index of build of men with cryptorchidism, hypospadia, anorchism, and monorchism is 30.84 , or 0.23 less than the average of the whole United States. Pignet's index is 21.83 , or 0.95 above the average of the United States, which places them in the class of good constitution. For each inch of the average height there are 2.08 pounds of weight, as compared with the normal 2.097 , and 0.490 inch of measurement (expiration), as compared with the normal 0.492 .

V. SUMMARY: BODILY DIMENSIONS IN RELATION TO DISEASES. ${ }^{a}$

The foregoing sections have revealed the fact that populations selected because of the possession of some common disease or defect have in many cases proportions which deviate widely from those of the population of recruits in general.
The findings in this respect are summarized in Tables 184-192, and in Plates XXXIX-XLI. In Plate XXXIX the deviations in stature from the average are given for the populations detected with each of 23 defects. This figure shows that the greatest deviation above the average stature is found in that population which has varicose veins; next that which has varicocele;

[^21]next that characterized by pulmonary tuberculosis; next the two forms of goiter, and then certain forms of valvular disease of the heart, tachycardia, and hemorrhoids. On the other hand, striking deviations below the average in stature are found in populations classified as underweight, defective physical development, or as possessing astigmatism, myopia, hyperopia, asthma, defective and deficient teeth, and flat feet. The reasons for the deviations in these representative populations are treated in the corresponding sections above.

Plate XL gives the deviations in weight of various populations, characterized by having particular diseases or defects, from the average weight found in the entire population of recruits. Here, far more than in height, most of the deviations are below the normal. That is because almost all of the diseases and defects tend to interfere with bodily functioning and to reduce the weight. In the case of varicose veins, however, the defect itself is probably largely induced by excessive stature, and so we find persons with this defect to be on the average far above the mean weight of the whole population. In the case of simple goiter, the excess of weight found in the population is merely associated with the excess of stature that this population shows. The "build" is not abnormal. (See Table 189.) On the other hand, in pulmonary tuberculosis and various valvular diseases of the heart there is clem evidence that deficiency of weight is determined by the diseases. In the case of the population with defective and deficient teeth, the reduction in weight is possibly influenced by inadequate nutrition. Other populations whose weight is below the average are those characterized by eye defects, but these are populations composed to an unusual extent of persons belonging to races characterized by short stature.

Plate XLI gives the distribution in chest circumference of the populations characterized by different defects and diseases from the mean chest circumference of the whole population of recruits. Here, again, most of the deviations are in deficiency. In the case of varicose veins the population is characterized by great build, excessive weight, and thus also of excessive chest girth. In the case of the population characterized by asthma there is reason for thinking that the excess chest circumference is induced by the disease itself. Passing to the populations characterized by abnormally small chest measurements, we find, in addition to the groups of underweight and defective physical development, the group characterized by pulmonary tuberculosis, and, following that, various groups characterized by organic and functional diseases of the heart. Here also are the populations with errors of refraction whose small chest measurement is correlated with general small size on account of the small races which form so large a part of these populations.

Plate XLII is drawn up in a similar manner to Plate XIV, page 177. Here an attempt is made to show the interrelation of stature, weight, and chest circumference (expiration) as associated with certain diseases or defects.

Passing downward the first heavy horizontal line shows the average stature of the first million draft recruits, while the second and third shows the quotients of the average weight and chest circumference (expiration) divided by the height. It is apparent at once that the average stature of the men with certain diseases or defects is above that of the population of recruits in general. Included in this number are defects of the veins, namely, varicose veins, varicocele, and hemorrhoids; tuberculosis; organic and functional cardiac conditions, namely, mitral insufficiency, simple tachycardia, cardiac hypertrophy, $35636^{\circ}-21-25$
mitral stenosis, and valvular diseases of the heart unclassified; and, finally, exophthalmic goiter and simple goiter. Only one of these conditions, varicose veins, shows both a proportional weight and chest circumference (expiration) above the average. Here the proportional weight stands well up above, while that for the chest circumference (expiration) reaches the average line. Simple goiter also has a proportional weight slightly above the average, but the proportional chest circumference (expiration) is below it. For all of the other conditions with excessive stature the proportional weight and chest circumference (expiration) are well below the average, and it is apparent that the men with these diseases or defects are on the average tall, slender, and small-chested. This is most marked in cases of tuberculosis. For men with hypertrophied tonsils the stature, the proportional weight, and chest circumference (expiration) are practically the same as the average of the population of recruits in general. On the other hand, the proportional weight and chest circumference (expiration) of recruits with hernia and relaxed inguinal rings are below the average, and the same is true of recruits with congenital genital defects, as well as of those with defective and deficient teeth.

The build of the asthmatic cases is of considerable interest, since it is apparent that the stature is considerably below the average, as is also the proportional weight, but the greater proportional chest circumference (expiration) is much above the average. This latter condition is due no doubt to the effects of the disease itself. The three refractive errors, hyperopia, myopia, and astigmatism, have proportional weight below the average, with proportional chest circumference (expiration) slightly above.

In figure 2 of Plate XLII the weight is taken as the controlling factor, while in the second and third sections below there is shown the quotient of the weight divided by the height, and the weight divided by the chest circumference (expiration). As shown in figure 1, simple goiter affects weight less than exophthalmic goiter; consequently the quotient of the weight divided by the chest circumference (expiration) is greater for the patient with simple goiter than for those with exophthalmic goiter. On the other hand, since the chest circumference (expiration) for asthmatics has increased while the proportional weight has decreased, the quotient of the weight divided by the chest circumference (expiration) is much reduced.

In figure 3 the chest circumference (expiration) is taken as the controlling factor, while in the second and third sections below there is shown the quotient of the chest circumference (expiration) divided by the height and the weight divided by the chest circumference (expiration). It is again apparent here that men with varicose veins have a well-developed chest, are above the average in stature, and have great proportional weight. It is also apparent that for asthmatics the chest circumference (expiration) has increased out of proportion to the stature and weight. Further study of Plate XLII will reveal many interesting facts showing the interrelation of stature, weight, and chest circumference (expiration) as associated with the special diseases or defects considered.

Table 189 summarizes the relations of index of build and index of robustness (Pignet) ${ }^{20}$ associated with the various diseases. The heavy build of many recruits with errors of refraction is striking; they belong to stocky races. The
dependence of flat-foot and varicose veins on build is fairly clear. It is noteworthy that recruits with varicose veins stand at the top of the list for robustness. That recruits with asthma stand so high is due to their large chest girth. The shape of recruits with defective development of the genitalia is probably due to the influence of the sex glands on development. The heart conditions are associated with a low average robustness, as indeed also a slender build.

The variability of the stature of recruits with various diseases presents many points of interest (Table 190). In general it appears that, when the aberrant stature that is associated with a disease is so associated because tall or short races are especially apt to be affected by the disease, the variability is low. Thus, recruits with goiter have low stature-variability. But goiter appears prevailingly in the Northwestern States which are inhabitated by tall "Nordics." We have seen also that short races are especially apt to have defective and deficient teeth; and so the stature of the class shows less variability than the average. On the other hand, the great variability in stature of recruits with myopia is due, as Plate XXXIII shows, to the fact that there are two groups in the lot-a group of racially short stature (largely Polish Jews) and of other recruits of average stature. Likewise cardiac hypertrophy comprises persons of normal stature and also a group of especially tall persons. On the other land, underweight occurs in tall and short races and is due to a diversity of causes, and the resulting group is very variable in stature. The high variability of the group of cryptorchidism, etc., is partly due to the heterogeneity of the group.

The variability of the weight of recruits with the various defects and diseases is shown in Table 191. This table combined with Table 190 shows that men with varicose veins are of varied races, but generally tall and heary. Thus stature and weight are not caused by the condition of the veins; for, so far as stature goes, the group is less variable than the average; and as for weight it is only a little more variable (as measured by the coefficient of variation). A tolerably uniformly tall and heavy lot of men have become vietims of varicose veins; the disease is induced in part by the build. Varicocele is likewise found in tall and gaunt men of the Nordic type, and such defectives are tolerably uniform in this respect.

In other cases the variability of weight is due to the composite constitution of the group. Thus, as has already been pointed out, the myopics are composed both of the average population and also a special lightweight (and short) group. The asthmaties seem to comprise a group of normal weight and one of underweight (probably due to the disease in its advanced stages). Men with flat-foot are of somewhat less than average stature, very heavy on the average, but comprising some small and light men.

The clearest case of an uniformly low variability induced by disease is that of pulmonary tuberculosis. A group of abnormally tall persons of average variability in stature shows an abnormally and extraordinarily uniform low weight. Low weight is one of the principal symptoms of the disense. Again, mitral stenosis is found in men of average stature but far below average weight; in them stature is not affected, but weight is abnormally low, and the group is remarkably uniform in this respect.
HEIGHT DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS ($P_{1} \& P_{2}$)

plate xxxi.
HEIGHT DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS (P \& P2)

PLATE XXXII.
HEIGHT DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS ($P_{1} \& P_{2}$)

IMcens 5859506162636465666768697071727374757671787980

plate xixili.
WEIGHT DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS ($\mathrm{P}_{1} \& \mathrm{P}_{2}$)

 fine line curve denotes average for u.s.
WEIGHT DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS ($P_{1} \& P_{2}$)

mumens
160

 fine line curve denotes average for u.s.

PLATE XXXV.
Weight distribution by special diseases or defects ($\mathrm{P}_{1} \& \mathrm{P}_{2}$)

 fine line curve oenotes average for u.s.

CHEST (EXP) DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS (P \& P ${ }_{2}$)

$$
\mathrm{D}^{2} \mathrm{CIN}
$$

fine line curve denotes average for u.s.
plate xyxuit.
CHEST (EXP.) DISTRIBUTION BY SPECIAL DISEASES OR DEFECTS ($\mathrm{P}_{1} \& \mathrm{P}_{2}$)

FIME LINE CURVE DENOTES AVERAGE FOR U.S.
plate xxxviil.
HEIGHT MEASUREMENT, SPECIAL DISEASES ($\mathrm{P}_{1} \& \mathrm{P}_{2}$)

PLATE XXXIX.
WEIGHT MEASUREMENT. SPECIAL DISEASES (P, B_{i} P)

Plate Ni.

WEIGHT WITH RELATIVE HEIGHT AND CHEST (EXP)

 -13Aze "3AM4 930 กnd 'sisoาnวyaens
 40 'sเ 'aาva 'avขอม
 risid 'd30 W131 vacx vilige
vidousdin
ยกรพา วทะมเต vตussy ตBIaYM91」รV Viseam

 didam sviguvs vimu1m f n yod sovysay 1115031uva

 L3sA Avร บบมี 1sojuva
HEIGHT WITH RELATIVE WEIGHT AND CHEST (EXP)

 MaILVmbisiv
VIdcaM vMMมリ
 43ม เทาม
 vimu3 าต3 รอยาบ "9m -

 sorowyyomin
 liders vyslae udax ussioe Tn "piscloวysent zaisa mosivva
Table 18.t-Meight distribution by special diseases or defects, for first and second million draft recruits.

SECTION B：RATIOS PER 1，000．

	흉	 	8
－	$\begin{aligned} & \text { 릅 } \\ & \text { sit } \end{aligned}$	8 8 足：	¢
	8	87：정	त！
	\％	\circ	\％
	：	${ }_{8}^{\text {个 }} 8$ R月	\pm
	$\%$	d－ind＇ANrinin rinidm＇－itmos－	8
	$i 8$	 	¢
	\％	 	$\stackrel{\text { \％}}{\sim}$
	\％	 	－8
	\％	8888\％ 	\％
	π	 	\％
	$\%$	8\％Fक్రing \％88 	
	8	 	\％
	8	\＄ో	等
	§	 	8
	8	 	会
	8	 	\％
	उ	 	${ }_{8}^{8}$
	\％	 	\％
	앙	 	\％
	$\bar{\square}$	 	¢
	8	K\＆ 	$\stackrel{\square}{5}$
	8	 	ल
	禺它家完	あழ్毋\％ －＇riल゙	\％
	寅	 	餎

Table 185.-Weight distribution by special diseases or defects, for first and seeond million draft recruits.

Disease.	Total.	Weight, in pounds.																							
		$\begin{aligned} & 89 \text { an } \\ & \text { unde } \end{aligned}$	\int_{94}^{90-1}	$\begin{array}{l\|l\|} 94 & 95-1 \\ 99 \end{array}$	$\begin{gathered} 100- \\ 104 \end{gathered}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	${ }_{114}^{110}$	$\begin{gathered} \text { 115-115 } \\ \hline 1 \end{gathered}$	${ }_{124}^{120}$	${ }_{129}^{125}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	${ }_{139}^{135-}$	$\begin{gathered} 140- \\ 140- \\ \hline \end{gathered}$	${ }_{149}^{145-}$	$\begin{gathered} 150- \\ 155 \end{gathered}$	${ }_{1}^{155}$	$\left\lvert\, \begin{aligned} & 160- \\ & 164 \end{aligned}\right.$	- 165	${ }_{174}^{170}$	${ }_{179}^{175}$	188	${ }_{189}^{185}$	${ }_{194}^{190}$	${ }_{199}^{195}$	${ }_{204}^{200-}$
berc				46	$\left.\begin{array}{r} 167 \\ 12 \\ 11 \\ 10 \end{array} \right\rvert\,$	${ }^{37}$	718	$\begin{gathered} 1,186 \\ 1271 \\ 171 \\ 97 \\ 83 \\ 50 \\ 50 \\ 1,43 \\ 2,42 \\ \hline 18 \end{gathered}$		1,498	1,460	1,142	${ }_{906}^{913}$	642880200150150	${ }_{646}^{435}$	235				$\begin{array}{r} 29 \\ 103 \\ 31 \\ 31 \end{array}$	$\begin{aligned} & 13 \\ & 63 \\ & 16 \\ & 16 \end{aligned}$		5	8	2144
						25	76		1,462 489 222	1,498 684 293 171	342											38 13 11 11	[585	[16	
Asthma.io.						14	${ }_{64} 5$		134	161	216	${ }_{213}^{2013}$	172		13	5				$\begin{aligned} & 20 \\ & 19 \end{aligned}$					
Hyperopia						7	${ }^{38}$		77	114	118	120	133	94	71	37	${ }_{97}^{35}$			${ }_{201}$					
Tonsillitis, hiype				13	${ }_{98}^{14}$	401	1,286		3,862	5,097	6,014	6,354	6,122	5,139	4,343	3,153	2,319		1,145	810	564	316	262	202	355
Cardiac hypertor					7	12	34	53	101	153	157	${ }_{1}^{182}$	159	1140	${ }^{95}$	80	${ }^{60}$	${ }^{42}$	25	-14					${ }_{32}$
Miltral stenosis.					17	35	${ }_{74}$	169	248	304	${ }^{1,339}$	1,354	1,271	208	177	103		59		19					3
Tachy cardia, simple..					17	43	90	136	213		259	262	230	184	151				37		16			8	
(others)	9				21	52	151	251			425	395		300	233	160									
Hemorrhold					4	15	${ }_{45}^{46}$	${ }^{92}$	157	220	${ }_{322}^{225}$	365	425	418	${ }_{312}^{14}$	${ }_{242}$	209	160	115				2_{2}^{26}	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	46
Varicocele					25												${ }^{244}$		139					80	${ }_{46}^{15}$
Dectective and deflicient teeth	${ }_{3}^{17,324}$				1	${ }_{318}^{244}$				${ }^{1,391} 3$									721			185	145		${ }^{145}$
Inguinai rings, enlarged	${ }^{43}$, 619																								2,436
						1,941																			
ment.							2,744	${ }_{1,517}^{176}$	${ }_{650}^{127}$			$\begin{gathered} 90 \\ 156 \end{gathered}$	$\begin{aligned} & 77 \\ & 95 \end{aligned}$												
Cryptorchidism anorchism, an					28	51	158	267	414	522	44	558	18	25	381	306	224	3	101	50	56	31	28	14	21
										98									10,971	767	5,382	3,037	2,287	1,645	3,302
					,	7,20						5,10	3,020	,	4,	2,882	,	,	,		5,	3,0	2,	1,	

SECTION B: IRATIOS PER 1,000 .

Table 186.-Chest circumference (expiration) distribution by special diseases or defects, for first and second million draft recruits.
SECTION A: ABSOLUTE NUMBERS.

Disease.	Total.	Chest, in inches.															
		$\begin{aligned} & 28 \text { and } \\ & \text { undcr. } \end{aligned}$	29	${ }^{30}$	${ }^{31}$	32	${ }^{33}$	${ }^{34}$	${ }^{35}$	36	${ }^{37}$	${ }^{38}$	39	40	41	42	${ }^{43}$ and ${ }^{\text {aver. }}$
Tuberculasis, pulmona	10,649	126	${ }^{628}$	1,388	${ }^{2,026}$	2, 2 293	1,918	-1,233	617 808	290	89	${ }_{87}^{22}$	${ }_{38}^{14}$	${ }_{7}^{2}$		2	2
Exophthalmic goite	2,622	${ }_{6} 6$	${ }_{69} 6$	${ }_{209}$	380	1, 540	${ }^{1}$	+392	287	${ }_{138}$	57	23	11	3			
Asthma.....	- $\begin{aligned} & 1,579 \\ & 1,587\end{aligned}$	6	${ }_{28}^{27}$	74 105 10	175 224	313 329	298 319 3	254 251 251	213 154 154	$\begin{array}{r}110 \\ \hline 96\end{array}$	52 41 4	27 17	18 13	${ }_{8}^{6}$	1	1	
Hyperopia..	${ }^{968}$		20	${ }_{68}$	123	182	205	157	113	${ }_{63}$	18	10	6				2
Tonsopililitis, hy perirom	2,417	131	1,057	$\begin{array}{r}192 \\ 3168 \\ \hline 1\end{array}$	${ }_{6}^{6384}$	${ }_{\text {9,616 }}^{436}$	10,435	${ }_{8}^{\text {8 } 769}$	5,887	145 3,389		- ${ }_{781}$	${ }_{5}^{24} 5$	${ }_{84}^{6}$	43	21	37
Cardiac hyprorirophy	- 1,339	7	32	- 91	181	, 248	${ }_{1}{ }_{276}$,232	${ }^{138}$		${ }^{34}$	6	${ }_{3}^{8}$	3		2	
Mitral stenosis...	$\begin{array}{r}8,507 \\ \hline\end{array}$	14	${ }_{95}^{310}$	$\begin{array}{r}733 \\ 186 \\ \\ \hline\end{array}$	${ }^{1}, 2799$	1, ${ }^{501}$	1,713	${ }^{1} 1,3360$		459 129	$\begin{array}{r}199 \\ 34 \\ \hline\end{array}$	${ }_{20}^{83}$	33	5	2	1	
Tachycardia, simplo.	2,143		79	168	330	411	447	311	209	104	37	24	9	6	3	4	
Valvular disease of heart	3,406	36	118	331	558	${ }_{6}^{687}$	668	477	${ }^{238}$	142	${ }_{63}^{63}$	20	14	3	1	1	
Vamorrhoids.		${ }_{13}^{6}$	${ }_{33}^{32}$	95 138 138	209 339	${ }_{491}^{374}$	${ }_{690}^{372}$	333 616 616	228 460 1	${ }_{323}^{93}$	48 160	14 93	${ }_{53}^{7}$	$\stackrel{1}{8}$	6		,
Varicocele.....	5,836	12	132	368	${ }_{757}$	1,075	1,204	1,011	646	${ }_{367}$	156	64	38	3	2	i	
Defective and de	17,932	106	389 659	${ }^{1,224}$	$\xrightarrow{2,343}$	3, 510	3,567	2,952	1,982	-1,044	${ }_{183}^{483}$	188	91	${ }_{53}^{28}$	13 25	9	
Inguinai ìing, enlarged	34,625 43,285 1	114	${ }_{810}^{659}$	-	${ }_{5}^{4,566}$	8,457	$\xrightarrow{6,027}$	7,346	4,913	2,681	1,195	${ }_{472}$	24	32	14	3	
Defective physical development		30 946	${ }_{2}^{126}$	-217	${ }_{2}^{251}$	+ 239	- 166	106 236	${ }_{99}^{69}$	${ }_{15}^{33}$	${ }_{7}^{21}$	${ }_{5}^{13}$	${ }_{37}^{11}$				
Cryptorchidism, anorchism, monorehism,																	
and hypospadia	4,943	19	122	328	679	980	926	832	493	287	130	69	56	9	3	4	6
Total.	222, 334	1,782	7,209	17,836	30,654	41, 846	42,681	34, 622	22, 799	12,626	5,757	2,477	1,518	270	123	56	78

SECTION B: RATIOS PER 1,000 .

Table 187.-Summary of means, standard deviations, and probable errors, coefficients of variability and probable errors, of recruits found with specified diseases and defects; also correlations between pairs of dimensions for first and second million recruits. (From Tables 139-183.)
[Height and chest in inches and weight in pounds.]

Disease.	$\begin{array}{\|c} \text { Number } \\ \text { meas- } \\ \text { ured. } \end{array}$	First or second mililion.	Dimension.	Mean.		Probable error of standard deviation.	Coefficient of variation.	Probable error of coefflcient of variation.	Correlation.	Probable error of correlation.
Pulmonary tubercuiosis.	10,701	$\left\{\begin{array}{c} \text { First and } \\ \text { second } . \end{array}\right.$	$\left\{\begin{array}{l} \text { Height.... } \\ \text { Weight... } \end{array}\right.$	$\begin{array}{r} 68.07 \\ 130.44 \end{array}$	2.736	± 0.013	0.04019	0.00019.00053	0.4754	± 0.0050
					14.740	$\pm .068$. 11300			
	4,653	First.	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Weight... }\end{array}\right.$	68.01 131.77	2.702 14.950	$\pm .019$ $\pm .106$.03973 .11346	. 000020	. 4554	$\pm .0078$
	6,048	Second...	Height....	68. 12	2.762	$\pm .017$. 04054	. 00024		
			Weight....	129.42	14.358	$\pm .090$. 11094	. 00067	3	. 0060
	10,649	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Chest... }\end{array}\right.$	68.07 32.09	2.731 1.848	$\pm .013$ $\pm .009$. 04012	.00019 .00029	. 2412	$\pm .0062$
	4,627	First.	Height....	68.02	2.693	$\pm .019$. 03959	. 00021		
			Chest.	32.33	1.875	$\pm .013$. 05799	. 00035	. 2391	$\pm .0093$
	6,022	Second....	Height	68.12	2.759	$\pm .017$. 04050	. 00024	. 2499	$\pm .0081$
			Chest	31.90	1.805	$\pm .011$. 05658	. 00030	. 2499	$\pm .0081$
Simple goiter.......	7,099	$\left\{\left.\begin{array}{c} \text { First and } \\ \text { second. } \end{array} \right\rvert\,\right.$	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Weight.... }\end{array}\right.$	67.94 14236	2. 5788	$\pm .015$. 03794	. 000020	. 5160	
				142.36 67.94	16.498 2.544	$\pm \pm .093$. 11588	. 000094	. 5160	$\pm .0059$
	1,813		$\left\{\begin{array}{l}\text { Height.... } \\ \text { Weight... }\end{array}\right.$	67.94 142.39	2.544	$\pm .028$.03744 .11789	. 00049	. 4861	$\pm .0121$
	5,286	Second.... $\{$	Helght....	67.95	2. 590	$\pm .017$. 03812	. 00020	. 5260	$\pm .0067$
			Weight	142.35	16. 573	$\pm .109$. 11642	- 00108		$\pm .0007$
	7,085	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First } \end{array}\right.$	\{Height....	67.94 33.11	2.579 1.950	$\pm .015$. 03796	. 000020	. 2616	$\pm .0075$
	1, 809		Height	67.94	2.544	$\pm .029$. 03744	. 00033		
		First \qquad Second...	Chest.	33.04	1.938	$\pm .022$. 05866	. 00056	2182	$\pm .0151$
	5,276		CHeight....	67.94	2. 590	$\pm .017$. 03812	. 000020	. 2760	$\pm .0086$
	5,276		\{Chest.....	33.13	1.953	$\pm .013$. 05895	. 00040	. 2760	$\pm .0080$
Exophthaimiegoiter	2,620	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	(Height....	67.97	2.647	$\pm .025$. 03894	. 00028		
				138.82	16.425	$\pm .153$. 11832	. 00112	. 4765	$\pm .0102$
	439		Height....	67.94	2.535	$\pm .058$. 03731	. 00093		
			W Weight....	138.39	16.420	$\pm .160$. 11580	. 00270	. 4876	$\pm .0245$
	2,181	Second....First and	Weight....	67:97	2. 669	$\pm .027$. 03927	. 00032	. 4756	$\pm .0012$
	2,622		Height....	138.39 67.97	16.410 2.649	$\pm .0335$. 118387	. .000142		
		$\begin{aligned} & \text { First...... } \end{aligned}$	Chest.	32.85	1.976	$\pm .018$. 06015	. 00056	. 2440	$\pm .0124$
	439		Height	67.94	2.535	$\pm .058$. 03731	. 00093	. 2489	$\pm .0302$
			Chest.	33. 01	1.914	$\pm .044$. 05798	. 00117	. 2489	$\pm .0302$
	2,183	Second....	(Height	67.97	2.672	$\pm .027$. 03931	. 00039	. 2454	$\pm .0136$
			(Chest	32.82	1.987	$\pm .020$. 06054	. 00061	. 2454	$\pm .0136$
Mуоріа..............	2,420	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First. } \end{array}\right.$	(Height....	67.08	2.787	$\pm .027$. 04155	. 00039	4912	$\pm .0104$
	2, 420		Weight....	139.23	18.452	$\pm .179$. 13253	. 00126	- 4912	$\pm .0104$
	778		Height	67.23	2.827	$\pm .048$. 04205	. 000029	. 5121	$\pm .0178$
	1,642	Second....	Height	67.01	2. 765	$\pm .033$. 04126	. 00047		
			Weight....	138.75	18.611	$\pm .219$. 13413	. 00152	. 4806	$\pm .0128$
	2,417	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First. } \end{array}\right.$	Height....	67.08	2.781	$\pm .027$. 04146	. 00039	. 2095	$\pm .0131$
			Chest.	32.97	2.119	$\pm .021$. 06427	. 00058	. 2095	$\pm .0131$
	776		Height	67.23	2. 831	$\pm .049$. 04211	. 00069	. 2177	$\pm .0231$
			Chest.	33.13	2.116	$\pm .036$. 06387	. 00103	. 217	
	1,641	Second....	Height....	67.01	2.760	$\pm .033$. 04119	. 00047	. 2028	$\pm .0160$
			Ch	32.89	2.117	$\pm .025$. 06437	. 00070	. 2028	$\pm .0160$
Hyperopia..........	969	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	\{Height....	67.08	2.719	$\pm .042$. 04053	. 00061		
			Weight....	138.96	16. 289	$\pm .250$. 11722	. 00187	1	$\pm .0173$
	188		Height....	67.28	2.650	$\pm .092$. 03939	. 00145		
			Weight....	139. 13	17.228	$\pm .600$. 12383	. 00436	. 4145	$\pm .0407$
	781	Second....	Height....	67.03 138	2.733	$\pm .047$.	. 04157	. 00069	. 4506	$\pm .0190$
		First and	Weight....	138.98 67.08	16.095 2.726	$\pm .075$. 11581	. 000196	.	
	96	$\left\{\begin{array}{r} \text { First and } \\ \text { second, } \end{array}\right.$	Chest.....	67.08 33.05	1.977	$\pm .030$. 05982	. 000092	. 2393	$\pm .0204$
	188	First	(Height	67. 28	2. 650	$\pm .092$. 03939	. 00115	. 2640	$\pm .0451$
	188	First	Chest.	33.26	2. 026	$\pm .071$. 06091	. 00218	. 2040	$\pm .0451$
	780	Secon	Height	67. 03	2.742	$\pm .047$. 04091	. 00069	. 2317	$\pm .0229$
			QChest	33.00	1.962	$\pm .034$. 05945	. 00104		
Astigmatism	1,592	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	\{Height....	67.07 139.16	2.711 17.000	$\pm .032$.04042 .12216	.00047 .00143	. 4573	$\pm .0134$
	517		fHeight....	139.16 66.95	17.000 2.767	$\pm .203$ $\pm .058$. 124133	. 00085		
			Weight....	138.59	17.245	$\pm .362$. 12443	. 00265	. 5452	$\pm .0208$
	1,075	Second....	Height....	67.13	2.682	$\pm .039$. 03995	. 00060	. 4121	$\pm .0171$
		$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	Height....	139.43 67.07	16.868 2.712	$\pm .246$. 12098	. 0000041		
	1,587		Chest	33.03	2. 014	$\pm .024$. 06097	. 00074	. 1928	$\pm .0163$
	517	First	Height....	66.95	2.767	$\pm .058$. 04133	-00085	. 2515	$\pm .0278$
		Fis	Chest	33. 06	2.019	$\pm .042$. 06107	. 00127		
	1,070	Secon	$\left\{\begin{array}{l}\text { Helght.... } \\ \text { Chest.... }\end{array}\right.$	67.13 33.01	2.684 2.011	$\pm .039$ $\pm .029$. 03999	. 000060	. 1641	$\pm .0201$

Tanle 187．－Summary of means，stanulard deviations，and probable errors，coefficients of variability and probable errors，of recruils found with specified disenses and defects；also correlations betucen pairs of dimensions for first and second million recruits．（From Tables 139－183．）－Continued．
［Height and ehest in inches and welght in ponnds．］

Disease．	$\begin{gathered} \text { Number } \\ \text { mease } \\ \text { ured. } \end{gathered}$	First or second miliion．	$\begin{aligned} & \text { Dimen- } \\ & \text { sion. } \end{aligned}$	Mean．	Stand－ ard derla tion．	$\begin{aligned} & \text { Probable } \\ & \text { error of } \\ & \text { stand } \\ & \text { ard } \\ & \text { devla- } \\ & \text { tion. } \end{aligned}$	Coefll cient of varia－ tion	I＇robable error of coefll－ cient of varia－ tion．	Correla－ tion．	Probable correla－ tion
Hypertrophietonsils		\｛First and	\｛Height．	67． 48	2． 727	$\pm .006$	． 04041	． 00008		
	，031		Weight		17．803	$\pm .037$	． 123516	．00025	4762	$\pm .0035$
	23，732	First．．．．．	$\left\{\begin{array}{l}\text { Height．} \\ \text { Welght．}\end{array}\right.$	$\begin{array}{r}67.47 \\ 142 \\ \hline 19\end{array}$	2．708	$\pm .00 \times 2$	． 042014	．00013	． 4838	$\pm .0034$
		Second	Height．．．．	67.48	2.743	$\pm .008$	． 04065	． 00011		
	25，299	second	Weight．	141． 46	17.842	$\pm .050$	． 12613	． 00034	． 0001	$\pm .0030$
	51，985	First and F second．	$\left\{\begin{array}{l}\text { Helight．．．．} \\ \text { Chest．．．．}\end{array}\right.$	67.48 33.18	2.730 2.071	$\pm \pm .006$	． 0406242	．00008	． 2085	$\pm .0028$
	23，712	First．．．．．	Helght	67.47	2． 703	\pm ．003	． 04006	． 00012	． 2244	$\pm .0042$
			Helght．．．．	67． 48	2.743	$\pm .0008$	． 040065	． 00011		
	25，273	Se	Chest．．．．	33.08	2.098	$\pm .006$	． 06342	． 00016	． 1929	$\pm .0039$
Tachycardia．．．．．．．．	2，147	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	$\left\{\begin{array}{l}\text { Height．．．．} \\ \text { Weight．．．}\end{array}\right.$	$\begin{array}{r}67.76 \\ 137 \\ \hline\end{array}$	$\begin{array}{r} 2.675 \\ 17.571 \end{array}$	$\pm .022$	$\begin{array}{r} .03948 \\ .12791 \end{array}$	． 000012	． 3757	$\pm .0125$
	44		Height．．．．	67．73	2．706	$\pm .061$	． 03995	．00039		
			Weight．．．．	137.00	17.360	$\pm .392$	． 12066	． 00230	． 4.46	$\pm .02 i 3$
	1，700	Seco	Height．．．．	67.76 137.45	${ }_{17.683}^{17.634}$	$\pm .031$	． 039330	． 000046	． 3523	$\pm .0143$
	2，143	First and	Height	67.76	2．676	$\pm .024$	－03949	． 00040	． 1769	$\pm .0141$
	447		Height	67．73	2.720 2.720	$\pm .021$	． 004224	．00061		
		First．．．．．．	\｛Chest．	32.79	2.029	\pm 土．046	． 06188	． 00134	．2：97	$\pm .0298$
	1，696	Secon	$\left\{\begin{array}{l}\text { Height } \\ \text { Chest．}\end{array}\right.$	67.76 32.81	2． 2.045	\pm 士．031	．063132	．00046	． 1348	$\pm .0160$
Cardiachypertrophy	1，343									
		$\left\{\begin{array}{c} \text { First and } \\ \text { second } \end{array}\right.$	\｛Veight．．．．	140．49	16． 245	$\pm . .219$	． 11976	． 00155	． 4252	$\pm .0151$
	503		Height．．．．	67．68	2． 862	$\pm .061$	． 04229	． 000085	． 4576	$\pm .0235$
	840		Height．	67． 79	${ }_{2} .639$	\pm 土．043	． 03593	．00066		
			Welight	141.24	16． 579	土．055	． 11936	． 00197	． 4044	$\pm .0195$
	1，339	First and \｛ second．	\｛Chest．．．．．	${ }_{32.97}^{67}$	2.724 2.003	$\pm \pm .036$	． 0406075	．000079	． 1945	$\pm .0177$
	500	Fi	Height	67.67 3288	${ }^{2} 2.867$	$\pm .061$	． 0423237	．00005	． 2633	$\pm .0281$
			Height．	67．79	${ }_{2.633}$	\pm ：043	． 03884	．00006		
	83	Se	Chest．	33.03	1.989	$\pm .033$	． 06022	． 00093	． 145	$\pm .0228$
Mitral insuffeleney．		First and	Height	67.84	2．732	$\pm .014$	． 04027	． 00022		
		\｛ second．	W eight	138.99	16．791	$\pm .085$	． 12081	． 000061	． 4949	$\pm .005$
	4， 257	First．．．．	Weight．	${ }_{139.11}^{67.80}$	${ }_{16.622}$	\pm 士．020	．01029	．00029	－ 4×60	$\pm .0079$
		Secon	Height．	67.82	2.735	$\pm .019$	－04033	． 000028	． 5029	$\pm .0074$
		First and second．	Weight	138．87	16． 974	$\pm .119$	． 12201	－00005		$\pm .0074$
			Heright．	32．75	2． 200	\pm 士．010	． 0402107	．000022	． 2338	$\pm .0068$
	$\begin{aligned} & 4,240 \\ & 4,590 \end{aligned}$	First．．．．．．	Height	67.86 3286	${ }_{1} 2.728$	$\pm .020$	． 0102020	． 000029	． 1972	$\pm .0100$
			Height．	67．82	${ }_{2}^{1.732}$	\pm 士．014	． 059913	． 0000023		
		Seco	Chest．．．	32.65	2． 050	$\pm .014$	． 06279	．00033	．24，6	$\pm .0091$
Mitral stenosis．	512	FFirst and	\｛Height．．．．	67.63	2.724	$\pm .026$	． 04028	． 00038		$\pm .0102$
		second．	Weight．	${ }_{1}^{136.85}$	15．${ }_{2} 1716$	$\pm .149$	． 11426	． 000099	． 4901	$\pm .0102$
	1，521	First．	Weight．	137． 46	15．240	$\pm .187$	． 11087	． 00135	－ 4×31	$\pm .0133$
		Second．．	Welpht．	67.50	2.731	$\pm .041$	． 04046	． 00060	． 5105	$\pm .0158$
	2，507		Weight．．．	135.93	16． 160	$\pm .245$	． 11888	． 00181	． 5105	$\pm .0123$
		$\left\{\begin{array}{l}\text { First and } \\ \text { second．}\end{array}\right.$	Mchest．．．．．	67.62 32.65	2.723 1.888	$\pm .020$	．04027	．00038	． 2326	$\pm .0127$
	1，516	Fi	Height．	67.71	2． 715	$\pm .033$	． 04010	． 00009	． 2109	$\pm .0166$
	901		Meight．．．．	67． 50	2． 731	$\pm .041$	． 01046	． 000060		
		sec	Chest．．．．．．	32.47	1.948	$\pm .0130$	． 05999	．00094	． 2589	$\pm .0300$
Valvuiar disease of heart（unelassi－ fied）．	3，419	FFirst and	\｛IIeipht．．．．	67.60 137.24	2.669 17.348	士．022	.03948 .12041	． 00024 ． 00100	． 4.46	$\pm .0092$
	919		Weipht．．	67． 53	2．669	$\pm .012$	． 03952	．00063		
			Welght．	139．49	16． 491	$\pm .261$	． 11908	． 00190	． 0123	$\pm .0167$
	2，510	Second．	\｛Weight．．．．	－67．63	${ }_{1}^{2.669}$	＋．025	． 033916	． 000038	． 4459	$\pm .010 s$
		（First and	Height．	67.60	${ }_{2.671}$	$\pm .022$	． 03851	． 00031		
	$\begin{array}{r} 906 \\ 2,500 \end{array}$	I second．	Che	32.56	1．979	$\pm .016$	． 00073	． 00046	2000	$\pm .011$
\bullet		Fi	$\left\{\begin{array}{l}\text { Meight } \\ \text { Chest }\end{array}\right.$	67.53 32.77	1.665 1.884	\pm 土．042	．03916	．00063	． 2445	$\pm .0211$
			（IIeligh	67． 63	2.672	$\pm .026$	． 03951	． 000238	1sm	
			Ch	32	2.	019	． 06177	．00017		

Table 187.-Summary of means, standard devialions, and probable errors, coefficients of variabilliy and probable errors, of recruits found with specified diseases and defects; also correlations between pairs of dimensions for first and second million recruits. (FromTables 199-183)-Continued.
[Height and chest in inches and weight in pounds.]

Disease.	Number neasured.	First or second million.	Dimension.	Mean.		Probabie crror of standard deviation.	Cocffi- cient of variation.	Probable error of coefficient of variation.	Corrclation.	Probable error of correlation.
Varicose veins......	3, 423	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First....... } \end{array}\right.$	fHeight....	$\begin{array}{r} 68.43 \\ 146.44 \end{array}$	$\begin{array}{r} 2.742 \\ 18.528 \end{array}$	$\begin{aligned} & \pm .022 \\ & +.151 \end{aligned}$	$.01007$. 00033	. 4696	$\pm .0090$
			Weight...					. 00131		
	1,409		Height.	68. 34	2. 696	$\pm .034$. 03945	. 00497	. 4833	$\pm .0138$
			Weight. . .	146. 43	18. 389	$\pm .234$. 12558	. 00159	- 4833	$\pm .0138$
	2,014	Second....	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Weight. }\end{array}\right.$	68.49 146.45	2.772 18.625	$\pm .030$ $\pm . .198$.04047 .12718	.00042 .00135	. 4608	$\pm .011{ }^{\text {S }}$
	3, 426	$\left\{\begin{array}{c}\text { First and } \\ \text { second. }\end{array}\right.$	\{Height.	68.43	2.745 2.138	$\pm .022$. 04011	. 00033	. 2073	$\pm .0110$
			Chest.....	33.67 68.35	2.138 2.703	$\pm .017$. 06350	. 000046	. 2073	$\pm .010$
	1,412	First......	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Chest. . }\end{array}\right.$	68.35 33.70	2.703 2.137	$\pm .034$. 03955	.00051 .00076	. 2066	$\pm .0172$
	2,014	Ser	(Height	68. 49	2. 772	$\pm .029$. 04047	. 00042		
			Chest.	33. 64	2.138	$\pm .023$. 06356	. 000064	. 2082	$\pm .01+1$
Varicocele.	5, 819	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	$\left\{\begin{array}{l}\text { Height... } \\ \text { Weight. }\end{array}\right.$	68.37 141.75	2.753 16.474	$\pm .017$ $\pm .103$.04027 .11622	.00025 .00073	. 4939	$\pm .0067$
	3, 45.3	First......	(Height.	68.32	1.779	$\pm .023$. 04068	-00033	4995	. 0086
			Weight.	141.88	16.676	$\pm .136$. 11754	. 00094	. 4995	$\pm .0080$
	2,396	Second....	(Height.	68.44	2.715	$\pm .026$. 03967	. 00038	. 4854	$\pm .0105$
		$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	Weight.	141.55 68.38	16.178 2.738 2	$\pm .158$ $\pm .017$. 11429	. 000111	. 2837	$\pm .0105$
	5,836		\{Chest.	68. 38 33.06		$\pm .017$ $\pm .012$. 05944	. 000399	. 2237	$\pm .0084$
	3,441	First.....	\{Height	68.33	2.754	$\pm .022$. 04030	. 00033	. 2575	$\pm .0107$
			Chest.	33. 24	1.951	$\pm .016$. 05869	-00041	. 257	$\pm .0107$
	2,395	Second....	$\left\{\begin{array}{l}\text { Height } \\ \text { Chest }\end{array}\right.$	68.44	2.712	$\pm .026$. 03963	. 000388	. 1836	$\pm .0133$
			(Chest	32.79	1.954	$\pm .019$. 05959	. 00058		
Hemorrhoids.	1, 824	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First. } \end{array}\right.$	\{Height....	67.80 140	2.782	$\pm .031$. 04103	. 00045	. 5219	$\pm .0115$
	1,027		Height	67.82	2.681	$\pm .040$. 03953	. 00060		
			Weight	141. 44	16.784	$\pm .250$. 11867	. 00177	. 5115	$\pm .01 .55$
	797	$\left\{\begin{array}{c}\text { Second.... } \\ \left\{\begin{array}{c}\text { First and } \\ \text { second. }\end{array}\right. \\ \text { First...... }\end{array}\right.$	\{Height	67.77 139	2.906 16.747	$\pm .049$. 04288	. 000067	. 5285	$\pm .0172$
) Height	139.80 67.80	16.747 2.783	$\pm .203$ $\pm .031$. 04105	. 00045		
	1, 819		Chest.	33.10	1.884	$\pm .021$. 05869	. 00067	. 2202	$\pm .0150$
	1,024		Height..	67. 82	2.680	$\pm .040$. 03952	- 00060	. 2230	$\pm .0200$
			Chest.....	33.22	1. 869	$\pm .028$. 05626	- 00075		
	795	Second.	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Chest.... }\end{array}\right.$	67.77 32.94	2.910 1.892	$\pm .049$ $\pm .032$. 04294	. 000067	. 2169	$\pm .0228$
Asthma.	1,581	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$								
			$\left\{\begin{array}{l} \text { Height.... } \\ \text { Weight. } \end{array}\right.$	67.24 139.01	2.710 17.945	$\pm .033$ $\pm .215$.04030 .12902	.00047 .00155	. 4069	$\pm .0142$
	614		Height....	67.22	2.770	$\pm .053$. 04121	. 00077	. 3833	$\pm .0232$
			Weight. .	139.38	17.280	$\pm .333$. 12398	. 00260	. 3833	$\pm .0232$
	967	Second....	Height....	67. 26	2.670	$\pm .041$. 03970	. 00061	. 4226	$\pm .0178$
			Weight	138.78	18.351	$\pm .282$. 13223	. 00217	. 4220	$\pm .0178$
	1,579	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	Height	67. 25	2.710	$\pm .033$. 04030	-00047	. 1477	$\pm .0166$
			Chest	33. 34	2. 120	$\pm .025$. 06359	. 00071	. 1477	$\pm .0100$
	612		Height	67. 23	2. 771	$\pm .053$. 04122	. 00077	. 1274	$\pm .0268$
			Chest.	33. 57	2.114 2.670	$\pm .041$. 063297	.00116 .00061	. 1274	$\pm .0208$
	967	First. \qquad Second.	$\left\{\begin{array}{l}\text { Height } \\ \text { Chest }\end{array}\right.$	67. 26 33.19	2.670	$\pm .041$ $\pm .032$. 06363	. 000092	. 1628	$\pm .0211$
Dentalcaries, defective and deffient teeth.	17, 983	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \\ \text { First...... } \end{array}\right.$	(Height.	67.26	2.689	$\pm .010$. 03998	. 00010		
			Weight.	138.32	16.889	$\pm .060$. 12210	. 00043		37
	5,166		Height.	67.26 139	2.676	$\pm .018$. 03979	. 000027	. 5107	$\pm .0069$
	5,166		Weight	139.18 67.26	16.839 2.694	$\pm .112$.12099 .04005	. 000081	. 5107	土. 000
	12, 817	Second....	$\left\{\begin{array}{l}\text { Height. ... } \\ \text { Weight. }\end{array}\right.$	67. 137.97	2.694 16.900	$\pm .011$ $\pm .071$. 04005	. 000016	. 5054	$\pm .0044$
	17,932	FFirst and	Height.	67. 26	2. 686	$\pm .010$. 03993	. 00014	. 25	
		\{ second.	Chest.	33. 00	2. 004	$\pm .007$. 06073	. 00021	. 25	$\pm .0047$
	5,150	First.....	Height....	67. 26	2. 674	$\pm .018$. 03976	. 000027	. 2713	$\pm .0087$
			Chest.....	33. 25	1.943	$\pm .013$. 05884	. 000059	. 2713	$\pm .0087$
	12, 782	Seco	Height....	67.26 32.89	2.690 2.018	$\pm .011$ $\pm .009$.03999 .06136	. 00013	. 2495	$\pm .0056$
Hernia.	34,324	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	(Height.	67.44	2. 762	$\pm .007$. 04095	. 00010		
			W Weight.	141.23	17. 167	$\pm .044$. 12155	. 000030	518	$\pm .0034$
	13, 870		Ireight.	67. 40	2.713	$\pm .011$	- 04070	. 000016	. 5285	$\pm .0054$
	20,454	First......	Weight.	141.69 67.47	17.221 2.774	$\pm .070$. 12154	-00048		
		Second....	Weight.	140.91	17.122	$\pm .011$ $\pm .011$. 12151	. 00040	. 5130	$\pm .0047$
	34, 220	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	Height...	67. 44	2.760	$\pm .007$. 04093	. 00010	. 2426	$\pm .0027$
			Chest.	33.11	2. 002	$\pm .005$. 06047	. 000015		
	13, 822	First	Height	67.40 33.23	2.741 1.991	$\pm .011$.04067 .05992	.00016 .00020	. 2515	$\pm .0041$
	20, 398		Heigh	67.47	2. 772	$\pm .010$. 04108	. 00042		+.0035
			Chest	33.04	2. 005	$\pm .007$. 06008	. 000074		$\pm .003$

Table 187.-Summary of means, standard deviations, anul probable errors, coefficients of variability and probable errors, of recruits found with specified discases and defects; also correlations between pairs of dimensions for first and second million recruits. (From Tables 1.39-183)-Continued.
[Helght and chest in inches and weikht in founds.]

Discase.	Number measured.	First or second mililon.	Dimension.	Mean.	Standard devistion.	l'robable error of stand- ard devia- tion.	Coefllcient of varintion.	Probable error of coeftcient of variation.	Correlatlon.	Probalile error of cortela. tion.
Enlarged inguinal rings.		First and	Hejght	67. 46	2. 702	$\pm .000$. 04005	. OXOM 0		
	43,619	\{ second.	Weight	140.08	16. 543	$\pm .038$. 11810	. 00028	. 511.5	\pm
	20, 142	Flr	Height	67.54	${ }_{2}^{2} 2695$	$\pm .009$. 03990	- 00010	3174	$\pm .0035$
			Weight.	140.17 67.40	16.637 2.706	$\pm .056$ $\pm .008$ $\pm .051$. 11869	.00040 .00013		\pm.ana
	23,477	Second.	Weight	140.00	16. 462	$\pm .051$. 11759	. 00003 x	. 5077	$\pm .00033$
	43, 625	\{First and	Height....	67.47	2.706	$\pm .008$. 01025	. 00009		
	43, 620	$\{$ second.	Chest.	33.06	1.915	$\pm .004$. 05888	. 00017	2310	$\pm .0031$
	20, 161	Firs	\{Height....	67.55 33.03	2.701 1.916	$\pm .009$ $\pm .006$.03993 .05801	. 00013	. 2410	$\pm .0045$
			Height	67. 40	2. 708	$\pm .008$. 04018	. 00013		
	23,461		Chest.	33.09	1.969	$\pm .006$. 05950	. 00022	2237	$\pm .0042$
Flat-foot.		\{First and	SHelght	67.30	2. 699	$\pm .003$. 01010	. 00004		
		$\{$ second.	Weight	143.26	18.413	$\pm .017$. 12×53	. 00012	1	$\pm .0010$
	175, 358	Fir	Helght....	67.30	2.687	$\pm .059$. 03993	. 00004	. 47×6	
	175, 350	First	Weight...	143.24 67.28	18.102	$\pm .021$ $\pm .004$	12638 .04047	. 000014	. 4780	$\pm .0012$
	94,990	Secor	$\left\{\begin{array}{l}\text { Weight.... }\end{array}\right.$	67.28 143.31	2.723 18.975	\pm 士.004	.04047 .13241	. 0000020	. 4610	$\pm .0017$
Defective physical development.	758534	FFirst and	H Height	66.57	3.842	$\pm .051$. 05771	. 000\%6		
		\{ second.	W Weight	125. 51	18.568	$\pm .246$. 14794	. 00186	464	$\pm .017$
		Fir	\{Height...	66.34	4.012	$\pm .070$. 06048	. 00105	. 4600	$\pm .0193$
			Wheight...	128.94	18.144	$\pm .315$. 14072	. 0025		\pm. 010.3
		Secon	$\left\{\begin{array}{l}\text { Weight }\end{array}\right.$	66.91 123.43	18.561	\pm. $\mathbf{\pm}$. 391	. 05332	. 000289	. 500 s	$\pm .0219$
	1,24.4	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	Height	66.57	3.811	$\pm .051$. 05770	. 00067		$\pm .0181$
			Chest.	31.85	2.180	$\pm .029$. 06845	.000*0		$\pm .0181$
	752	First.....	Height	66.34	4. 015	$\pm .070$. 06256	. 00104	. 1792	$\pm .0233$
			Chest.	32.15 66.90	2. 206	$\pm .038$ $\pm .074$.06862 .05315	. 000105		$\pm .020$
	532		$\left\{\begin{array}{l}\text { Height } \\ \text { Chest. }\end{array}\right.$	66.90 31.43	3. 550	$\pm .074$ $\pm .043$. 05315 .06589	.00103 .00121	. 2482	$\pm .0274$
Underweight.	(12, 129	fFirst and	(Height.	65. 50	3.360	$\pm .015$. 0.5130	. 00021		
		$\{$ second.	Weight....	110.94	9.893	$\pm .043$. 08917	. 00039	. 6970	$\pm .0031$
	2,6.6	First......	Height.	66.22	3.507	$\pm .032$. 05296	. 00046	. 7339	$\pm .0060$
			Weight	114.67	11.614	$\pm .107$. 10128	. 00093	. 7339	$\pm .0000$
	9, 413		\{Helght....	65.30	3. 289	$\pm .016$. 05037	. 000025	6573	$\pm .0037$
		First and	Weight....	109.88	9. 070	$\pm .045$. 07516	. 000035		
	12,132	$\left\{\begin{array}{l}\text { First and } \\ \text { second. }\end{array}\right.$	$\left\{\begin{array}{l}\text { Helight. } \\ \text { Chest. }\end{array}\right.$	65.50 30.46	3.357	$\pm \pm .015$. 05125	. 000021	. 2459	$\pm .0038$
	2,708	First	Height	66.20	3. 509	$\pm .032$. 05301	. 00046	2543	+.0019
			Chest.	30.94	1.720	$\pm .016$	-05559	. 00046		$\pm .0019$
	9,424	Secon	\{Height	65.30 30.32	3.285	$\pm .016$ $\pm .007$. 05031	.00025	. 2312	$\pm .0056$
			Chest	30.32	1.442		. 04756			
Cryptorchidism, monorchism, anorchism,hypospadia.	$\begin{aligned} & 4,948 \\ & 1,808 \end{aligned}$	$\left\{\begin{array}{l} \text { First and } \\ \text { second. } \end{array}\right.$	\{Helght.	67.44 140.25	2.811 17.908	$\pm .019$ $\pm .121$.04168 .12769	.00027 .00087	. 4867	$\pm .0073$
)Height	67.34	2.803	$\pm .031$. 04162	. 00045		
			Weight	140.81	18.608	$\pm .209$. 13214	. 00146		$\pm .0116$
	3,140	Second	Helght....	67.49	2.814	$\pm .024$. 04170	. 00034	. 4666	$\pm .0094$
	4,943	$\left\{\begin{array}{c} \text { First and } \\ \text { second. } \end{array}\right.$	Weight....	139.93	17.483	$\pm .149$. 12494	. 00108		
			Height....	67.44 33.03	2. 812	$\pm \pm .019$. 04170	. 000027	. 2107	$\pm .0092$
	1,808	First.	Ifeight	67.34	2. 803	$\pm .031$. 04162	. 00045		$\pm .0150$
			Chest	33.18	2.050	$\pm .023$. 06178	. 00067		$\pm .0150$
	3,135	Second	$\left\{\begin{array}{l}\text { Height.... } \\ \text { Chest... }\end{array}\right.$	67.49 32.95	2.816 2.126	$\pm .024$ $\pm .018$.04172 .06452	.00034 .00052	. 2029	$\pm .0115$
							. 0075			

Table: 188.-The mean stature and weight of recruits found with the specified diseases and defects among the first tuo million draft recruits, arranged in descending order of the means.

Defeet.	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { stature. } \end{gathered}\right.$	Defect.	Mean weight.
	Inches.		Pounds.
Varicose veins	68, 43	Varicose veins.	146. 44
Varicocele.	68.37	Flat-foot.	143.26
Pulmonary tuberculosi	68.07	Simple goiter	142.36
Exophthalmic goiter.	67.97	Hypertrophic tonsillitis	141. 79
Simple goiter.	67.94	Varicocele......	141.75
Mitralinsufficiency	67.84	Hernia.	141.23
IIemorrhoids.....	67.80	Cardiac hypertrophy	140. 49
Cardiac hypertrophy	67.75	Hemorrhoids..	140.39
Tachycardia.	67.76	Cryptorchidism	140.25
Mitral stenosis.	67.63	Enlarged inguinal rings	140.08
Valvular diseases of heart	67.60	Myopia.	139.23
Hypertrophic tonsillitis.	67.48	Astigmatism	139.16
Enlarged inguinalrings	67.46	Asthma.....	139.01
Hernia................	67.44	Mitral insufficieney	138.99
Cryptorchidism, etc	67.44	Hyperopia....	138.96
Flat-foot.........	67.30	Exophthalmic goiter	138.82
Defective teeth	67.26	Defective and deficient teeth	138.32
Asthma.	67.24	Tachycardia.	137.37
Myopia.	67.08	Valvular diseases of heart	137.24
Hyperopia.	67.08	Mitral stenosis.	136.85
Astigmatism.	67.07	Pulmonary tuberculosis.	130.44
Defoctive physical development	66.57	Defective physical development	125.51
Underweight.	65.50	Underweight.	110.94
Average, United States, first million	67.49	Average, United States, first million	141.54

Table 189.-The index of build (weight multiplied by 1,000 , divided by the stature squared) and Pignet's index of robustness of recruits found with the specified diseases and defects, arranged in order of standing, first and second million draft recruits.

Tam.e 190.- Variability (standard deviation, in inches, and coefficient of variability) of stature, associuted with vurious defects and diseases, first and seconl million draft recruits.

Table 191.-Variability (standard deviation, in pounds, and coefficient of variability) of weight, associated with various diseases and defects among first and second million draft recruits, arranged in descending order of size.

Table 192.-Relative weight (weight divided by the height) and relative chest circumference (chest circumference (expiration) divided by the height and also by the weight) for men found with special disenses or defects in the first and second million draft recruits, 1917-18.

Sperdal disease.	Number of men measnred.	$\frac{\text { Mean weight. }}{\text { Mean height. }}$	Mean chest. Mean height.	$\frac{\text { Mean ehest. }}{\text { Mean weight. }}$
Average for the United states (P_{1}).	873,159	Pounds. 2.097	Inch. 0.492	Inch. 0.234
Varieose veus.......................	3,426	2.140	. 492	230
Varicocele.	5,819	2.070	. 484	. 233
Tubereulosis, pulmonary	10,701	1.920	. 472	. 246
Exophthalmic goiter....	2,622	2. 040	. 483	. 237
Goiter, simple.	7,099	2.100	. 487	. 233
Mitral insuftieiency	8,860	2. 050	. 483	. 236
Hemorrhoids. . . .	1,824	2. 070	. 488	. 236
Tachyeardia, simple	2,147	2.030	. 484	. 239
Cardiac hypertrophy	1,343	2. 070	. 487	. 235
Mitral stenosis.....	2,512	2.020	. 483	. 239
Valvular disease of heart	3,419	2. 030	. 482	. 237
Tonsillitis, hypertrophie	52,031	2.100	. 492	. 234
Inguinal rings, enlarged.	43, 625	2.090	. 430	. 236
Hernia.	34,324	2.090	. 491	. 234
Anorehism, monorchism, eryptorchidism,	4,918	2. 080	. 490	. 235
Flat-foot.	270,348	2. 130		
Defective and deficient teeth	17,983	2.060	. 491	. 239
Asthma.	1,581	2.070	. 496	. 240
Hyperopia.	969	2.070	. 493	. 238
Myopia.	2, 420	2.080	. 492	. 237
Astigmatism	1,592	2. 080	. 493	. 237
Defective physical development	1,292	1. 890	. 479	. 251
U'nderweiglıt.	1,432	1.690	. 465	. 275

Table 193.-Table for converting centimeters into inches.
1 eentimeter $=0.393704$ inch.
1 deeimeter $=3.937040$ inches.
1 meter $=39.370400$ inches.

('entimeters.	Inches.	Centimeters.	Inches.	Centimeters.	Inches.	Centimeters.	Inches.
1.	0.394	51.	20. 079	101.	39.764	151.	59.449
2.	0.787	52.	20.473	102.	40.158	152.	59.843
3.	1. 181	53.	20.866	103.	40.552	153.	60. 237
4.	1. 575	54.	21.260	104.	40.945	154.	60.630
5	1.969	55.	21.654	105.	41.339	155.	61.024
6.	2.362	56.	22.047	106.	41.733	156.	61.418
7	2.756	57	22. 441	107	42. 126	157.	61.812
8.	3.150	58.	22.835	108.	42. 520	158.	62.205
9.	3.543	59.	23.229	109.	42.914	159.	62.599
10	3. 937	60.	23.622	110.	43.307	160.	62.993
11.	4.331	61.	24.016	111.	43.701	161.	63.386
12	4. 724	62.	24.410	112.	44.095	162.	63.780
13.	5. 118	63.	24.803	113.	44.489	163.	64.174
14	5.512	64.	25.197	114.	44.882	164.	64.567
15	5.906	65.	25. 591	115.	45.276	165.	64.961
16.	6.299	66.	25.984	116.	45.670	166.	65. 355
17.	6.693	67.	26.378	117.	46.063	167.	65.749
18.	7.087	68.	26.772	118.	46.457	168.	66.142
19.	7.480	69.	27.166	119	46.851	169.	66.536
20.	7.874	70.	27.559	120.	47.244	170.	66.930
21.	8.268	71.	27.953	121.	47.638	171.	67.323
22.	8.661	72.	28.347	122.	48.032	172	67.717
23.	9.055	73.	28.740	123.	48. 426	173.	68.111
24	9.449	74.	29.134	124.	48.819	174.	65.504
25	9.843	75.	29. 528	125.	49.213	175.	68.898
26.	10.236	76.	29.922	126.	49.607	176.	69.292
27.	10.630	77.	30.315	127.	50.000	177.	69.686
28.	11.021	78.	30.709	128.	50.394	178.	70.079
29.	11.417	79.	31.103	129.	50.788	179.	70.473
30.	11.811	80.	31.496	130.	51.182	180.	70.867
31.	12.205	81.	31.890	131.	51.575	181.	71.260
32.	12.599	82.	32.284	132.	51. 969	182.	71.654
33.	12.992	83.	32.677	133.	52.363	183.	72.048
34	13.386	84.	33.071	134.	52,756	184.	72. 442
35.	13.780	85.	33.465	135.	53.150	185.	72.835
36	14. 173	86.	33.859	126.	53.544	186.	73.229
37	14. 567	87.	34.252	137.	53.937	187.	73.623
38.	14.961	88.	34.646	138.	54.331	185.	74.016
39.	15.354	89.	35.040	139.	54.725	189.	74.410
40.	15.748	90.	35.433	140.	55.119	190.	74. 804
41.	16.142	91.	35.827	141.	55.512	191.	75. 197
42.	16. 536	92.	36.221	142.	55.906	192.	75.591
43.	16. 929	93.	36.614	143.	56.300	193.	75. 985
44.	17.323	94.	37.008	144.	56.693	194.	76.379
4.5.	17.717	95.	37.402	145.	57.087	195	76. 772
46	18. 110	96.	37.796	146.	57.481	196.	77.166
47.	18.504	97.	38. 189	147.	57.874	197.	77.560
48.	18.898	98.	38. 583	148.	58, 268	198.	77.953
49.	19.291	99.	38. 977	149	58.662	199.	78. 347
50.	19.685	100.	39.370	150...........	59.058	200.	78.740

Table 194.-Table for converting inches into centimeters.
1 inch $=2.539979$ centimeters.
1 foot-3n.479748 centimeters.

Inches.	Centimeters.	Inches.	Centimeters.	Inches.	Centimeters.	Inches.	Censimeters.
1.	2.540	20	66.039	51	129. 539	76.	193.038
2.	5. 0s0	27	68.579	52	122.079	77.	185. 578
3.	7.620	28.	71.119	${ }^{53}$	134.819	78.	198. 118
	10. 160	29	73. 159	54.	137. 159	79.	200.658
5.	12.700	30.	78. 199	55.	139. 699	8	2013.198
	15.240	${ }^{3} 1$.	72. 739	${ }^{5}$	142239	81	205.738
	17.730	32.	81.279 83.819	${ }_{58}^{57}$	14.779	82	208.278
9.	20. 80	34.	88.359	59.	1493	8	210. 818
10		35		60.		8.	213.358
11.	27.940	36	91. 439	61.	154. 939	86	218. 438
12	30. 450	37.	93.979	62.	157. 479	87.	220.978
13.	33.020	38.	96.519	63.	160. 019	88	223.513
14.	35.550	39	99.059	64.	182. 559	89	226.058
15.	$38 \cdot 100$	40.	101. 599	63.	165099		228.588
16	40.640	41	104. 139	66.	167.639	91.	231.138
17	43. 180	42.	108. 679	67.	170. 179	92.	233.678
18	45. 220	43.	109.219		172.719	93.	236.218
19	48.260	4.	111.759	69.	175. 259	94.	218.758
20	50.800	45.	114.299	70.	177. 799		241.298
	53, 340	46	116. 839		180. 339		243.838
22	55.880	47.	119.379	72.	1×2.878	97.	246.378
	58. 420	48.	121.919		185.418		248. 918
24	60.959		12.459		187.958		251.458
25.	63.499		126.999		190. 498		253.938

REFERENCES.

(1) Baxter, J. H.: Statistics, Medical and Anthropological, of the Provost Marshal General's Bureau. Derived from records of the examination for military service in the armies of the United States during the late War of the Rebellion, of over a million recruits, drafted men, substitutes, and volunteers. Washington, D. C., Government Printing Office, 1875. 2 vols.
(2) Gould, B. A.: Investigations in the Military and Anthropological Statistics of American Soldiers. For the U. S. Sanitary Commission. New York: Hurd and Houghton, 1869.
(3) Letter of A. B. Coxe, Lieutenant Colonel, General Staff, Executive Division, July 16, 1918, No. 10905-10, including memo. from Combat Subsection, Military Information 2.
(4) Manouvrier, L.: Note in American Journal of Physical Anthropology. Washington, D. C., 1918, I, 376.
(5) Martin, R.: Lehrbuch der Anthropologie. Jena: Gustav Fisher, 1914.
(6) Second Report of the Provost Marshal General. Washington, D. C., Government Printing Office, 1918, 31.
(7) First Report of the Provost Marshal General. Washington, D. C., Government Printing Office, 1917, 44.
(8) Second report of the Provost Marshal General. Washington, D. C., Government Printing Office, 1918, 463.
(9) Love, A. G., and Davenport, C. B.: Defects Found in Drafted Men. Prepared under the direction of the Surgeon General, M. W. Ireland, War Department. Washington, D. C., Government Printing Office, 1920.
(10) Verbal order, S. G. O., October, 1918.
(11) Joint communication, Provost Marshal General and Surgeon General to Adjutant General, December 9, 1917; indorsement, January 28, 1918. On file, Record Room, S. G. O., No. 413.5.
(12) Office order No. 68, S. G. O., July 23, 1918. On file, Record Room, S. G. O., No. . 024.
(13) Letter, S. G. O., June 6, 1918; approved June 27, 1918. A. G. O. File No. 320.21, Med. Dept. (Misc. Div.).
(14) Deniker, J.: The Races of Man. Contemporary Science Series. London: The Walter Scott Publishing Company; and New York: Charles Scribner's Sons, 1906, xxiii, 611.
(15). Marris, J. A., and Benedict, F. G.: A Biometric Study of Basal Metabolism in Man. Washington, Carnegie Institution, 1919, Publication No. 279, vl.
(16) Hoffman, F. L.: Army Anthropometry and Medical Rejection Statistics. Newark, N. J., Prudential Press, 1917.
(17) Livi, R.: Anthropometria Militarie. Rome: Presso il Giornale Medico del Regio Esercico, 1905. 2 vols.
(18) Ammon, O.: Zur Anthropologie der Badener. Jena: Gustav Fisher, 1899.
(19) Love, A. G., and Davenport, C. B.: Physical Examination of the First Million Draft Recruits, Methods and Results. Compiled under direction of the Surgeon General, M. W. Ireland. Washington, D. C., Government Printing Office, 1919.
(20) Pignet: Du coefficient de robusticité. Le Bulletin Médical, Paris, 1901, XV, No. 33.
(21) Butza: Sur la valeur du coefficient de robusticité, Pignet. La Caducée, Paris, 1905, v.
(22) Manual of Surgical Anatomy, Medical Department U. S. Army and Navy. Washington, D. C., 1918.
(23) Papillault, G.: L'homme moyen à Paris. Bull. Soc. Anthrop., Paris, 1902, (5) iii.
(24) Dublin, Louis, and Baker, G. W.: Mortality of Race Stocks in Pennsylvania and New York. Quarterly Publication of American Statistical Association, Concord, N. H., 1920, xvii, March.
(25) Great Britain, Ministry of National Service, 1917-1919: Report upon the physical examination of men of military age by National Service Medical Board from November 1, 1917, to October 31, 1918. London, His Majesty's Stationery Office, 1920, Vol. I.
additional authorities consulted.
(1) Final Report of the Provost Marshal General to the Secretary of War on the Operations of the Selective Service System to July 15, 1919. Washington, D. C., Government Printing Office, 1920.
(2) Ripley, W. F.: The Races of Europe. New York: D. Appleton and Company, 1899.
(3) Sergi, (.$:$: The Mediterranean Race. Contemporary Science Series. London: The Walter Scott Publishing Company, and New York: Charles Scribner's Sons, 1901, xii.
(4) Weissenberg, S.: De Siidrussischen Juden. Arch. f. Anthropol., Braunschweig, 1895, xxiii.
(5) Pearson, Karl: Mathematical Contributions, etc. London: Dulau and Company, Ltd., 1899.

APPENDIX

Table I.-Correlation between height and weight for first million draft recruits.
SECTION A: ABSOLUTE NUMBERS DERIVED FROM SUMMATION OF SECTION.

Height in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	$\begin{gathered} 100- \\ 104 \end{gathered}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\begin{aligned} & 120- \\ & 124 \end{aligned}$	$\begin{aligned} & 125- \\ & 129 \end{aligned}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{aligned} & 145- \\ & 149 \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165-1 \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\begin{aligned} & 175- \\ & 179 \end{aligned}$	$\begin{gathered} 180 \\ 184 \end{gathered}$	$\begin{aligned} & 185- \\ & 159 \end{aligned}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\stackrel{185-}{199}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
58	3,124	14	69	111	201	259	252	333	325	310	296	243	209	153	93	124		17	15	10	8		
60	2,887	19	108	245	367	395	350	270	255	186	165	135	103	92	63		24	6	13			14	
61	7, 177	32	240	616	1,138	1,209	1,123	927	643	440	331	210	196	100	75	59	31	23	14	8	22	${ }_{36}$	
62	15,044	36	351	975	2,0×1	2,557	2,553	2,221	1,674	1,131	714	456	285	19	139	91	53	38	26	9	18	32	10
63	30, 935	35	396	1,263	3,174	4,644	4,972	4,740	3,846	2,777	1,811	1,211	727	418	306	214	136	78	47	31	30	42	34
${ }_{6}^{64}$	52,547	15	358	1,308	3, 812	6,413	7,969	8 8,104	7,365	5,902	3,974	2,663	1,714	1,018	684	454	255	1*6	121	93	46	56	37
65	- $\begin{array}{r}\text { S1,904 } \\ 109\end{array}$	${ }_{8}^{17}$	${ }_{202}^{276}$	1,145	3,911	7, 259	10, 711	12,344	12, 147	10,563	7,773	5, 459	3,509	2,159	1,403	934	571	401	267	159	112	99	85
67	127, 844	1	128	497	1,002	${ }_{5}$ 5,483	10,196	15, 1971	16,431	15, ${ }^{18,94}$	12,610	9,151	6,378	3,911	2,554	1,744	1.096	719	426	292	203	167	156
68	129,957	3	77	251	1,005	3,105	7,320	12,018	16,310	18, 872	18,081	15,786	12,077	6,375	${ }_{5}{ }^{\text {, }}$, 213	2, 015	1,6.99	1,096	${ }^{698}$	496	356	281	318
69	110,508	1	36	100	442	1,453	3,863	7,607	11,594	14,449	15,496	14, 003	12,306	${ }^{8}, 162$	6,597	4,713	2,751	1, 1203	- ${ }^{981}$	${ }_{813}^{684}$	450 574	352 375	520 681
70	83,702		50	65	159	573	1,676	3, \&n9	6,746	9,626	11,378	11,482	10,568	8,120	6,390	4,513	2,924	1, 1 ,70	1,267	775		404	681 683
71	54,357	\cdots	28	34	45	191	551	1,440	3,016	4,944	6,524	7,283	7,354	6,308	5,058	3,886	2,598	1,726	1, 146	737	517	360	603 681
72	31,370		18	23	41	60	166	446	1,152	2,073	3,185	3,721	4,285	3,950	3,455	2,688	2,018	1,399	-892	552	426	225	$\stackrel{281}{535}$
73	15, 128	\cdots	6	12	17	12	35	127	301	665	1,187	1,593	1,923	1,926	1,829	1,612	1,239	860	608	377	252	210	407
74	6,391		5	5	9	5	16	27	88	174	-339	${ }^{+} 503$	${ }^{7} 77$	${ }^{1} 75$	${ }^{1} 809$	${ }^{7} 79$	639	480	338	212	160	116	22
75	2,620		3	4	5	6		16	21	33	97	162	234	316	304	328	279	224	152	130	${ }_{78}$	63	127
76	1,071		3		4	4	4	11	16	27	29	55	79	112	109	133	137	96	85	49	32	26	
77	360		2		1	3	8		5	19	15	28	23	25	22	40	40	28	33	14	12	14	25
78	259		2	2		3	2	1	10	18	21	27	21	16	18	20	18	22	17	10	8	1	14
	296			1	2	5	12	13	16	26	28	23	21	16	21	21	18	9	10	12	8	10	24
Total.	Q,415	184	2,356	7,435	21,388	41,503	63, 567	84,726	100, 084	106, 8×9	100, 607	88, 0.5	72,362	53, 431									
													2,32	(3, 41	3,	2,03	12,0\%	12,629	8,385	407	907	60	6:5

Number of cases: Whs,445. Height: Mean, 67.49 inches; standard deviation, 2.71 ± 0.0014 inch. Weight: Mean, 141.54 pounds; standard deviation, $17.42 \pm 0.00 \mathrm{~s} 9$ pound. Correlation:
0.4810 ± 0.0006.
Table I．－Correlation batween height and weight for first million draft recruits－Continued．
SECTION B：RATIO PER 1,000 OF THE SEPARATE WEIGHTS SHOWN FOR EACH HEIGHT ．

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& － \\
\hline \& \& \begin{tabular}{l}
 \\

\end{tabular} \& \％ \\
\hline \& \[
\begin{aligned}
\& \frac{8}{9} \\
\& \hline 6
\end{aligned}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& ๙゙ \\
\hline \& \[
\begin{aligned}
\& \mathbf{\sigma} \\
\& \hline \mathbf{J}
\end{aligned}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& 品 \\
\hline \& \[
\begin{aligned}
\& \text { 窑 } \\
\& \text { 空 }
\end{aligned}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& ¢ֻ． \\
\hline \& \[
\frac{\pi}{\frac{1}{2}}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& \％ \\
\hline \& 8 \& \begin{tabular}{l}
お \\

\end{tabular} \& \[
\begin{aligned}
\& \ddot{0} \\
\& \ddot{y}
\end{aligned}
\] \\
\hline \multirow{16}{*}{} \& 总 \& \begin{tabular}{l}
 \\

\end{tabular} \& \＃ \\
\hline \& \[
\begin{aligned}
\& 88 \\
\& \stackrel{8}{8} \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& 产 \\
\hline \& \& \begin{tabular}{l}
 \\

\end{tabular} \& \％ \\
\hline \& \[
\begin{aligned}
\& 88 \\
\& \hline 8 \\
\& \hline 8 \\
\& \hline 8
\end{aligned}
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& 管 \\
\hline \& \[
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& ¢ \\
\hline \& \[
\] \& \begin{tabular}{l}
 \\

\end{tabular} \& ＋ \\
\hline \& J

J \& | |
| :--- |
| | \& －

\hline \& \& | |
| :--- |
| | \& \％

\hline \& \& | ஜణ |
| :--- |
| | \& त゙

\hline \& \& | ค\％\％\％\％ |
| :--- |
| | \&

\hline \& \[
$$
\begin{aligned}
& \text { IN } \\
& \frac{1}{5}
\end{aligned}
$$

\] \& | |
| :--- |
| | \& \％

\hline \& \[
$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\exists} \\
& \stackrel{\rightharpoonup}{3}
\end{aligned}
$$

\] \& | |
| :--- |
| | \& $\stackrel{8}{2}$

\hline \& I \& | |
| :--- |
| | \& \％

\hline \& \[
$$
\begin{aligned}
& \text { e } \\
& \frac{1}{0}
\end{aligned}
$$

\] \& | |
| :--- |
| | \& \％

\hline \& \& | |
| :--- |
| | \& N

\hline \& \[
$$
\begin{aligned}
& 8 \\
& \hline 6 \\
& \hline 6
\end{aligned}
$$

\] \& | |
| :--- |
| H゙O゙N～～ | \& नี

\hline \multicolumn{2}{|l|}{} \& | |
| :--- |
| | \& 交

\hline \multicolumn{2}{|r|}{} \& \& 断

\hline
\end{tabular}

SECTION C: RATIO PER 1,000 OF THE SEPARATE HEIGHTS SHOWN FOR EACH WEIGHT.

Table II.-Correlation between height and chest circumference (expiration), first million draft recruits.
SECTION A: ABSOLUTE NUMBERS DERIVED FROM SUMMATION OF SECTIONS.

Number of cases: 873,159. Height: Mean, 67.49 inches; standard deviation, 2.72 ± 0.0014 inch. Chest circumference (expiration): Mean, 33.22 inches; standard deviation, 2.01 ± 0.0010

SECTION B: RATIO PER 1,000 OF THE SEPARATE CHEST MEASUREMENTS TO EACH HEIGHT

Table III
Table III.-Correlation between weight and chest circumference (expiration), first million draft recruits.

SECTION C: RATIO PER 1,000 OF THE SEPARATE CHEST MEASUREMENTS TO EACH WEIGHT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Weight, in pounds.} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Propor- } \\
& \text { tion each } \\
& \text { werkht } \\
& \text { per } 1,000 \text {. }
\end{aligned}
$$} \& \multicolumn{12}{|l|}{Chest, in inches.} \& \multirow[t]{2}{*}{Total.a}

\hline \& \& 23 \& 30 \& 31 \& 32 \& 33 \& 34 \& 35 \& $3 i$ \& 37 \& 3 s \& 39 \& 40 \&

\hline 95-99. \& 2.24 \& ${ }^{671 .} 36$ \& 178.40 \& 89. 20 \& 37.56 \& 4. 69 \& 4. 69 \& 4. 69 \& 9.39 \& \& \& \& \&

\hline $100-101$. \& 265 \& 36230 \& 276. 23 \& 175.96 \& 68.31 \& 36. 75 \& 20.75 \& 9.94 \& 11. 24 \& 8.65 \& 12.54 \& \& \& 1,000-

\hline 103-109. \& 8.77 \& 269.38 \& 310.35 \& 234.07 \& 107. 56 \& 37. 88 \& 11. 09 \& 5. 55 \& 5. 14 \& 3.65 \& 4. 60 \& 5.01 \& 5.68 \& 1,000-

\hline 110-114. \& 24.51 \& 168, 04 \& 234.30 \& 2355.89 \& 165.28 \& 63.84 \& 16. 51 \& 4.68 \& 2.67 \& 1. 59 \& 2.24 \& 2.48 \& 248 \& 1,000-

\hline 120-124. \& 73.76 \& 94.23 \& 227.75 \& 300.61 \& 227.65 \& 101. 88 \& 30.60 \& 8.40 \& 2.74 \& 1.66 \& . 74 \& 2.18 \& 1.56 \& 1,000

\hline 125-129 \& ${ }_{97} 731$ \& 23.17 \& 158.25

97.55 \& 231.85 \& 275.39
299.30 \& 158,44
211.40 \& 60.00
96.23 \& 16.35 \& 3.62 \& 1.13 \& . 69 \& . 92 \& 1.16 \& 1,000+

\hline 130-131. \& 115. 44 \& 10.75 \& 55.80 \& 172.94 \& 298.65 \& 257.14 \& 144.63 \& 51. 30 \& 13.78 \& 1.75 \& -83 \& . 59 \& -62 \& 1,000+

\hline 133-139 \& 122.80 \& 5, 03 \& 31.52 \& 117.64 \& 249.64 \& 284.01 \& 193.84 \& 84. 79 \& 25. 71 \& 5, 54 \& 1.15 \& . 53 \& -60 \& 1,000+

\hline 140-144. \& 115. 82 \& 2.85 \& 15. 77 \& 74.05 \& 199. 27 \& 282.75 \& 238,63 \& 127. 76 \& 44.46 \& 10.97 \& 2.24 \& .57 \& -69 \& 1,000

\hline 145-149. \& 101. 23 \& 1. 82 \& 7.86 \& 43.63 \& 144. 66 \& 257.77 \& 272.74 \& 171.31 \& 72.56 \& 21.20 \& 4.71 \& . 88 \& . 87 \& 1,000+

\hline 150-154. \& 83. 24 \& 1. 36 \& 3. 00 \& 23. 73 \& 99. 15 \& 215.39 \& 281.31 \& 217. 84 \& 109.37 \& 35.65 \& 8.85 \& 1.60 \& . 76 \& 1,000+

\hline 165-159. \& 61. ${ }^{45} 8$ \& 1.88 \& ${ }_{260}^{3.19}$ \& 14.99 \& 63.65 \& 168.83 \& 237.75 \& 252.35 \& 148.34 \& ${ }^{58} 23$ \& 16. 86 \& 3.50 \& 1.45 \& 1,000+

\hline $165-169$. \& 33, 40 \& 1. 89 \& 2. 29 \& 9.95
8.24
8 \& 39.98 \& 121.38 \& 236. 16 \& ${ }^{264.11}$ \& 195. 71 \& 88, 20 \& -31.83 \& 7.10 \& 1.98 \& 1,000+

\hline 170-174. \& 21.84 \& 2.05 \& 3.04 \& 6.72 \& 17.01 \& 55.79 \& 149.13
198 \& 232.36 \& 2200.24 \& ${ }_{162} 12.70$ \& ${ }_{79}^{49.17}$ \& 14.14 \& 4.15 \& 1,000-

\hline 1785179. \& 14. 55 \& 1.58 \& 3.78 \& 7. 17 \& 13.55 \& 37.74 \& 100.22 \& 239.10
198 \& 254. 49 \& 162.61
207.06 \& $\begin{array}{r}79.15 \\ 112 \\ \hline 15\end{array}$ \& 26.72
43.98 \& 819
19.15 \& 1,000+

\hline 150-184. \& 9.53 \& . 72 \& 1.56 \& 5. 66 \& 7.34 \& 20. 58 \& 72.32 \& 167.15 \& 239.47 \& 223.23 \& 154. 27 \& 71.96 \& 32.73 \& 1,000-

\hline 1501.19. \& 6.38 \& 2.52 \& 3.05 \& 5. 21 \& 7.91 \& 16. 71 \& 49.77 \& 112.65 \& 212.54 \& 234.82 \& 191.52 \& 9 R 10 \& 65.22 \& 1,000+

\hline 195-199. \& 4. 42 \& 5.97 \& 4. 93 \& 5. 97 \& 5.45 \& 11.94 \& 37. 33 \& 84.61 \& 172.33 \& 223.98 \& 210.23 \& 136. 52 \& 100. H \& 1,000

\hline 1900-204. \& 3. ${ }_{20}$ \& 28. 31 \& 19.55 \& 10. 79 \& 9. 44 \& 13. 48 \& 21.57 \& 50, 89 \& 123.36 \& 196. 83 \& 221. 10 \& 171.55 \& 133.13 \& 1,000

\hline 2x-20. \& 6. 23 \& 4.23 \& 1.84 \& 2.58 \& 1.66 \& 2.03 \& 5. 15 \& 13. 62 \& 48.60 \& 116.72 \& 177.84 \& 157.96 \& 437. 78 \& 1,000+

\hline Total \& \& 20.56 \& 56.23 \& 118.38 \& 152. 77 \& 201.47 \& 174. 66 \& 118. 50 \& 67.48 \& 32.23 \& 14.98 \& 6.68 \& 5. 86 \& 1,000

\hline
\end{tabular}

Table IV.-Mean height, by groups and component sections, arranged in order of standing, with proportional weight and chest circumference (expiration) for each

Group and section.	$\begin{gathered} \text { Group } \\ \text { and sec } \\ \text { anion No. } \end{gathered}$	Description.	Number of men measured	Mean height.		Mean welght Mean height.	Mean chest. Mean height.
verage for the United States. Table I.			868,445	Inches. 67.49	$\begin{aligned} & \text { Inches. } \\ & 2.71 \end{aligned}$		${ }_{0.4920}$
Mountain whit	12		21, 254	68. 29	2.57	2.0	4502
Kentucky	1	Native parentage, white, 96.4 per cent; foreign parentage, 0.7 per cent; Nariige parentage, white, 90.8 per cent; foreign parentage, 0.5 per cent; Ioreign born, white, 0.5. per cent; Negro, 31.4 per cent. 1.1 per cent; foreign bornt, white, 0.6 ber eent; Negro, 9.3 per cent. Native parentage, white, 88 per cent; Ioreign parentage, 0.9 per cent; Native parentage, white, 86.8 per cent: foreign parentage, 3.7 per ecnt; foreign born, white, 4.8 per cent; Negro, 4.5 per cent.	4,033	${ }^{68,21}$	2.51	2.051	4860
North Caro	1		2,738	68.67	2.55	2.056	. 480
South Carolina	1		1,56+	68, 19	. 83	2.060	484
Tennessce	3		5,900	68	2.51	2.050	4810
Virginia	t		5,512	68, 14	2.54	2.053	4890
West Virginia	1		1,507	67.9	2.71	2.072	. 4880
Agricultural, native white, South	3		117, 890	62. 18	2.64	2.070	4854
Mexican, sparsely settled.	14		11,064	6. 16	2.69	2.090	. 4870
		Indians, Chincse, and Japanese, 6.8 per cent; Mex	2,823	${ }_{68 .} 17$	61	${ }_{2}^{2096}$	4880
Texas 1.		Mexicans, 17.1 per cent; native parentage, 44.1 per ce	6,676	67. 69	2.70	2.0s0	

Indian, sparsely settled.	13		10,038	68.12	2.61	2.050	. 4860
Arizona	1	Indians, Chinese, and Japanese, 36.6 per cent; Mexicans, 8.4 per cent.	1,027	68.02	2. 73	2. 106	. 4590
Now Mexico	1	Indians, 29.1 per cent; native parentage, white, 61.1 per cent.....	, 293	67.26	2.90	2. 068	. 4940
Okiahoma...	1	Indians, 9.2 per cent; native parentage, 72.6 per cent; Negro, 13.7 per cent.	8, 471	68.16	2. 59	2. 078	. 4850
South Dakota.	3	Indians, 87.2 per cent; native parentage, white, 8.1 per cent.	247	68.13	2. 41	2. 180	. 4950
German and Scandinavian, 10 per cent plus.	20		2s,095	68. 11	2. 62	2. 150	. 4951
Minnesota.	1	Scandinavians, 37.4 per cent; Germans, 10.3 per cent	6,461	68.44	2. 54	2. 170	. 4950
Do.	2	Scandinavians, 15.3 per cent; Germans, 22.3 per cent	7,601	68.14	2. 63	2. 170	. 9970
South Dakota Wisconsin...	1	Scandinavians, 15. 5 per eent; Germans, 10.7 per cent	3,051	68.07	2. 68	2. 160	. 4920
Wisconsin.... Do.	1	Scandinavians, 22.3 per cent; Germans, 13.6 per cent	3,297	68. 13	2. 66	2. 130	- 4940
Do....	2	Scandinavians, 10.2 per cent; Germans, 26.3 per cent	7,685	67.81	2. 58	2. 140	. 4950
Sparsely settied, not more than 3 per square mile.	8		16, 165	68.01	2.63	2. 130	. 4929
California	3	Sparsely settled; foreign born, white, 17.8 per cent....................	2, 108	68.21	2. 53	2.116	. 4900
Montana	2	Sparsely settled; foreign born, white, 18.1 per cent; Indians, Chinese, and Japanese, 6.1 per cent.	6,531	68.17	2. 57	2. 150	. 1930
Nevada...	1	Sparsely settled; foreign born, white, 25.6 per cent; Japanese, s. 4 per cent.	1,441	67.83	2.69	2.143	. 4970
New Mexic	2	Foreign born, white, 6.2 per cent; sparsely settied.	1,857	67.43	2. 85	2. 049	. 4930
Oregon.	2	Forelgn born, white, 9.1 per cent; sparsely settied.	1,077	68.13	2. 52	2.140	. +900
Wetah.....	1	Foreign born, white, 11.7 per cent; sparsely settled	1,224	68.16	2.64	2. 114	. 4920
Wyoining	1	Foreign born, white, 18.6 per cent; sparseiy set tied	1,927	67.79	2. 63	2. 130	. 4920
Native white of Scotch origin.	15		13,522	68.00	2. 64	2. 060	. 4844
Kentucky	2	Native parentage, white, 76.4 per cent; foreign parentage, 6.9 per cent; foreign born, white, 2.2 per cent; Negro, 14.4 per cent.	- 11, 469	67.95	2.62	2. 060	. 4810
North Carolina	3	Native parentage, white, 60.9 per cent; foreign parentage, 0.4 per cent : foreign born, white, 0.2 per cent; Negro, $3 \times .1$ per cent.	2,053	6, 24	2. 72	2.074	. 4.50
Scandinavians, 10 per cent	17		51,009	67.96	2.63	2. 150	. 4952
Michigan.	1	Scandinavians, 23.1 per cent; large Finnish popuiation	2,344	67.10	2.61	2. 160	
Minnesota Do...	1	Scandinavians, 37.4 per cent; Germans, 10.3 jer cent	6,461	68.44	2.54	2. 170	. 4950
Do.	2	Scandinavians, 16.8 per cent; (iermans, 22.3 per cent	7,601	68.14	2.63	2. 170	. +970
North Dakot	1	Scandinaviaus, 31.1 per cent; large Finnish popuiation.	3,520 1,132	67.65 67.67	2. 68	2. 170	. 5020
Do.	2	Scandinavians, 30.6 per cent; Germaus, 8 percent.	3,307	68.03	2. 48	2.159	- 4970
Do.	3	Scandinavians, 13.9 per cent; large Russian popuiation	2,005	67.87	2.61	2. 172	-4960
South Dakota	1	Scandinavians, 15.5 per cent; Germans, 10.7 per cent.	3,051	68. 07	2.68	2. 160	. 1920
Utah...	1	Scandinavians, 10.4 per cent; English, 8.3 per cent.	1.224	68.16	2. 64	2.114	- 4920
w Do.	2	Scandinavians, 10.5 per cent; Engiish, 13.2 per cent	2,781	67.75	2.56	2. 105	. 4850
Washington	2	Scandinavians, 13.5 per cent; Germans, 5.7 per cent; some Chinese, Japanese, and Indians.	6,601	67.87	2. 70	2. 140	. 4920
Wisconsi	1	Scandinavians, 22.3 per cent; Germans, 13.6 per cent	3,297	68.13	2.66		
Do.	2	Scandinavians, 10.2 per cent; Germans, 26.3 per cent	7,685	67.81	2. 58	2. 140	. 4950
1) esert	9		6,121	67.86	2. 72	2. 090	. 1917
Arizona	2	Native parentage, 42.8 per cent; foreign jarentage, 23.6 per cent; foreign born, white, 25.9 per cent.	2, 823	68. 17	2.61	2. 096	. 4870
Nevada.	1	Native parentage, 33.1 per cent; foreign parentage, 25.6 per cent ; foreign born, white, 22 per cent.	1,441	67.83	2.69	2. 143	. 4970
New Mexico.	2	Native parentage, $\$ 6.9$ per cent; foreign parentage, 6.2 per cent; foreign born, white, 5 per cent.	1,857	67.43	2.85	2. 049	. 4930

Table IV.-Mean height, by groups and component sections, arranged in order of standing, with proportional weight and chest circumference (expiration) for each

Group and section.	Group and sec tion No	Description.	Number of men measured	$\begin{aligned} & \text { Mean } \\ & \text { height. } \end{aligned}$	Standard deviation (height).	Mean weight. Mean height.	Mean ehest. Mean height.
A grieultural, Negroes, 45 per eent plus. 4		49,507	Inches. 67.82	$\begin{aligned} & \text { Inches. } \\ & 2.68 \end{aligned}$	Pounds. 2.090	Inch. 0.489
- labama.	2	Negro, 70.6 per cent; native parentage, white, 28.5 per cent.	3,327	67.95	2.71	2.098	. 4890
Do..	4	Negro, 72.8 per cent; native parentage, white, 26.9 per cent.	669	68.16	2.61	2.115	- 1860
Arkansas	1	Negro, 55.3 per cent; native parentage, white, 41.7 per cent.	4,945	68.05	${ }_{2}^{2.68}$	2. 083	- 4870
Louisiana	1	Negro, ${ }^{\text {N }}$ peror 63 per cent;	10,000 4,074	67.91 67.73	${ }_{2.63}^{2.66}$	2. 2.073	- 49910
Mississippi	1	Negro, 71.2 per cent; native parentage, white, 27.3 per cent	5,149	68.15	2.67	2. 120	. 4880
North Carolin	4	Negro, 47.3 per cent: native parentage, white, 51.9 per cent	4, 570	67.79	2.72	2.097	. 4890
South Carolina	2	Negro, 59.9 per cent; native parentage, white, 39.5 per cent.	3,975	67. 72	2.77	2. 100	. 4900
Do...		Negro, 62.2 per cent; native parentage, white, 35.7 per ecnt.	3, 804	67. 33	2. 64	2. 060	- 9910
Tennessec. Texas.	5	Negro, 44.2 per cent; native parentage, white, 54.5 per cent	2,218	68.07	2.59	2.090	- 4830
Virginia.	2	Negro, 49.6 per ccut; native parentage, white, 46.6 per cent	${ }_{5}^{1}, 352$	67.46	${ }_{2.72}$	2. 277	+4800 .
Mountain.	11		17, 101	67.72	2.68	2. 110	. 4921
Arkansas.	2	Native parentage, white, 96.9 per cent	1,559	68.64	2.60	2.050	. 4840
Massachuset	1	Native parentage, white, 46.7 per cent; Joreign parentage, 30.7 per cent: roreign born, white 21.7 per eent	1,373	66.85	2.67	2.070	. 4920
Missouri.	3	Native parentage, white, 94.4 per cent: foreign parentage, 3.9 per ecnt;	1,139	68.63	2.51	2.080	. 4850
Montana	1	Native parcntage, white, 37.5 per eent; foreign parentage, 31.4 per cent:	5,117	67.82	2.65	2.150	. 4910
New Hampshire.	1	Native parentage, white, 60.8 per cent; foreign parentage, 21.6 per cent:	665	67.25	2.54	2. 106	. 5010
New York,	5	Native parentage, white, 60.4 per cent: foreign parentage, 20 per cent; foreign born, whitc, 16 per cent.	795	67.16	2.69	2.074	. 4930
Do.	8	Native parcntage, white, 62.5 per cent: foreign parentage, 24.7 per cent;	2,990	67.06	2.64	2.090	. 4970
Wạshington.	3	Native parentage, white, 59.4 per eent; foreign parentage, 20.6 per cent;	1,539	68. 19	2.56	2.142	. 4930
W yoming	1	Native parentage white, 55.3 per cent; foreign parentage, 22.3 per cent; foreign born, white, 18.6 per cent .	1,927	67. 79	2.63	2.130	. 4920
Agrienltnral, mixed foreign and native white.	2		97,340	67.62	2.66	2.110	. 4934
Colorado	4	Native parentage, 69.5 per cent; foreign parentage, 18.2 per cent:foreign	1,227	68.05	2.70	2.087	. 4860
flinois	8	Nativé parentage, 54.1 per cent; foreign parentage, 31.5 per cent; foreign	2,451	67.77	2.63	2.110	- 4930
Indiana	2	Native parentage, 76.2 per cent; foreign parentage, 16.8 per eent; foreign	837	68.12	2.48	2.120	- 491
Iowa	1	Native parentage, 50.7 per cent; foreign parentage, 34.2 per cent; foreign	12, 136	68.09	2.56	2. 139	. 9920
К̆ansas.	2	Native parentage, 72.9 per cent; foreign parentage, $\mathbf{1 6 . 1}$ per cent; foreign born, white, 7,4 per cent	8,504	68. 18	2.54	2. 105	4880

 born, white. 18.1 per cent.
Vative parentage, 70.8 per cent; foreign parentage, 17.9 per cent; foreign born, white, 10.5 per cent. . born, white, 15 per cent.
Sative parentage, 64.1 per cent; foreign parentage, 20.5 per cent; $;$ foreign born, white, 14.8 per cent.
Vative parentage, 4.7 per cent: forelgn parentage, 37.2 per cent; foreign born, white, 16.8 per cent: Cent foreign parentage, 33.7 per cent; foreign
Satioo parentage, 4.5 per cent
born, white 20,2 .

Vative warentage, 38 per cent: foreign parentage, 43.2 per cent; foreign

Native parentage, white, 11.5 per cent; nepro, 2.5 n. 6 per cent
Native parentage, whiti, 4.2 per
Nent; foreign parentage, 27.3 per cent; Native parentage, white , 7.9 per cent; foreign parentage, 15.7 per cent:

 Yoreign born, white, 22.4 er er ent
Native parentage, white, 6.5 per cent; foreign parentage, 23.1 per cent;
 foreign born, white, 28.5 .5 per cent.
Native parentage, white, 3.1 per cent; foreign parentage, 25.6 per cent;

Table IV.-Hean height, by groups and component sections, arranged in order of standing, with proportional weight and chest circumference (expiration) for each

$\stackrel{0}{9}$		8	18	8	㫤	18	\|§	8	蔡	8	$\%$	$\frac{8}{8}$	$\stackrel{8}{8}$	©	\|	$\left\lvert\, \begin{aligned} & 8 \\ & \hline \end{aligned}\right.$	8	$\frac{9}{3}$	8	雲	
$\frac{\text { है }}{\text { N }}$	8⿹ㅓ영 NANNA	$\begin{gathered} 8 \\ \text { ai } \end{gathered}$	$\frac{8}{4}$	\＆	$\begin{aligned} & \overline{8} \\ & \text { din } \end{aligned}$	$\frac{8}{4}$	$\begin{aligned} & \text { 骨 } \\ & \text { N } \end{aligned}$	E	$\begin{gathered} \overline{8} \\ \text { ol } \end{gathered}$	$\underset{6}{\delta}$	$\begin{aligned} & \text { 8/8 } \\ & \text { ol } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \equiv \\ & N \end{aligned}$	$\underset{\text { di }}{0}$	气㐅	${ }_{s}^{r}$	$\begin{gathered} 8 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & N \end{aligned}$	$\frac{8}{8 i}$	$\begin{aligned} & \overline{3} \\ & \text { Nㅜㅇ } \end{aligned}$	8 d	
$\begin{aligned} & 8 \\ & \text { A } \end{aligned}$	Eだが品 vicinied	$\begin{aligned} & \text { a } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { si } \end{aligned}$	$\begin{aligned} & \approx \\ & \approx i \end{aligned}$	$\begin{aligned} & \mathrm{r} \\ & \mathrm{i} \end{aligned}$	$\stackrel{\bar{\omega}}{\text { oi }}$	$\underset{N}{N}$	$\begin{aligned} & 8 \\ & \end{aligned}$	$\begin{aligned} & \text { rob } \\ & \text { al } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { di } \end{aligned}$	$\begin{aligned} & \overline{6} \\ & \text { बi } \end{aligned}$	$\left\lvert\, \begin{gathered} 28 \\ 01 \\ 0 \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 8.5 \\ & 88 \end{aligned}\right.$	$\begin{aligned} & \text { ti } \\ & \text { ef } \end{aligned}$	$\begin{gathered} 5 \\ \text { ब1 } \end{gathered}$	$\begin{aligned} & \overrightarrow{0} \\ & \text { of } \end{aligned}$	－1	
$$	2 ざざ过	$\begin{aligned} & 8 \\ & 5 \\ & 5 \end{aligned}$	$\stackrel{\cong}{\square}$	$\begin{aligned} & \text { Ci } \\ & \text { 管 } \end{aligned}$	3	$\\|$	$\begin{aligned} & \text { § } \\ & \mathbb{S} \end{aligned}$	to	$\begin{aligned} & 8 \\ & 8 \\ & \$ 8 \end{aligned}$	合	K	$\underset{\sim}{8}$	S	$\begin{gathered} 9 \\ 8 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 8 \end{aligned}$	$$	E		年	$\begin{aligned} & \text { ¢ } \\ & \text { S } \end{aligned}$	

Table V.-Mean weight, by groups and component sections, arranged in order of standing, with proportional weight for each inch of height and chest circumference
(expiration) for each pound of weight; also standard deviation for each weight; first million draft recruits.

Group and section.	Group and section No	Description.	$\begin{gathered} \text { Number } \\ \text { of men } \\ \text { measured. } \end{gathered}$	Mean weight	Standard deviation (weight).	Mean weight Mean height.	Mean chest. Mean weight.
A verage for the United States. Table I. .			M68,445	Pounds. 141.54	Pounds. 17. 42	pounds. 2. 097	Inch. 0. 2340
Germans and Scandinavians, 10 per cent plus.	20		28,095	146. 66	17.00)	2. 150	2360
Minnesota.	1	Scandinavians, 37.4 per cent; Gcrmans, 10.3 per cent	6,461	148.28	16.61	2. 170	2240
Do.	2	Scandinavians, 16.8 per cent; Germans, 22.3 per cent.	7,601	147.64	17.31	2.170	2290
Sonth Dakota	1	Scandinavians, 15.5 per cent; Germans, 10.7 per cent	3,051	146. 80	18. 54	2. 160	2280
Wisconsin.		Scandinavians, 22.3 per cent; Germans, 13.6 per cent	3,297	145. 13	16. 93	2. 130	2320
	2	Scandinavians, 10.2 per cent; G crmans, 26.3 per cent	7,685	144.94	17. 13	2. 140	. 2320
Scandinavians, 10 per cent .	17		51,009	146. 13	16. 99	2. 150	. 2300
Michigan.	1	Scandinavians, 23.1 per cent; large Finnish population	2,344	144.74	16. 33	2. 160	. 2320
Minnesota	1	Scandinavians, 37.4 per cent; Germans, 10.3 per cent	6,461	148.28	16.61	2. 170	.2200
Do.	12	Scandinavians, 16.8 per cent; Germans, 22.3 per cent.	7,601	147.64	17.31		
Do.	3	Scandinavians, 31.1 per cent; large Finnish population	3,520	146. 44	16. 84	${ }_{2}^{2.170}$. 2320
North Dakot	1	Scandina vians, 24 per cent; Canadians, 16 per cent	1,132	146.10	16. 20	2. 159	
Do.	2	Scandinavians, 30.6 per cent; Germans, 8 per cent.	3,307	146. 93	16. 23	2. 159	. 2300
Do.	3	Scandinavians, 13.9 per cent; large Russian populatio	3,005	147. 48	16. 83	2. 172	. 2250
South Dak		Scandina vians, 15.5 per cent; Germans, 10.7 per cent	3,051	146. 80	18.54	2. 160	. 2280
Utah..	1	Scandinavians, 10.4 per cent; English, 8.3 per cent.	1,224	144.06	15. 49	2. 114	. 2330
Do.		Scandinavians, 10.5 per cent; English, 13.2 per cent.	2,781	142. 56	16. 83	2. 105	. 2300
Washington	2	Scandinavians, 13.5 per cent; Germans, 5.7 per cent; some Chinese,	6,601	145. 25	17.28	2. 140	. 2300
Wiseonsin.	1	Scandinavians, 22.3 per cent; Germans, 13.6 per cent	3,297	145. 13	16. 93	2. 130	2330
	2	Scandinavians, 10.2 per cent; Germans, 26.3 per cent	7,685	144.94	17.13	2. 140	. 2320
Finns, 10 per cent.	18		5, 664	145. 76	16. 86	2. 160	2320
Michigan.	1	Scandinarians, 23.1 per cent; large Finnish population	2,344	144. 74	16. 83	2. 2160	${ }_{2320}^{2320}$
Min	3	Scandinavians, 31.1 per cent; large Finnish population	3,520	146. 44	16.84		
Sparsely settled, not more than 3 per square mile.	8		16, 165	144.84	16.93	2. 130	2310
California	3	Sparsely settled; forelgn born, white, 17.8 per cent	2,108	144. 39	17.53	2. 116	${ }_{2}^{2310}$
Montana	2	Sparsely settled; foreign born, white, 18.1 per cent; Indians, Chinese,	6,531	146. 80	16.65	2. 150	2290
Nevada.	1	Sparsely settled; foreign born, white, 25.6 per cent; Japanese, 8.4 per cent	1,441	145. 35	17.11	2,143	2320
New Mexic		Sparsely settled; foreign born, white, 6.2 per cent.	1,857	138.20	16. 42	2. 049	. 2400
Oregon.		Sparsely settled; forcign born, white, 9.1 per cent.	1,077 1,224	145.82 14.06	15. 49	2. 2.114	. 22290
$\begin{aligned} & \text { Utah..... } \\ & \text { Wyoming } \end{aligned}$	1	Sparsely settled, foreign born, white, 11.7 per cent. Sparsely sttled; foreign born, white, 18.6 per cent	1,224 1,927	14.06 144.61	15.49 16.89	2. 1114 2. 130	. 23310
Germans and Austrians, 20 per cent plus	21		38,962	143. 27	18.05	2. 130	2330
Illinols	1	Germans, 21.2 per cent; Austrians, 4.3 per cent	6,303	143. 19	17.88		
	4	Germans, 17.4 per cent; Anstrians, 2.8 per cent.	4,236	143.02	17. 82	2.115	2330
Indiana		Germans, 17.2 per cent; Anstrlans, 4.1 per cent	3,614	142.07	18. 15	2. 113	22.50

888 8\%	

2 1	Germans, 22.3 per cent; Austrians, 2.9 per cen cent. Gerinans, 18.9 per cent; Austrians, 8.5 per cen
11	
2	Native white, native parenta
1	Native parentage, 46.7 per cent; forelgn parentage, 30.7 per cent; foreign born, white, 21.7 per cent.
3	Native parentage, 94.4 per cent; foreign parentage, 3.9 per cent; foreign born, white, l.t per cent.
1	Native parentage, 37.5 per cent; forelgn parentage, 31.4 per cent; foreign born, white, 25.5 per cent.
1	Native parentage, 60.8 per cent; foreign parentage, 21.6 per cent; foreign born, white, 17.4 per cent.
5	Nativo parentage, 60.4 per cent; foreign parentage, 20 per cent; forelgn born, white, 16 per cent.
8	Native parentage, 62.5 per cent; foreign parentage, 24.7 per cent; foreign born, white, 12 per cent.
3	Native parentage, 59.4 per cent; foreign parentage, 20.6 per cent; foreign born, white, 15.6 per cent.
1	Native parentage, 55.3 per cent; foreign parentage, 22.3 per cent; foreign born, white, 18. 6 per cent.
2	
4	Native parentage, 69.5 per cent; foreign parentage, 1 א. 2 per cent; foreign born, white, 10.7 per cent.
\times	Naife parentage, 54.1 per cent; foreign parentage, 31.5 per cent; foreign born, white, 14.2 per cent.
2	Native parentage, 76.2 per cont; foreign parentage, $16 . \mathrm{X}$ per cent; foreign born, white, 6.4 per cent.
1	Native parentage, 50.7 per cent; foreign parentage, 34.2 per cent; foreign born, white, 14.8 per cent.
2	Nativ'e parentage, 72.9 per cent; foreign parentage, 16.1 per cent: foreign born, white, 7.4 per cent.
2	Native parentage, 55.6 per cent; foreign parentage, 29.4 per cent; foreign born, white, 14.5 per cent.
2	Native parentage, 52.9 per cent; foreign parentage, 39.5 per cent; foreign born, white, 14.3 per cent.
2	Native parentage, 54.7 per cent; foreign parentage, 21.7 per cent; foreign born, white, 18.1 per cent.
7	Native parentage, 70.8 per cent; foreign parentage, 17.9 per cent; foreign born, white, 10.5 per cent.
2	Native parentage, 64.7 per cent; foreign parentage, 20 per cent; foreign born, white, 15 per cent.
6	Native parentage, 64.1 per cent; foreign parentage, 20.5 per cent: foreign born, white, 14.5 per cent.
1	Native parentage, 44.7 per cent; foreign parentage, 37.2 per cent; foreign born, white, 16.8 per cent.
All.	Native parentage, 44.5 per cont; foreign parantege, 33.7 per cent; foreign born, white, 20.2 per cent.
1	Native parentage, 57.6 per cent; foreign parentage, 22.9 per cent; foreignt born, white, 17.7 per cent.
2	Native parentage, 38 per cent; foreign parentage, 43.2 per cent; foreign born, white, 18.2 per cent.

Agriculturai, mixed foreign and native white... Colerado. Inlinois.. Iowa... Kansas... Michigan.. New Jersey New York. Ohio.. Pennsylvania. South Dakota lermont. Washington. Wisconsin.
Table V.-Mean weight, by groups and component sections, arranged in order of standing, with proportional weight for each inch of height and chest circumference (expiration) for each pound of weight; also standard deviation for cach weight; first million draft recruits-Continued

Group and section.	Group tion No	Deseription.		Mean height.	Standard deviation (height).	Mean weight. Mean height.	Mean chest. Mean height.
Germans and Anstrians, 15 per cent plus	22		126,934	Inches. 142.31	Inches. 17.73	Pounds. $\text { 2. } 120$	Inch. 0.2340
Illinois.	1	Germans, 21.2 per cent; Austrians, 4.3 per cent	6,303	143.19	17. $\times 8$	2. 123	2330
Do	4	Germans, 17.4 per cent; Austrians, 2.8 per cent.	4,236	143.02	17. N^{2}	2. 1115	. 2330
Indiana	1	Germans, 17.2 per cent; Austrians, 4.1 per cent.	3,614 12,136	${ }_{1}^{142.07}$	18.15 17.10	2. 1139	. 2350 .2300
Iowa....	1	Germans, 15.9 per cent; Austrians, 1.9 per cent.	- 7 7,601	147.64	17.31	2. 170	. 22290
Nebraska....	1	Germans, 12.2 per cent; Austrians, 3.9 per cent.	7,629	144.37	17.48	2. 120	. 2300
Do	2	Germans, 13.5 per cent; Austrians, 5.5 per cent	3, 145	14.70	17.73	${ }_{2}^{2.136}$. 2290
New Jersey	1	Germans, 14 per cent; Austrians, 4.4 per cent.	17,795	138.69	17.59	${ }_{2.111}$. 23290
Ohio..	1	Germans, 18.9 per cent; Austrians, , 5 per cent	17, 205	140.10	17.17	2. 105	. 2370
Pennsylvania	3	Germans, 5.6 per cent; Anstrians, 10 per cent...	8,892	141.05	17.02	2.116	${ }_{2350}$
Do.	7	Germans, 10.7 per cent; Austrians, 6.5 per cent.	17,243	139. 5 J	17.56	2. 093	. 2360
Wisconsil	1	Germans, 13.6 per cent; Austrians, 3.2 per cent.	3,297	145. 13	16. 93	2. 130	. 2320
Do.	2	Germans, 26.3 per cent; Λ ustrians, 1.8 per cent	7,685	144.94	17.13	2. 140	. 2323
	4	Germans, 27.1 per cent; Austrians, 4.3 per cent	2, 195	144.35	17.4S		
Russians, 10 per cent plus	16		12,076	142.30	17.21	2. 120	. 2340
Colorado.	2	Russians, 8.3 per cent; native parentage, 64.3 per cent	1.105	${ }^{142.04}$	1.50	2.094	. 2340
Kansas	1	Russians, 13.1 per cent; 1 ative parentage, 60.3 per cent	1,967	14.95	17.44	2. 122	. 22290
North Dakota		Russians, 26.7 per cent; native parcntage, 27.3 per cent	1,305 7	147.488	17.17	2. 105	. 2370
Pennsylvania. South Dakota	3 2 2	Russians, 11 per cent; native parentage, 42.5 per cent... Russians, 25.6 per cent; native parentage, 33.5 per cent.	7,305	140.10 147.22	16.15	2.170	. 22250
Mexican, sparsely settled.	14		10,779	142.14	17.36	2.090	2335
Arizona	1	Indians, Chinese, and Japancse, 36.6 per cent; Mexicans, 8.4 per cent	1,027	143.29	16.93	2.106	. 2320
Do	2	Indians, Chinese, and Japanese, 6.6 per cent; Mexicans, 7.8 per cent	2, E_{23}	142.95	17.34	2. 2096	. 2320
New M			+540	${ }_{1}^{139.01} 14.85$	17.36 17.40	2.048 2.040	
Texas.	1	Mexicans, 17.1 per cent; native parentage, 44.1 per cont.	6,676	141.85	17. 40		
Mining.	7		35,730	142.25	16. 86	2.110	. 2330
Alabama.	1	Native parentage, white, 71.5 per cent; Negro, $2 . .6$ per cent	8,841	110.81	16. 16	${ }_{2 .}^{2.071}$. 23310
Californ	2	Native parentage, white, 47.2 per cent; foreign parentage, 27.3 per cent; foreign born, white, 19.9 per cent.	943	145.84	16. 85	2.154	. 2310
Coiorado	1	Native parentage, 73.9 per cent; foreign parentage, 15.7 per cent; foreign	1,056	141.64	15.73	2. 081	. 2350
Do	3	Native parentage, 54.3 per cent; foreign parentage, 27.1 per cent; foreign	381	142.13	15. 50	2. 056	. 2330
D	6	born, white, 17.6 per cent. ${ }^{\text {a }}$ (${ }^{\text {ative parentage, } 52.4 \text { per cent; foreign parentage, } 22.9 \text { per cent; foreign }}$	1,223	139.40	16. 10	2.060	2350
Idaho		born, white, 22.4 per cen		145.31	18.29	2.133	2320
		born, white, 12.4 pe			18.65	2.150	229
Montana	1	Native parentage, 37.5 per cent; foreign parentage, 31.4 per cent; foreign	\cdots				
Nevada	1	Native parentage, 33.1 per cent; foreign parentage, 25.6 per cent; foreign	1,441	145.35	17.11	2.143	2320

$\begin{aligned} & \text { R } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { §్ } \\ & \text { ్ㅣㅇ } \end{aligned}$	్ㅣㅇ	옫	ह్	กิ	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	商	ह్రి웅్ㅐ	ํํ	$\frac{T}{\tilde{\alpha}}$	 	\%	
$\begin{aligned} & \text { B } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { id } \end{aligned}$	$\stackrel{\text { E }}{N}$	$\begin{aligned} & 8 \\ & 8 \\ & N \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { N } \end{aligned}$	$\stackrel{\text { 留 }}{N}$	$\begin{aligned} & \text { 웅 } \\ & \text { 사 } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { 合 } \end{aligned}$	8 NNai	$\underset{\sim}{8}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	\％ NNNNNNNNNNNN	荌	NNNNNNNNNNNNNNNNNNN
$\stackrel{\square}{\text { ¢ }}$	$$	$\begin{aligned} & \text { Tr } \\ & \text { od } \end{aligned}$	$\begin{aligned} & \AA \\ & \cline { 1 - 1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ल్ } \\ & \stackrel{y}{c} \end{aligned}$	$\underset{\Xi}{\Xi}$	\$	$\begin{array}{\|l} \bar{\Phi} \\ \underset{\bigotimes}{0} \end{array}$		$\begin{aligned} & \mathrm{F} \\ & \mathbf{O} \end{aligned}$	$\begin{aligned} & \text { Wo } \\ & 0 . \end{aligned}$	 	$\begin{aligned} & 2 \\ & \mathscr{y} \end{aligned}$	
$\begin{aligned} & \text { 옿 } \\ & \text { 웅 } \end{aligned}$	$\begin{aligned} & \text { } \\ & \text { \$ } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { (} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \text { a } \\ & \mathbf{y} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { did } \\ & \text { 2 } \end{aligned}$		$\begin{aligned} & \text { \&ิ } \\ & \text { z. } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{y}{\mid} \end{aligned}$	후정 พฺ	$\begin{aligned} & \text { P్ } \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \underset{~}{7} \end{aligned}$	 	\pm \vdots \pm	
	His	S	$\stackrel{\rightharpoonup}{\mathbf{9}}$	$\begin{aligned} & \text { Ex } \\ & \text { बi } \end{aligned}$	7	$\stackrel{5}{2}$	\％				 	a \vdots － $=$	

born，white， 25.9 per cent．
Native parentage， 33.1 per cent；foreign parentage， 25.6 per cent；foreign
born，white， 22 per cent．
Native parentage， 86.9 per cent；foreign parentage， 6.2 per cent；foreign
born，white， 5 per cent． Indians，Chinese，and Japanese， 36.6 per cent；Mexicans， 8.4 per cent ．
Indians， 29.1 per cent；native parentage，white， 61.1 per cent
Indians， 9.2 per cent；native parentage，white， 72.6 per cent；Negro． 13. Indians，$\times 7.2$ per cent；native parentage，white， 8.1 per cent

Negro， 70.6 per cent；native parentage，white， 28.5 per cent
Negro， 72.8 per cent；native parentage，white， 26.9 per cent
 Negro， 61 per eent；native parentage，white， 37.3 per cent． Negro， 63 per cent；native parentage，white， $31 . x$ per cent． Negro， 71.2 per cent；native parentage，white， 27.3 per cent
Negro， 47.3 per cent；native parentage，white， 51.9 per cent
Negro， 59.9 per cent；native parentage，white， 39.5 per cent Negro， 59.9 per cent；native parentage，white， 39.5 per cent

 000 $0^{-\infty} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0$
 そZZZ \＆ZZZZZZZZZZZZZZ

Table V.-Mean weight, by groups and component sections, arranged in order of standing. with proportional weight for each inch of height and chest circumference (expiration) for each pound of weight; also standard deviation for each weight; first million draft recruits-Continued.

Group and section No.	Description.	Number of men measured	Mean height.	Standard deriation (height).	Mean weight Mean height.	Mean chest. Nean height.
1		66, 885	Inches. 141.32	Inches. 17.45	J'ounds. 2.090	Inch. 0.2340
3	Native parentage, 83.2 per eent; foreign parentage, 10. x per cent; foreign	8,928	142. 13	17.23	2.094	. 2320
3	Native parentage, 82.5 per cent; foreign parentage, 11 per cent; foreign born, white 39 per cent.	18, 743	141.37	17. 80	2.083	. 2330
2	Native parentage, 73.1 per cent; foreign parentage, 17.7 per cent; foreign born, white, 7.6 per cent.	7,401	143.15	17.27	2. 106	. 2310
3	Native parentage, 78.7 per eent; forelgn parentage, 13.7 yer cent; foreign	17,600	141.27	17.46	2.085	. 2340
2	Native parentage, 79.5 per cent; foreign parentage, 9.8 per cent; foreign born, white, 7.9 per cent.	14,218	139. 3	17.06	2.095	. 2370
10		6, 161	140. 38	16. 56	2.090	. 2350
2	Native parentage, white, 86.1 per cent; foreign parentage, 7.8 per cent; foreign born, white, 5.8 per cent.	828	141.37	16. 10	2.091	. 23
2	Native parentage, white, 65.6 per cent; foreign parentage, 1.7 per cent;	1,068	140.01	6. 56	2.080	. 2360
4	foreign born, white, 1.1 per cent; Negro, 31.6 per cent. Native parentage, white, 50 per cent; foreign parentage, 1.3 per cent;	(a)	${ }^{(a)}$	(${ }^{\text {a }}$	(${ }^{\text {a }}$	(a)
3	foreign born, white, 0.8 per cent; Negro, 47.8 per cent. Native parentage, white, 51.6 per cent; forelgn parentag	1,127	38. 70	6.76	2070	. 2370
	foreign born, white, 20.9 per cent; Negro, 2 per cent.					
5	Native parentage, white, 57.1 per cent; foreign parentage, 0.9 per cent; foreign born, white, 0.7 per cent; Negro, 41.2 per cent.	254	141.27	15.86	2.087	. 2350
1	Native parentage, white, 49.5 per cent; foreign parentage, 3.6 per cent; foreign born, white, 2.8 per cent; Negro, 44 per cent.	2,886	140.82	17.25	2.091	.2330
12		21, 254	140.24	16.05	2.051	. 2367
1	Native parentage, white, 96.4 per cent; foreign parentage, 0.7 per cent;	4,033	139.92	15.26	2.051	. 2370
1	Native parentage, white, 90.8 per cent; foreign parentage, 0.5 per cent;	2, 738	41.	5.96	2.056	. 2380
1	Native parentage, white, 67.8 per cent; foreign parentage, 0.4 per cent; foreign born, white, e. 3 per cent; Negro, 31.4 per cent.	1,564	140.	16.72	2.060	. 2350
3	Native parentage, white, 89.5 per cent; foreign parentage, 1.1 per cent;	5,900	140.02	16. 43	2.050	. 2350
\pm	Native parentage, white, 88 per cent; foreign parentage, 0.9 per cent; foreign born, white, 0.8 per cent; Negro, 10.2 per ceut.	5,512	140.02	15.94	2.055	. 2380
1	Native parentage, white, 86.8 per cent; foreign parentage, 3.7 per cent; foreign born, white, 4.8 per cent; Negro, 4.5 per cent.	1,507	140. S^{5}	16.45	2.072	. 2360

Native white of Scotch origin.
Kentucky.
Eastern manulacturing.
Connectieut..
Massachusetts... New Hampshire. New Jersey.. New lork. Ohio..
Pennsyivania.
Rhodie Island.
French-Canadians, 10 per cent
Maine.
Massachusetts...
i)
Rhode Island.

ARMY ANTHROPOLOGY.

			\%
	88888		\%
8859			
	${ }_{\text {g }}^{8}$		8E

German and Austrian, 20 per cent plus,

Table V'I.-Mean chest girth by groups and component sections, arranged on order of standing, with proportional chest circumference (expiration) for each inch of

Group and section.	Group and section No.	Description.	Number of men measured	Mean height.	Standard deviation (height).	Mean weight. Mean height.	Mean chest. Mean height.
German and Austrian, 15 per cent plus.	22		126, 895	Inches. 33. 33	Inches. 2.06	Pounds. $.4954$	Inch. 0.2340
Illinois.	1	Germans, 21.2 per cent; Austrians, 4.3 per cent	6,303	33. 38	2.02	. 4950	. 2330
Do.	4	Germans, 17.4 per cent; Austrians, 2.8 per cent.	4,236	33.40	2.03	. 4940	. 2330
Indiana	1	Germans, 17.2 per cent; Austrians, 4.1 per cent.	3,614	33. 45	2. 12	. 4970	. 2350
Iowa.	1	Germans, 15.9 per cent; Austrians, 1.9 per cent.	12, 136	33. 54	1. 93	- 4920	. 2300
Minnesota	2	Germans, 22.3 per cent; Austrians, 2.9 per cent	7,601	33. 86	1.93	. 4970	. 2290
Nebraska.	1	Germans, 12.2 per cent; Austrians, 3.9 per cent	7,629	33.17	1.93	. 4880	. 2300
Do.	2	Germans, 13.5 per cent; Austrians, 5.5 per cent	3,145	33. 41	1. 95	. 4890	. 2290
New Jersey	1	Germans, 14 per cent; Austrians, 4.4 per cent.	17,795	33. 19	2.12	. 4970	- 2390
Ohio...	1	Germans, 18.9 per cent; Austrians, 8.5 per cent	17, 208	33. 20	2. 08	- 4950	. 2340
Pennsylvania	3	Germans, 5.6 per cent; Austrians, 10 per cent...	7,305	33. 32	2. 10	. 5000	. 2370
Do.	5	Germans, 4.5 per cent; Austrians, 11.4 per cent	8,892	33.15	1. 98	. 4970	. 2350
Wisconsin	7	Germans, 10.7 per cent; Austrians, 6.5 per cent.	8, 616	33. 01	2.08	- 4950	. 2360
W isconsin	1	Germans, 13.6 per cent; Austrians, 3.2 per cent.	3,297 7,685	33.68 33.56	1.89 1.97	.4940 .4950	.2320 .2320
Do	4	Germans, 27.1 per cent; Austrians, 4.3 per cent	2,895	33. 73	2.01	. 5000	- 2340
Mountain.	11		17, 103	33.33	1.96	. 4921	. 2330
Arkansas.	2	Native parentage, white, 96.9 per cen	1,559	33. 29	1. 80	. 4840	2360
Massachusett	1	Native parentage, 46.7 per cent; foreign parentage, 30.7 per cent; foreign born, white, 21.7 per cent.	1,373	32.90	2.09	. 4920	. 2370
Missouri.	3	Native parentage, 94.4 per cent; foreign parentage, 3.9 per cent; foreign born, white, 1.4 per cent.	1,139	33.30	1.76	. 4850	. 2340
Montana	1	Native parentage, 37.5 per cent; forcign parentage, 31.4 per cent; foreign born, white, 28.5 per cent.	5,117	33.31	1.93	. 4910	. 2290
New Hampshire	1	Native parentage, 60.8 per cent; foreign parentage, 21.6 per cent; foreign born, white, 17 . 4 per cent.	665	33.72	2.09	. 5010	. 2380
New York.	5	Nativc parentage, 60.4 per cent; foreign parentage, 20 per cent; foreign born, white, 16 per cent.	795	33.17	2.01	. 4930	. 2380
Do.	8	Native parentage, 62.5 per cent; foreign parentage, 24.7 per cent; foreign born, white, 12 per cent.	2,990	33.34	2.00	. 4970	. 2370
Washington.	3	Native parentage, 59.4 per cent; foreign parentage, 20.6 per cent; foreign born, white, 15.6 per cent.	1,539	33.62	1.83	. 4930	. 2300
W yoming	1	Native parentage, 55.3 per cent; forcign parentage, 22.3 per cent; foreign born, white, 18.6 per cent.	1,927	33.38	1.89	. 4920	. 2310
Commuters.	6		28,980	33.25	2.09	. 4970	. 2380
Illinois.	1	Native parentage, 34.6 per cent; foreign parentage, 38.2 per cent; foreign born, white, 23.9 per cent.	6,303	33.38	2.02	- 4950	. 2330
New Jersev.	1	Native parentage, 28.7 per cent; foreign parentage, 37.5 per cent; foreign born, white, 31.5 per cent.	17,795	33.19	2.12	. 4970	. 2390
New York.	1	Native parentage, 44.7 per cent; foreign parentage, 27.6 per cent; foreign born, white, 24.6 per cent.	4,934	33.16	2.08	. 4970	. 2380

vite	$016{ }^{*}$	11 亿	¢ ¢	s $6^{4} \mathrm{E}$	ид！ 	1
0．\％．	026 ${ }^{-}$	86.1	¢1 E8	268.8	из！ 	g
Ofer	0566 ${ }^{\text {－}}$	50%	$0 ¢ 88$	$800^{\prime 2} 1$	 	1
On¢．	$0 \times 6{ }^{\circ}$	20 亿	\％ε	OSt＇s	 	ε
068.	026\％${ }^{\circ}$	21\％	61 ＇ 8	962＇21	แษ！ 	I
O¢E．	$086{ }^{-}$	00 て	86 て8	Scg＇t	 	z
0178.	026t＊	10 \％	¢1 を8	LH＇si	 	Z
O¢E．	$066{ }^{-}$	$00^{\text {\％}}$	＋¢ ¢ \％	80L＇ 8		z
Cote	$026{ }^{-}$	S0 \％	0\％＇\％	$865^{\prime} 18$		g
OtE － $0 \approx \approx$ ．	0285 $0 \cdot \mathbf{s t}$ 06st \qquad	$\begin{aligned} & 86.1 \\ & 58.1 \\ & 66.1 \\ & 16.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 z \cdot \varepsilon \varepsilon \\ & \varepsilon 97 \varepsilon \\ & 9 \% \cdot \varepsilon \\ & 8 \varepsilon \cdot \varepsilon \varepsilon \end{aligned}$		 	$\begin{array}{\|l} 1 \\ 8 \\ 8 \end{array}$
E¢\％．	list．	66.1	are	190＇11		H
00°	0166^{*}	$22 \cdot 1$	H－E¢	E9S	 	ε
asz	$036{ }^{\text {．}}$	00%	¢1 ¢	LZE ${ }^{\text {\％}}$	 	＋
0̇E．	000s．	017	\％8\％	50c 2	 	ε
$0 \varepsilon^{\circ}$	026t＊	80%	92 ＇$\%$	Itr ${ }^{\text {d }}$	 	1
06π ．	016t＊	$\varepsilon 6$＇I	I¢ ¢ ¢	$211{ }^{\text {¢ }}$	 	I
0zer	006t．	10 亿	H2 ¢ ¢	180 ＇t	 	I
ORE	OH5＊＊	68.1	62 z\＆	$\varepsilon \chi^{\prime} \mathrm{I}$	 	9
0 0er	0285＊	$98 \cdot 1$	12 \％	I8E	 	ε
OSE．	06st．	$4 \cdot \mathrm{~T}$	\％$\varepsilon^{\text {¢ }}$ ¢	9：0 1	 	1
$\begin{aligned} & \text { OLE } \\ & \text { OEF } \end{aligned}$	$\begin{aligned} & 0665^{\circ} \\ & 0+85^{\circ} \end{aligned}$	${ }_{18}^{28}{ }^{2 \circ} 1$	$\begin{aligned} & 18{ }^{\circ} \mathrm{E} \varepsilon \\ & \varepsilon 6 \\ & \hline \end{aligned}$	$\sum_{1+8<8}^{8 E 6}$	 	${ }^{\square}$
O＋E．	6ifit ${ }^{\text {－}}$	26.1	£z＇$¢$	169 ＇s		

ARMY ANTHROPOLOGY.

Group and section.	Group and section No.	Description.	$\begin{aligned} & \text { Number } \\ & \text { of men } \\ & \text { measured. } \end{aligned}$	Mean height.	Standard deviation (height).	Mean weight. Mear height.	Mean chest. Mean height.
Mountain white................................	12	Native parentage, 96.4 per cent; foreign parentage, 0.7 per cent; foreign born, white, 0.3 per cent; Negro, 2.5 per cent.	12, 1.54	Inches. $\text { 33. } 20$	Inches. 1. 87	Pounds. $\text { - } \$ 62$	Inch. 0.2367
Kentueky	1		4,033	33. 19	1. 80	. 4860	. 2370
North Carolina	1	Native parentage, 90.8 per cent; foreign parentage, 0.5 per cent; foreign born, white 0.2 per eent: Negro, 8.3 per cent.	2,738	33.64	1. 82	. 4890	.23:0
South Carolina	1	Native parentage, 67.8 per cent; foreign parentage, $0 . \ell$ per cent; foreign born, white, 0.3 per cent; Negro, 31.4 per cent.	1,564	32.97	1.83	. 4840	. 23.50
Tennessee.	3	Native parentage, 89.5 per cent; foreign parentage, 1.1 per cent; foreign	5,900	32.93	1.85	. 4810	. 2350
Virginia	4	Native parentage, 88 per cent; foreign parentage, 0.9 per cent; foreign born,	5,512	33.34	1.87	. 4890	. 23.80
West Virginia	1	Native parentage, 86.8 per cent; foreign parentage, 3.7 per cent; foreign	1,507	33. 20	1. 87	. 4850	. 2360
Agricultural, Negroes, 45 per cent plus. . .	1	born, white, 4.8 per cent; Negro, 4.5 per cent	49, 465	33. 19	1.91	. 4894	. 2340
Alabama	2	Negro, 70.6 per cent; native parentage, white, 28.5 per cent Negro, 72.8 per cent; native parentage, white, 26.9 per cent Negro, 55.3 per cent; native parentage, white, 41.7 per cent. Negro, 61 per cent; native parentage, white, 37.3 per cent. Negro, 63 per cent; native parentage, white, 31.8 per cent. Negro, 71.2 per cent; native parentage, white, 27.3 per cent. Negro, 47.3 per cent; native parentage, white, 51.9 per cent. Negro, 59.9 per cent; native parentage, white, 39.5 per cent Negro, 62.2 per cent; native parentage, white, 35.7 per cent Negro, 44.2 per cent; native parentage, white, 54.5 per cent Negro, 51.1 per cent; native parentage, white, 37.3 per cent Negro, 49.6 per cent; native parentage, white, 46.6 per cent.	3,3276694,94510,0704,0745,1494,5703,9753,8042,2181,3465,352	33.2733.1633.1833.3333.2933.2433.1533.2033.0532.9033.3533.07	$\begin{aligned} & 1.90 \\ & 1.84 \\ & 1.95 \\ & 1.91 \\ & 1.97 \\ & 1.88 \\ & 1.91 \\ & 1.85 \\ & 1.85 \\ & 1.84 \\ & 2.05 \\ & 1.89 \end{aligned}$.4890.+860.4870-4900-4910.4880-4890-4900-4910-4830.4870.4900	.2330.2290.2330.2360.2360.2310.2330.2340.2380.2320.2310.2300
Do...	4						
Arkansas	1						
Louisiana	1						
Missisippi.	1						
North Carolina	4						
South Caroli	2						
Do...	3						
Tennessee	5						
Virgini	2						
Agricultural, native white, North; native white over 73 per cent North.	1		66, 836	33.13	1.99	. 4900	. 2340
Illinois	3	Native parentage, white, 83.2 per cent; foreign parentage, $10 . \S$ per cent: foreign born, white, $4 .+$ per cent. Native parentage, white, $\$ 2.5$ per cent: foreign parentage, 11 per cent; foreign born, white, 3.9 per cent. Native parentage, white, 73.1 per cent; foreign parentage, 17.7 per cent; foreign born, white, 7.6 per cent. Native parentage, white, 78.7 per cent; foreign parentage, 13.7 per cent; foreign born, white, 4.8 per cent. Native parentage, white, 79.5 per cent; foreign parentage, 9.8 per cent; foreign born, white, 7.9 per cent.	8,928	33.07	1.94	. 4870	. 2320
Indiar	3		' 18,743	33.06	2.00	. 4870	. 2330
lowa	2		7,401	33.20	1.92	. 4880	. 2310
Ohi	3		17,606	33.13	2.00	. 4890	. 2340
Pennsylvan	2		14,218	33.18	2.02	. 4970	. 2370
Indians, sparsely settled	13		10,038	33.13	1.89	. 4860	. 2340
Arizona	1	Indians, Chinese, and Japanese, 36.6 per cent; Mexicans, 8.4 per cent Indians, 29.1 per cent; native parentage, white, 61.6 per cent.............. Indians, 87.2 per cent; native parentage, white, 8.1 per eent Indians, 9.2 per cent; native parentage, white, 72.6 per cent; Negro, 13.7 per eent.	1,027	33.28	1. 91	- 4990	. 2320
New Mexico	1		${ }_{2}^{293}$	33. 25	1.84 1.74	+940 +950	.2390 .2200
South Dakot	3		8, ${ }_{271}$	33.74 33.09	1.74 1.87	+950 -4850	. 2230 .2330
Oklahoma	1		8,471	33.09	1.87	. 4850	. 2330

French-Canadians, 10 per cent. Native parentage, G4.7 per cent; foreign parentage, 18.2 per cent; foreign
. 2397
\%

Table VII.-Correlation between height and weight: Group 1, agricultural, North, natire white, 7.3 per cent plus, first million ilraft recruits

Height, in inches.	Total.	1									Weight, in pounds.												
		95-99	$\begin{gathered} 100- \\ 104 \end{gathered}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	110-114	115-119	$120-124$	12:-129	13i-134	13i-139	140-144	145-149	150-154	150-159	160-164	165-169	170-174	$\begin{gathered} 175- \\ 179 \end{gathered}$	$\begin{array}{\|c} 180- \\ 184 \end{array}$	$\begin{gathered} 185- \\ 1 \times 9 \end{gathered}$	${ }_{192}^{190-}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{aligned} & 200 \\ & \text { and } \\ & \text { over. } \end{aligned}$
9.	245	1		3	12	19	22	23	25	26	22	27	23	15	11	6	4	2	2		1		1
0.	178		5	7	16	26	20	18	22	16	8	9	7	9	7	2	1	2			1	2	
,	418	1	31	${ }_{78}$	127	$\stackrel{45}{156}$	174	104	92	59	42	14	${ }_{21}$	12	11	7		1	2	1		2	
,	2,082	2	21	77	239	352	313	333	262	175	111	59	51	24	19	14	11	7	1	1	6	1	3
,	3,706	1	23	120	297	500	567	560	545	379	228	177	103	49	51	43	25	9	5	13	4	5	2
	5,959	2	23	87	285	${ }^{620}$	809	976	899	731	531	365	232	${ }_{270}^{136}$	104	58	54	34	17	12	7	6	1
6	8,415		20	76	264	633	963	1,166	1,224	1,232	948	662	451	270	165 259	112	85	56	24	${ }_{38}^{23}$	17	9	15 20
7	10, 181		3	${ }_{2}^{40}$	178 97	469	800 596	1,271	1,601 1,362	1, 5150	${ }_{1}^{1,275}$	+ 9928	675 869	464 637	259 434	199 276	131 172	74 117	54 95	38 50		$\stackrel{24}{24}$	50
8.	10,444 8.956			22 9	97 40	260 134	${ }_{322}^{596}$	1,029 620	1,362	1,600	1, 1,305	1,225	869 950	637 685	$\stackrel{+34}{504}$	${ }_{360}^{276}$	172 200	${ }_{141}^{117}$	95 91	${ }_{6} 5$	${ }_{63}$	$\begin{array}{r}32 \\ 38 \\ \hline\end{array}$	74
9,	${ }_{6} 6.709$		1	${ }_{3}$	20	148	141	357	539	, 857	${ }^{1} 897$	${ }^{1} 904$	820	600	490	343	224	144	92	62	73	36	
1.	4, 254		2		4	16	54	104	259	406	511	559	557	493	390	308	193	115	88	49	52	29	${ }_{6}^{65}$
	2,456			4	4	3	16	43	99	172	257	293	312	307	281	230	147	93	56	46	30	26	$\begin{array}{r}37 \\ 3 \\ \hline\end{array}$
	1,109						1	13	26	51	92	113	138	148	111	113	95	57	46	34	19	19	33 17
	472		1	1	1		1	1	9	10	30	38	68	47	53	46	57	42	${ }_{10}^{22}$	12		8	17
	154		1					1	4				12		114	18	17 10	20 6	10	12 5	$\stackrel{4}{5}$	$\stackrel{4}{2}$	
	79					1					2	1	1		11	3	$\begin{array}{r} 10 \\ 3 \end{array}$	1	$\begin{aligned} & 7 \\ & 2 \end{aligned}$		1	2	
	15								2	2	1	1	3		1	1		1				1	
	26						3	i	1	1	2	2	2	3	2	2	2	1	1	1			2
Total..	66,885	8	144	566	1,648	3,313	4,863	6,669	7,979	¢, 3.38	7,788	6,634	5,315	3,934	2,927	2,156	1,437	925	615	426	357	246	397

Table VIII.-Correlation between height and chest circumference (expiration): Group 1, agricultural, North, native vhite, ~ 3 per cent plus, first million draft

Table IX.-Correlation between weight and chest circumference (expiration): Group 1, agricultural, North, native white, first million draft recruits,

Table X.-Correlation between height and weight: Group 2, agricultural, mixed foreign and native white, North, first million draft recruts.

Height, in inches.	Total.	Weight, in pounds.																					
		9i-99	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	110-114	115-119	120-124	125-129	130-134	13-139	140-144	14:-149	150-154	155-159		165-169	$170-174$	175-179	$\begin{gathered} 180- \\ 184 \end{gathered}$	$\begin{aligned} & 185 \\ & 159 \end{aligned}$	$\begin{aligned} & 190- \\ & 190 \end{aligned}$	$\begin{array}{\|c} 192- \\ 199 \end{array}$	${ }_{204}^{200}$
59.	319	1	4	7	20	18	29	43	36	27	39	27	17	15	12	12	${ }^{6}$	2		2		2	
60.	${ }^{293}$		10	23	37	29	31	36	29	15	${ }_{28}^{22}$	13	12	17	4	6	${ }^{2}$	1	3			1	1
61.	- 668	4	15 28	54 69	1102	${ }_{22} 10$	108	${ }_{227}^{88}$	$\begin{array}{r}54 \\ 175 \\ \hline\end{array}$	37 89	28 59	19 46	$\stackrel{22}{22}$	10 16	7	4	1 6	3 3	4	1	3 2	4	1
63.	3, 221	1	38	113	298	437	504	471	418	276	168	107	64	34	34	17	18	7	5	2	1	4	
64.	5,522		36	109	3×3	605	833	885	824	619	448	304	194	104	56	45	23	19	12	11	,	6	5
65.	8,667	1	27	97	332	752	1,055	1,306	1,320	1,180	911	611	394	247	151	$\stackrel{99}{9}$	${ }_{91}^{55}$	41	25	13	${ }_{31}^{11}$	13	${ }^{6}$
66.	12,253		11	97	253	721	1,263	1,705	1,846	1,848	1,431	1,071	768	428	307	203	91	76	4.4	57	31	14	31
67.	14, 476		15	27	152	507	1,004	1,633	1,947	2,340	2,019	1,565	1,155	716	499	325	200	122	74	57	42	36	31 59
68.	15, 014		13	22	96	308	697	1,225	1,731	2,185	2,154	2,006	1,521	1,076	699	476	248	189	99	8	$\stackrel{0}{0}$	${ }^{3.5}$	${ }_{86}$
69.	12, 805	1	4	8	32	118	365	752	1,205	1,703	1,744	1,798	1,498	1,170	830	578	${ }_{363}^{34}$	218	148	${ }^{93}$	${ }_{6}^{62}$	50 49	${ }_{95}^{86}$
70.	9, 835		4	13	20	46	139	336	708	1,019	1,366	1,420	1,312	1,014	810	568	333	221	157	108	67	49	95
71.	6,471		1	8	3	8	49	141	284	487	694	874	940	778	${ }_{689}$	513	353	230	133	98	62	38	83
72.	3,597			1		7	13	34	103	207	298	391	471	487	434	332	269	210	112	73	58	31	76
73.	1,737				3		1	8	24	49	119	174	219	223	224	209	154	110	79	42	${ }_{21}^{25}$	${ }_{14}^{28}$	4
74.	722			1		1	2	2	7	10	27	47	88	76	${ }_{39}^{93}$	87	9.5 40	${ }_{6}^{62}$	$\stackrel{41}{25}$	2	${ }_{21}^{81}$	1	${ }_{14}^{21}$
75.	293				1	2	1	1	2	3		17	18	32	39	42	40	$\stackrel{24}{1}$	25	8	,	10	14
76	114				2	1	1		2	2	3	8			14	11	17	1	12	$\begin{aligned} & 7 \\ & 2 \end{aligned}$	2	${ }_{3}^{4}$	4
77.	39 30		1				1		1		2 3	2	3 4	1	3	3 2	4	4	4	2		3	6
79	42			1		1	1	2	2	4	1	3		2	4	2	3	4	2	1	2	1	6
Total	97,340	12	207	650	1,951	3,859	6,334	8,893	10,718	12,104	11,542	10,508	8,728	6,455	4,916	3,548	2,332	1,556	952	635	448	350	562

Table XI.-Correlation between height and chest circumference (expiration): Group 2, agricultural, mixed foreign and natice white, North, first million draft

Height in inches.	Total.	Chest, in inches.										
		29	30	31	32	33	34	35	36	37	38	39
59.	313	11	16	29	77	62	37	40	19	12	2	8
${ }_{60}^{60}$	${ }_{667} 297$	17	28	+17	19 115	54	47	31 59	16	7	$\frac{1}{7}$	3
62.	1,420	${ }_{69}$	141	${ }_{243}^{123}$	319	${ }_{278}^{124}$	197	93	51	16	6	$\frac{3}{7}$
63.	3,028	115	301	503	639	608	413	240	109	62	15	20
64.	5,524	207	470	822	1,123	1,166	831	487	23.3	102	41	37
65.	8,680	258	604	1,211	1,749	1,750	1,422	${ }^{877}$	451	219	82	57
${ }_{67}^{66}$	12, 255	${ }_{237}^{258}$	770	1,640	${ }_{2,636}$	3, 2,54	2,065 2,613	1,719	${ }_{996}^{67}$	+314	192	116 166
65.	15, 014	203	642	1,468	2,556	3,128	2,844	2, 053	1,173	505	274	165
69.	12, 802	124	420	1,121	2,042	2,637	2,577	1,818	1,115	540	239	169
70.	9, 828	71	247	726	1,410	1,996	2,013	1,603	920	472	207	${ }^{163}$
71	6,468	40	157	401	835	1,242	1,384	1,124	643	356	157	129
72.	3,599	22	61	163 62	475	${ }^{661}$	712 360	616 349	482	237 130	105	19 36
74.	1,737	12 3	18	${ }_{19}^{62}$	175	103	(360	349 143	${ }_{127}^{24}$	${ }_{6} 130$	${ }_{33}^{57}$	36 16
75.	294	1	4	7	24	41	53	56	49	33	15	11
76	114		2	2	12	13	19	28	17	12	4	5
778	38			2	2	5	5	9	${ }_{3}^{7}$	2	1	
79	45	2	2	2		5	10		3	${ }_{3}^{3}$	1	3
Total	97,338	1,693	4,696	10, 247	16, 749	19, 807	17, 829	12,632	7,363	3,541	1,576	1,205

Table XII.-Correlation between weight and chest circumference (expiration): Group 2, agricultural, mixed foreign and native white, North, first million draft

Chest circumference in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-1}$	$\begin{aligned} & 100- \\ & 10-1 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	$\begin{array}{r} 110 \\ 114 \end{array}$	$\begin{aligned} & \text { 115- } \\ & 119 \end{aligned}$	$\begin{gathered} 120- \\ \hline 20- \end{gathered}$	$\begin{aligned} & 125- \\ & 129 \end{aligned}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{gathered} 135- \\ 139 \end{gathered}$	$\begin{gathered} 140- \\ 144 \end{gathered}$	$\begin{gathered} 145 \\ 149 \end{gathered}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\underset{159}{155-}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\underset{174}{170-}$	$\begin{gathered} 175 \\ 179 \end{gathered}$	$\begin{aligned} & 180- \\ & 184 \end{aligned}$	185	$\begin{aligned} & 190- \\ & 198 \end{aligned}$	$\begin{gathered} 195- \\ 198 \end{gathered}$	$\begin{aligned} & 300-1 \\ & 204 \end{aligned}$
29.	1,005	8	73	169	323	367	312	187	112	45	30	18	s	4	6	1	7	2			1	11	
0.	4,697	4	54	201	${ }^{33} 9$	878	923	808	586	370	181	65	34	10	\%	9	7	8					2
1	10,248 16,750		36 16	1378	${ }_{300}^{552}$	1,151	1,702	1,951	1,743	1,390	745	+430	159	${ }^{92}$	+75	19	13	9	\pm	3	1	5	2
3.	19, 116		11	21	150	353	1,079	1,096	2, 809	3, 379	3 3,308	2,627	1,853	1,018	559	305	129	59	15	10	3	2	1
4	17, 27	1	6	13	35	127	404	915	1,637	2,387	2, 808	2,954	2, 453	1,725	1,084	638	348	140	69	35	16	11	1
3.	12,629		6	4	13	46	119	260	613	1,078	1,543	1,883	1,912	1,683	1,382	974	509	309	158	76	36	21	
6	7,366		7	6	8	10	34	67	153	325	543	817	1,003	997	999	809	620	434	246	128	81	45	34
7.	3,537		3	6	3	10	7	16	40	72	135	225	345	401	458	460	387	318	247	168	109	58	69
8.	1,574		9	7	5	2	4	8	6	17	30	45	88	92	154	182	199	171	150	128	86	80	111
9.	653		8	6	11	13	4	4	4	3	4	11	14	26	33	47	67	70	52	65	59	59	93
	537		8	9	12	10	15	5	9	3	6	6		15	12	8	11	23	29	40	47	49	212
Total.	97, 319	13	237	657	1,951	3, 898	6,337	8, 879	10, 753	12,044	11,533	10,504	8,740	6, 449	4,917	3,345	2,342	1,560	978	659	41	3:2	530

Number of cases: 97,319 . Weight: Mean, 142.76 pounds; standard deviation, 17.27 ± 0.03 pound. Chest circumference (expiration): Mean, 33.38 inches; standard deviation, 2.01 ± 0.003
inch. Correlation: $0.67 \pi \pm 0.0012$.
Table XIII.-Correlation between height and weight: Gioup 3, agricultural, native white, South, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	$\begin{gathered} 100- \\ 104 \end{gathered}$	$\begin{gathered} 105- \\ 109 \end{gathered}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\begin{aligned} & 120- \\ & 124 \end{aligned}$	$\begin{aligned} & 12 i-2 \\ & 129 \end{aligned}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{aligned} & 145- \\ & 149 \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 150- \\ & 159 \end{aligned}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	$\begin{gathered} 175- \\ 179 \end{gathered}$	$\begin{array}{\|c\|c} 180- \\ 184 \end{array}$	$\begin{aligned} & 185- \\ & 199 \end{aligned}$	$\begin{array}{\|c} 190- \\ 191 \end{array}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	${ }_{200}^{200-}$
59.	316	1	6	8	16	18	21	32	37	42	29	27	24	12		17	12		2	2			
60	235	1	8	15	23	19	20	17	20	25	29	11	12	14	12			1	1				
61	510	3	20	32	74	78	70	${ }^{36}$	48	38	20	18	11	11	${ }^{7}$	6	${ }_{5}^{5}$	1	2	1	3	5	1
62	-997	3	${ }_{35}^{20}$	${ }^{67}$	142	${ }_{382}^{170}$	155	${ }_{320}^{133}$	98 260	72 183	44 114	${ }_{84}$	20	20	19	10	2	3	3	3	4	3	
66	4,436	2	43	149	399	631	746	653	635	460	268	155	112	64	46	19	17	14	9	4	4	4	
65	8,243	,	48	168	481	972	1,202	1,356	1,205	1,019	637	461	265	158	98	${ }^{6.3}$	44	19	16	8	7	${ }^{6}$	
66	12,605	2	31	110	443	993	1,568	1,997	2,002	1,811	1,253	872	552	364	216	150	97	50	${ }_{5}^{35}$	16	38	${ }_{22}^{23}$	12
67	16, 212	1	17	89	321	891	1,592	2,210	2, 517	2,440	2, 046	1,487	-996	${ }_{599}^{575}$	${ }_{645} 33$	${ }_{409} 23$	140	105	${ }_{68}^{56}$	${ }_{6}^{58}$	- ${ }_{38}$	22 38	40
68	18,685			37	190	529	1,291	2,042	2,748	2,906	2, 581	${ }_{2}^{2,176}$	1, 1 , 723	1,240	816 816	${ }_{5}^{636}$	304	199	126	101		44	85
70	14,170		${ }_{8}^{8}$	${ }_{8} 8$	37	113	${ }_{37}$	-763	1,374	1, 851	2,074	2,016	1,735	1,241	939	596	345	221	149	96	78	45	108
71	9,857		4	4	6	47	113	324	685	1,047	1,345	1,424	1,371	1,069	789	569	350	245	145	121	68	40	
72	6,007	-	6		6	13	43	114	271	497	728	766	859	715	${ }^{616}$	417	321	230	132	76	${ }^{56}$	35	76
73	3,109			3	1	1	11	32	68	176	301	377	438	408	343	319	215	14	93	55	31	29	64
74	1,358			1	1	1	3	2	26	53	79	128	171	189	168	139	128	90	${ }_{31}^{55}$	4	23	2	37
75.	588				1	1	4	${ }_{2}$		10	30	40	$\stackrel{64}{17}$	${ }_{36}^{81}$	71 20	$\begin{array}{r}73 \\ 39 \\ \hline\end{array}$	60 30	50 18	31 17	19 12	11 5	$\stackrel{8}{7}$	11
77	247				1		2	2		$\stackrel{3}{2}$	4	7	3	${ }_{6}$	5	11	12	8	3	1	5	2	
78.	59								+	2	7	7	3	-	7	,	8	3	3	2		2	
79.	59						2		2	10	11	7	6	1	4	2	3	1		2		3	
Total	117,548	18	259	841	2,503	5,149	8,371	11,547	14, 180	15, 252	14, 171	12,373	9,884	7,207	5,175	3,657	2,352	1,549	947	688	438	340	647

Number of cases: 117,548 . Height: Mean, 68.18 inches; standard deviation, 2.64 ± 0.004 inch. Weight: Mean, 141.44 pounds; standard deviation, 16.83 ± 0.023 pound.
TAble XIV.-Correlation between height and chest circumference (expiration): Group s, agricultural, native white, South, first million draft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95}$	${ }_{104}^{100-}$	$105-$ 109	${ }_{114}^{110}$	${ }_{119}^{115}$	${ }_{124}^{120}$	$125-$ 129	${ }_{134}^{130-}$	135 139	(140-	145 199	${ }_{\substack{150 \\ 154}}$	${ }_{159}^{155}$	$\begin{aligned} & 160 \\ & 164 \end{aligned}$	${ }_{169}^{165-}$	${ }_{177}^{170-}$	${ }_{179}^{175-9}$	$\begin{gathered} 180- \\ 184 \end{gathered}$	$\xrightarrow{185}$	${ }_{19}^{190}$	${ }_{199}^{195}$	${ }_{204}^{200-}$
29.	2,384	13	96	261	447	527	406	294	147	69	44					,				${ }_{3}^{3}$		10	1
	-6, 4 , 628	${ }_{2}^{4}$	${ }_{46}$	${ }_{171}^{251}$	674	1,588	2,383	${ }_{2}^{1,792}$	2,596	1,969	1,208	647	277	130	65	${ }^{32}$	18	12	1	1	2		3
	${ }^{22,423}$		22	78	${ }_{3}^{396}$	1,094	$\xrightarrow{2,215}$	3,444	$\stackrel{4}{4} 215$	3, ${ }^{\text {, }} 323$	2, ${ }^{235}$	-1,968	1,161	${ }_{1}^{528}$	${ }_{779}^{273}$	130	$\begin{gathered} 64 \\ 182 \end{gathered}$	${ }_{79}^{25}$	${ }_{24}^{12}$	${ }^{7}$	${ }_{10}^{10}$	${ }_{7}^{2}$	${ }_{2}^{2}$
	20,839		5	7	36	163	${ }^{435}$	${ }^{1,018}$	1,926	2, 866	3,301	3,327	2, 767	1	1,368	${ }_{8} 89$	422	${ }_{213}^{213}$	${ }^{94}$	${ }_{3}^{53}$	${ }_{2}^{22}$	9	$\stackrel{+}{4}$
35.	13, 231		$\begin{aligned} & 6 \\ & { }_{3}^{6} \end{aligned}$	8	${ }^{8}$	${ }_{17}^{31}$	113 29	${ }_{66}^{275}$	$\underset{156}{653}$	${ }^{1,203}$	${ }^{1,652}$	1, ${ }_{733}$	${ }^{2,900}$	$\xrightarrow{1,792}$	1,908	${ }_{729}^{978}$	${ }_{588}^{580}$	${ }_{405}^{34}$	${ }_{235}^{197}$	${ }_{171} 99$	${ }_{96}^{43}$	+19	${ }_{34}$
${ }^{36}$	6,901		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	12	11	6	18	25	${ }_{6} 6$	128	178	248	${ }_{321}$	${ }_{333}$	360	303	270	185	160	102	69	74
	2, 1		3	${ }_{5}^{4}$	$\stackrel{3}{4}$	5	7		14	18	17	27	54	78	117	127	137	129	129	106	91	${ }^{93}$	${ }^{134}$
												14		19		${ }_{9}^{30}$	${ }_{12}^{44}$	${ }_{23}^{46}$	15	${ }_{23}^{43}$	${ }_{2}^{40}$	${ }_{32}^{44}$	${ }_{205}^{108}$
	483	.	1	14	5	9	6			5	5		5										
Tot	117,449	21	269	856	2,487	5,137	8,380	11,507	14,159	15,231	14, 165	12,385	9, 854	7,206	5,172	3,657	2,362	1,551	941	691	439	333	646

Table XV.-Correlation between weight and chest circumference (expiration): Group 3, agricultural, native white, South, first million draft recruits.
Table XVI.-Correlation between height and weight: Group 4, agricultural, Negro, 45 per cent plus, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		$\begin{gathered} 95- \\ 99 \end{gathered}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105 \\ & 109 \end{aligned}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\stackrel{115}{115}$	$\begin{gathered} 120- \\ 120 \end{gathered}$	$\begin{aligned} & 125- \\ & 129 \end{aligned}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	$\begin{aligned} & 135- \\ & { }_{139} \end{aligned}$	$\begin{gathered} 140- \\ 1+4 \end{gathered}$	$\begin{aligned} & \left.\begin{array}{r} 145- \\ 1+9 \end{array}\right) \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{gathered} 155 \\ 159 \end{gathered}$	$\begin{aligned} & 160- \\ & 360 \end{aligned}$	$\begin{gathered} 165- \\ 169 \end{gathered}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	$\begin{gathered} 175- \\ 179 \end{gathered}$	$\begin{gathered} 180- \\ 1: 4 \end{gathered}$	$\begin{gathered} 185-9 \end{gathered}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\frac{200-}{304}$
	166 132	$\frac{1}{3}$	1	${ }_{16}^{2}$	20	16 10	11 14	14 10	21 10	17	12 9	17 6	22 6	9	4	5 2	3 1	1		1			1
	284	3	16	19	37	45	48	30	23	19	21	6	6	4	5	2							
	632	2	7	37	81	114	106	93	67	47	26	14	11	8	5	2	2	1	3			3	i
	1,311	2	27	42	129	207	229	206	17.5	114	67	41	30	6	6	7	1	7	4		2	7	2
	2,440		13	61	190	237	380	426	337	282	166	122	75	37	20	17	6	3	,	4	2	1	1
	4,133	1	10	64	213	396	331	656	610	562	426	292	159	8	55	28	15	9	10	10			
	5,951	1	19	45	196	385	608	$\times 65$	86	897	740	515	358	205	109	67	31	15	13	9	i	2	4
	7,093		9	30	102	309	571	853	1,020	1,066	968	795	534	343	204	103	64	35	27	14	7	6	11
	7,726		-	25	78	212	463	776	962	1,056	1,120	967	737	517	338	219	105	49	$3+$	28	7	12	12
	6, 840	,	10	44	101	233	473	748	863	1,013	938	795	560	390	299	141	88	45	34	21	9	31
	5,226	...	6	4	10	40	127	274	456	587	706	719	723	438	414	294	161	93	57	${ }^{23}$	22	6	21
	3,573	...	1	4	3	15	38	114	197	353	464	458	473	394	342	245	153	106	76	30	21	19	3
	2,106	1	2	6	2	12	30	90	145	206	233	298	265	225	150	155	109	it	42	24	13	
	1,103			1	1	4	3	16	22	5.	к9	106	118	131	161	136	s7	67	40	23	12	13	10
	440		1				1	5	9	14	29	38	49	46	59	48	$3{ }^{3}$	31	28	13	14	7	10
	193	\ldots	1	1				2		3	10	12	16	20	23	22	21	21	13	11	t	2	11
	69							4	1	2	2	4	7	9	8	10	6	7	1	1	3		t
	31								1	2		2	4	1	3	2	1	4	6	2	2	1	
	${ }_{23}^{21}$						1	1		4	1	2	1		1		1			1	1	2	
	33					1	1	3	3	5	2		2	1	4	4	1	1	1			2	2
Totai.	49,503	13	125	363	1,119	2,144	3,377	4,853	5,618	6,109	6,077	5,287	4,444	3,128	2,386	1,670	1,023	647	436	251	145	105	183

Table XVII.-Correlation between height and chest circumference (expiration): Group 4, agricultural, Negro, 45 per cent plus, first million draft recruits.

Table XVIII.-Correlation betucen weight and chest circumference (expiration): Group 4, agricultural, Negro, 45 per cent plus, first million draft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		$\begin{aligned} & 95- \\ & 99 \end{aligned}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	110-114	115-119	120-124	125-129	130-134	135-139	140-144	145-149	150-154	155-159	160-164	165-169	170-174	$\stackrel{175-}{179}$	$\begin{aligned} & 180- \\ & 184 \end{aligned}$	$\begin{aligned} & 185- \\ & 189 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 190 \\ 194 \end{array}$	$\begin{gathered} 195-5 \\ 199 \end{gathered}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
29.	863	4	34	89	159	177	136	111	59	32	27	8	6	3	2	5	2	1		1	2	5	
31.	2,647	3	39	116	325	407	487	${ }^{7+5}$	317		105	-5989	132	47	31	18	12	7	1	5.	1	1	
32.	9,212	1	18	42	219	519	968	1, 464	1,527	1,556	1,198	778	461	240	117	55	20	15	5	7	1	3	
33.	10,384		5	11	60	231	589	1,069	1,487	1,775	1,729	1,336	9.3	544	299	162	so	30	14	7	3		
31.	9, 185		5	4	16	77	210	492	860	1,177	1,515	1, 422	1,260	848	592	380	167	83	40	22	12	2	1
35.	5, 853	...	1	3	3	18	51	141	258	508	669	${ }^{903}$	969	744	614	455	243	129	70	42	21	7	
36.	3,266		4	6	4	10	14	31	74	165	267	385	465	450	435	329	251	185	8	49	16	17	
37.	1,360		3		1	2	1	11	17	25	70	103	123	158	196	184	139 85	98	88	${ }_{60}^{64}$	35	18	$\stackrel{24}{24}$
33.	630		7	3	3	1	1	3	6	3	7	25	29	42	73	63	85	70	62	60	34	26	27
39.	180		4	5	1	5	2	2	1	2	2	7	3 5	${ }_{3}^{4}$	12	15	13	114	16 10	15 9	11	12	35 58
40	164		4	5	6	2	2	2	4														
Total.	49, 465	9	149	364	1,135	2, 336	3,374	4,849	5,584	6,113	6,088	5,287	4,441	3,103	2, 385	1,676	1,023	645	403	250	145	115	161

[^22]Table XIX.-Correlation between height and weight: Group 5, eastern manufacturing, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	${ }_{104}^{100}$	${ }_{\text {l }}^{105}$ (109	110 114	${ }_{\substack{115 \\ 119}}^{\text {d }}$	${ }_{124}^{120}$	$\xrightarrow{125}$	${ }_{134}^{130}$	${ }_{139}^{135}$	$\underset{\substack{140-\\ 14}}{ }$	${ }_{149}^{145}$	${ }_{154}^{150}$	${ }_{\text {159 }}^{159}$	${ }_{\substack{160-\\ 164}}$	${ }_{169}^{165}$	${ }_{\text {174 }}^{174}$	${ }_{179}^{175}$	$\underset{\substack{1 \times 0 \\ 184}}{ }$	$\xrightarrow{185}$	$\xrightarrow{190}$ 190-	${ }_{199}^{195}$	${ }_{20}^{200-}$
59.	395	2	13	18	25	${ }^{30}$	31	53	46	${ }^{39}$	${ }^{35}$	15	31		11	15	4	4	1		2		2
${ }_{6} 1$.	1,161	4	40	${ }_{86} 8$	182	209	${ }_{188}$	142	104	75	${ }_{38}^{20}$	${ }_{26}$	${ }^{23}$	14	${ }_{6}^{6}$	${ }_{3}$							
	2, 3 , 548	${ }_{4}^{4}$	45	${ }_{193}^{190}$	${ }_{3}^{352}$	418 683	${ }_{744}^{420}$	347 685	${ }_{251}^{252}$	198	120	-64	${ }_{90}^{48}$	${ }_{76}^{38}$	${ }_{29}^{21}$	11	5		2		${ }_{3}^{3}$		
4	6,967		52	169	482	886	1,034	1,009	967	793	5.5	362	258	142	81	68	33	28	16	12	5	7	2
	9,681		${ }^{34}$	148	${ }_{380} 8$	${ }^{959}$	${ }^{1}, 238$	1, 1,365	1,351	1, 254	${ }^{938}$	${ }^{643}$	${ }_{\text {435 }}^{43}$	254	208	128	${ }_{123}^{63}$	${ }_{8 i}^{57}$	37				
67.	12, 171		13	52	189	559	${ }^{939}$	i, 147	i,685	1,721	1,558	1,235	919	6.50	382	275	206	106				30	
68.	11, 047		12	${ }^{30}$	${ }_{36}^{86}$	${ }^{334}$	${ }^{676}$	1,070	1,368	1,460	1,441	1,292	964	705	513	${ }^{375}$	${ }_{24}^{244}$	165	90		${ }^{60}$	${ }^{37}$	
${ }_{69}^{69}$	¢,		${ }_{7}^{3}$	10 9	33 13	127	323	${ }_{299}^{605}$	- 942	1,093	1, 136	${ }^{1,107} 7$	-923	721	¢	337 378	224				${ }_{53}^{57}$	$\stackrel{41}{49}$	
71	3,452		4		6	13	34	95	197	299	43	45	49	392	256	${ }^{235}$	171	121	94		${ }^{33}$	${ }^{37}$	${ }_{66}^{66}$
${ }_{73}^{72}$	1,797	..	${ }_{2}^{2}$	${ }_{2}^{2}$		${ }^{6}$	11	33 10	${ }_{21}^{59}$	${ }_{139}^{132}$	-181	${ }_{92}^{194}$	${ }_{53}^{231}$	$\xrightarrow[\substack{201 \\ 08}]{ }$	${ }_{1}^{196}$	(138	126 59 5			${ }_{29}^{39}$	$\begin{gathered} 35 \\ 19 \end{gathered}$	${ }_{9}^{39}$	
74	336						2	,	6	17	19	27	40	30)	30	47	26	${ }_{23}$	24	12	9	11	8
${ }_{76}^{75}$	118		I						1	${ }_{2}^{2}$	6	\%	14	${ }_{5}^{20}$	10	12	${ }_{6}^{8}$	10 6	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	${ }_{3}^{4}$	${ }_{3}^{2}$	$\stackrel{3}{1}$	$\stackrel{10}{2}$
77	13		1																				
${ }_{79} 7$	1.5					1			2		3	2		1									
	19						-	-		2						-		,					
Total.	81,718	14	325	1,028	2,736	5,188	7,090	8, 81	9,7	9,8	8,926	7, 436	5, 838	4,293	3,159	2,366	1,581	1,078	713	514	375	312	${ }^{371}$

Number of eases: 81,718 . Height: Mean, 66.77 inches; standard deviation, 2.70 ± 0.005 inch. Weight: Mean, 139.4 s pounds; standard deviation, 17.71 ± 0.030 pound.
Table XX.-Correlation between height and chest circumference (expiration): Group 5, Eastern manufacturing, first million draft recruits.

Table XXI.-Correlation between weight and chest circumference (expiration): Group 5, eastern manufacturing, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	${ }_{104}^{100}$	${ }_{109}^{105}$	${ }_{114}^{110}$	${ }_{319}^{115}$	${ }_{124}^{120-}$	${ }_{129}^{125-}$	${ }_{\substack{130 \\ 134}}$	${ }_{139}^{135}$	$\xrightarrow{1+0} 1+4$	$\xrightarrow{145} 1$	$\underset{\substack{150 \\ 154}}{ }$	$\begin{aligned} & 155 \\ & 155 \\ & 159 \end{aligned}$	${ }_{164}^{160}$	${ }_{169}^{165}$	${ }_{174}^{170-}$	${ }_{179}^{175}$	180-	${ }_{1}^{185}$	${ }_{194}^{190}$	199	${ }_{2}^{200-}$
59.		\because	$\begin{gathered} 6 \\ 11 \\ 9 \\ 17 \\ 22 \\ 16 \\ 13 \\ 9 \\ 9 \end{gathered}$	$\begin{gathered} 9 \\ 20 \\ 39 \\ 31 \\ 66 \\ 42 \\ 48 \\ 25 \\ 20 \\ 10 \\ 3 \\ 3 \end{gathered}$		14317373253278322321199121492222351				$\begin{aligned} & 17 \\ & 6 \\ & 32 \\ & 32 \end{aligned}$	$\begin{array}{r} 12 \\ 5 \\ 5 \end{array}$	968	$\begin{array}{r} 5 \\ 2 \\ 7 \end{array}$	$\begin{aligned} & 6 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 8 \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$	\ldots			1	\ldots		
61																							
${ }_{63}^{62}$											88	${ }_{69}^{24}$	${ }_{27}^{18}$	18 27	${ }_{11}$	${ }_{10}^{6}$					1	5	
${ }_{6}$										${ }^{267}$	196	${ }_{216}^{116}$	105	51	${ }_{50}^{28}$	${ }_{2}^{25}$	${ }_{19}^{6}$	11			3	${ }^{3}$	
65										399 589	328	${ }_{3}^{23}$	${ }_{232}^{14}$	${ }^{135}$	118	62	${ }_{36}$	${ }_{33}^{16}$	${ }_{21}^{10}$		8	${ }_{6}$	11
67										614	546	431	${ }_{3}^{314}$	${ }_{2}^{203}$	${ }^{140}$	107	${ }_{6}^{66}$	${ }^{37}$	$\begin{aligned} & 29 \\ & 37 \\ & 37 \end{aligned}$	16	${ }^{16}$	15	5
${ }_{69}^{68}$										${ }_{358}$	122	414	349	230	205	143	99	60	$\begin{aligned} & 3 . \\ & i+ \\ & \end{aligned}$		21	7	16
										269	282	271	${ }^{228}$	$\stackrel{212}{12}$	157	${ }^{121}$	${ }_{69} 7$	54	${ }_{28}^{25}$	${ }_{27}$	${ }_{13}^{19}$	10	16 16
										111	+156	-186	152 106	159 96	${ }_{7}^{123}$	${ }_{73}^{93}$	69 40	${ }_{21}^{4}$	16	12	11	9	17
73		.			1					${ }_{2}^{21}$	${ }_{+}^{+6}$	${ }^{33}$	26 16 18	29 24	28 17	$\stackrel{37}{14}$	24	16 9	$1 \begin{array}{r}13 \\ 7\end{array}$	${ }_{4}^{14}$	9		${ }_{3}^{11}$
${ }_{73} 7$														10		${ }^{8} 8$	2	7	4	3	2	2	
${ }_{77} 7$																	2				1		2.
78.						i								1									
				.				1	1	,							I			1		1	
Total.	29,032	1	107	356	962	1,768	2,452	3,033	3,484	3,509	3, 178	2,700	2,080	1,556	1,179	888	555	353	249	157	140	113	116

Table XXIII.-Correlation between height and chest circumference (expiration): Group 6, commuter, first million draft recruits.

Table XXIV.-Correlation between weight and chest circumference (expiration): Group 6, commuter, first million draft recruits.

Chest circumference, in inches.	Totai.	Weight, in pounds.																					
		$\left.\begin{aligned} & 90- \\ & 90 \end{aligned} \right\rvert\,$	$\begin{gathered} 1(x)- \\ 101 \end{gathered}$	$\frac{105-}{109}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\begin{gathered} 115- \\ 119 \end{gathered}$	${ }_{121}^{120-}$	$\stackrel{125-}{129}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 139 \end{aligned}$	$\underset{1+1}{1+0-}$	$\begin{gathered} 145- \\ 119 \end{gathered}$	$\begin{aligned} & 1: 50- \\ & 151 \end{aligned}$	$\underbrace{15 i s-}_{159}$	$\begin{gathered} 160- \\ 161 \end{gathered}$	$\begin{gathered} 160- \\ 169 \end{gathered}$	$\underset{171}{170}$	$\begin{gathered} 17 \% \\ 179 \end{gathered}$	$\begin{aligned} & 180- \\ & 1 s 0 \end{aligned}$	185	$\begin{gathered} 190- \\ 194 \end{gathered}$	${ }_{199}^{195}$	$\begin{aligned} & 200- \\ & 301 \end{aligned}$
29	693	7	37	78	170	1,6	101	72	35	10	5	3	;	1	2			2			1	5	
30	1,772	1	31	111	2;1	379	3.52	27.5	1ss	97	33	17	11	7	4	4	1				2	1	
31	3,524	1	16	73	274	529	643	6 V 0	523	3×7	200	95	23	27	10	1	4	1		1		1	1
32	5,073		12	51	149	418	74	825	932	780	540	319	1:0	93	3 S	27	7	2	2	3		1	
33.	5,593	...	4	18	70	190	3×5	661	917	912	874	667	430	243	99	57	26	9	2	1	1	,	
31.	+, 8.40	...	2	9	17	59	179	341	551	780	806	68%	515	350	2 Ls	160	63	35	12	13	2	1	1
33.	3, 422			1	5	15	51	106	216	354	462	537	482	409	321	213	105	58	39	13	10	4	1
36.	2,0:3	.		2		2	8	33	65	117	185	244	308	261	262	211	163	к9	35	31	15	15	7
37	1,025	..	.	5	3	4	1	4	14	25	56	77	102	121	117	133	108	90	58	45	31	19	12
35	492			3	2	3		1	4	10	8	30	22	51	52	53	48	34	54	30	31	17	19
39.	241			3		8		2	2	2	2	3	10	7	10	17	20	25	23	37	24	18	22
	245	.			11	10	10	5	5	5	5	11	2	2	7	8	8	18	15	18	20	20	65
Total	28, 980	9	102	354	958	1,773	2,450	3,005	3,475	3,519	3,176	2,702	2,056	1,572	1,180	884	553	383	242	196	137	106	12.

TAble XXV.-Correlation between height and weight: Group 7, mining, first million draft recruits.

Table XXVI.-Correlation between height and chest circumference (expiration): Group 7, mining, first million draft recruits.

TAble XXVII.-Correlation between weight and chest circumference (expiration): Group \sim, mining. first million draft recruits.

Chest eircumference, in inches.	Total.	Weight, in pounds.																					
		$\left.\begin{gathered} 9-2 \\ 99 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 100- \\ 104 \end{array}\right\|$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	$\begin{gathered} 110- \\ 114 \end{gathered}$	$\begin{aligned} & 115-2-2 \\ & 119 \end{aligned}$	$\stackrel{120-}{124}$	${ }_{129}^{125}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	$\begin{gathered} 135- \\ 139 \end{gathered}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{aligned} & 145- \\ & 149 \end{aligned}$	$\begin{aligned} & 1.50- \\ & 154 \end{aligned}$	$150-$	$\underset{164}{160-}$	$\begin{aligned} & \text { 16.)- } \\ & 169 \end{aligned}$	$\begin{array}{\|} 170- \\ 174 \end{array}$	$\stackrel{1750}{179}$	$\begin{aligned} & 1 \times 0 \\ & 140 \end{aligned}$	${ }_{189}^{180}$	$\begin{aligned} & 190- \\ & 190 \end{aligned}$	$\begin{gathered} 195- \\ 199 \end{gathered}$	$\begin{aligned} & 2000 \\ & 204 \end{aligned}$
29.	725	5	36	¢2	138	148	124	86	47	31												3	
31	1, 843	1	22	73	229	317	370	342	227	123	71	29	16	8	5	4	2			1		${ }^{3}$	
${ }_{32}$	4, 119 6,505	\ldots	15	$\stackrel{59}{26}$	234 105	434 341 1	694	${ }_{9}^{781}$	${ }^{725}$	${ }_{1} 511$	314	160	79	50	15	10	${ }_{9}^{4}$	3	2		3		
33.	${ }_{7}^{6,343}$...	3 5 5	20 7	105 40	341 169	655 374	9.95	1,1835	1,111	911	560	329	194	61	51	9	9	2	1			
34.	6,478	\cdots	1	4	8	${ }_{41}$	119	${ }_{296}$	${ }^{1,024}$	1, ${ }_{812}$	1,049	-	933	${ }_{664}$	426	${ }_{278}$	47 129	24 70	${ }^{7}$			2	
35.	4, 348		...	1	1	19	39	76	201	360	${ }_{562}$	${ }^{1} 676$	693	535	${ }_{427}$	${ }_{343}^{27}$	196	120	59	25	${ }_{8}^{8}$	3 5 5	
36.	2,430	...		1	2	3	12	17	47	113	203	269	315	354	324	253	207	126	92	47			
37.	1,091	\ldots	1		2		2	4	11	22	39	72	102	100	158	153	116	101	86	49			
38.	463	...	2				2	2	4	2		15	30	35	49	57	54	52	47	31	28	20	26
39.	201			2	1	,	2	4	3	2	3	3	2	9	15	17	15	1.5	25	20	21	8	26
	145				2	2	1		3	2	6	3	3		4	4	3	7	11	17	11	12	54
Total.	35, 691	6	85	2:5	762	1,481	2,394	3,225	4,026	4,349	4,370	3, 224	3,223	2,418	1,700	1,330	756	527	366	198	130	91	145

Table XXVIII.-Correlation between height and weight: Group 8, sparsely settled, not more than s per square mile, first million draft recruits

Height, in inches.	Total.	Weight, in pounds.																					
		$\begin{aligned} & 95- \\ & 99 \end{aligned}$	$\begin{gathered} 100 \\ 104 \end{gathered}$	$\left\lvert\, \begin{gathered} 105 \\ 109 \end{gathered}\right.$	$\begin{gathered} 110- \\ 114 \end{gathered}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\begin{array}{\|} 120- \\ 124 \end{array}$	$\frac{125-}{129}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	${ }_{139}^{135-}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\stackrel{145-}{149}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & { }_{159} \end{aligned}$	${ }_{164}^{160-}$	${ }_{169}^{165}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	$\stackrel{175-}{179}$	$\begin{gathered} 180- \\ 184 \end{gathered}$	185	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{array}{\|} 200- \\ 204 \end{array}$
59.	36			1		6	3	3					2		1	2	2						
60.	28		i	3	3	2	3		2	2	2	4		1	2		2		1		1		1
${ }_{6}^{61}$	66			7	7	6	14	9	8	5	7			1		2							
63.	105		10	13	26	34	31	${ }_{63}^{28}$	16	9	5	3	1	3	2	2			1		1		
64.	718		2	10	37	91	91	140	101	\%6	53	32	$2 \times$	14	12	8	3	5	2	1	1		1
65.	1,277	\ldots	5	7	33	89	150	188	229	194	142	93	63	25	23	11	9	7	2	1	3	2	1
${ }_{6} 6$	1,796			14	34	75	172	222	287	304	237	162	130	56	29	34	18	,	5	3	2	1	3
67.	2,312			4	15	67	144	257	325	393	311	273	191	134	67	50	34	21	7	4	7	2	6
68.	2,563				8	32	88	1.2	312	369	403	33.8	285	210	115	90	41	30	19		6	12	9
69	2,281	1	...	6	12	48	116	224	251	331	334	2 299	238	143	119	52	41	24	19	15	6	12
70	1, $\times 49$...	3	1	19	43	98	169	211	290	252	239	154	129	81	51	32	16	7	10	14
71	1,318					3	8	17	44	86	144	200	161	174	148	123	75	48	35	21	12	5	14
72.	734				3			24	67	68	112	102	110	77	61	39	20	12	7	5	15
73	355	\cdots	.	.				2	2	13		28	50	37	53	35	35	34	19	6	9	3	8
74.	164								2	3	- 8	10	10	22	27	22	12	17	6	9	7	3	6
75.	82		.	.-	.			1			1	7	5	6	15	13	7	7	9	2	2	5	2
77.	10			.			1			1		2	1		2	$\begin{array}{r}2 \\ 2 \\ \hline\end{array}$	5	2	1	1	1	3	
78.	7									1	i	3						1	1				
	7						1						1	2	1				1	1			
Total.	16, 165		21	72	205	462	850	1,271	1,710	1,938	2,003	1,872	1,586	1,271	905	722	436	311	188	106	82	57	87

TABLE XXIX.-Correlation between height and chest circumference (expiration): Group 8 , sparsely settled, not more than 3 per square mile, first million draft

Table XXX.-Correlation between weight and chest rircumference (expiration): Group 8, sparsely settlerd, not more than is per square mile, firat million rloft recruits.

Chest circumference, In inches.	Total.	Weight, in pounds.																					
		$\begin{aligned} & 95- \\ & 99 \end{aligned}$			$\begin{aligned} & 110- \\ & 114 \end{aligned}$	${ }_{119}^{115-}$	$\underset{124}{120-}$	$\frac{125-}{129}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	$\begin{gathered} 13.5- \\ 139 \end{gathered}$	$\underset{144}{\substack{10-\\ \hline}}$	$\begin{gathered} 14.5- \\ 149 \end{gathered}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{gathered} 165- \\ 169 \end{gathered}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	${ }_{179}^{175,}$	$\begin{aligned} & 180 \\ & 184 \end{aligned}$	$\begin{gathered} 185- \\ 189 \end{gathered}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{gathered} 195- \\ 199 \end{gathered}$	$\frac{200-}{204}$
${ }_{30}^{29}$	149 601	1	7	${ }_{27}^{13}$	28 48	39 108	27 132	117	78	5 38	1 30	13	$\frac{1}{2}$	3							1		
31.	1,453		2	17	57	128	241	277	293	197	122	70	21	13	7	4	1	1		.	2		
32.	2,705	4	11	43	112	237	389	471	489	411	278	140	59	38	14	3	4	1			1	
33.	3, 350			4	15	54	13.5	228	464	604	546	491	337	203	114	63	22	7	2		1		
34.	3,228				6	19	57	130	291	391	498	527	463	351	209	161	${ }^{67}$	38	15		2		
3.5	2,327			..	3	4	14	40	83	152	272	327	378	345	256	200	120	73	31	10	12		
36	1,318			.			3	5	20	48	104	126	177	213	184	148	113	82	39	28	14	${ }_{18} 7$	7
${ }_{38} 37$.	581							1	2	6	17	${ }^{25}$	54	67 13	71 17	86 37	64 36	60 28	39	31 18	120	$\begin{aligned} & 16 \\ & 12 \end{aligned}$	
${ }_{39} 38$.	249 114		-	...	4		2	1	1	3	4	9	1	1	17	${ }_{8} 8$	9	11	17	${ }_{8} 8$	10	9	15 25
40.	76								1		i	2			1	2				5			
41.																							
43 and over																							
Total.	16, 151	2	18	72	204	463	818	1,268	1,706	1,934	2,006	1,868	1,587	1,268	904	725	436	310	159	103	80	59	101

Number of cases: 16,151. Weight: Mean, 144.86 pounds; standard deviation, 16.94 ± 0.064 pound. Chest circumference (expiration): Mean, 33.53 inches; standard deviation, 1.92 ± 0.007 inch.
Table XXXI.-Correlation between height and weight: Group 9, desert, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	$\begin{gathered} 100 \\ 104 \end{gathered}$	${ }_{109}^{105-}$	${ }_{114}^{110}$	${ }_{119}^{11.5}$	${ }_{124}^{120}$	${ }_{129}^{125}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{gathered} 135- \\ 139 \end{gathered}$	$\begin{aligned} & 1490 \\ & 144 \end{aligned}$	$\xrightarrow{145} 14$	${ }_{154}^{150-}$	${ }_{1}^{157}$	${ }_{164}^{160}$	${ }_{\text {165- }}^{169}$	${ }^{177} 17$	${ }_{179}^{175}$	${ }_{181}^{180}$	${ }_{189}^{185}$	${ }_{194}^{190}$	${ }_{199}^{195}$	200-
59.				$\begin{array}{r\|} \hline 1 \\ 2 \\ 6 \\ 11 \\ 12 \\ 5 \\ 6 \\ 9 \\ 9 \\ 3 \\ 1 \end{array}$	$\left.\begin{array}{r} 1 \\ 1 \\ 6 \\ 14 \\ 14 \\ 16 \\ 27 \\ 21 \\ 17 \\ 18 \\ 18 \\ 7 \\ 5 \end{array} \right\rvert\, .$	5.	$\begin{array}{\|c\|} \hline 2 \\ 1 \\ 5 \\ 12 \\ 23 \\ 54 \\ 51 \\ 109 \\ 109 \\ 992 \\ 94 \\ \hline 29 \\ \hline 8 \\ 1 \\ 1 \\ 1 \end{array}$	$\left.\begin{array}{r} 6 \\ 1 \\ 3 \end{array} \right\rvert\, .$	11	\cdots	${ }_{2}^{3}$		${ }_{1}^{2}$		1			\cdots		
61						1213213846364118141411\ldots.	$\begin{array}{r} 7 \\ 7 \\ 33 \\ 33 \\ 38 \\ 73 \\ 90 \\ 72 \\ 54 \\ 30 \\ 11 \\ 3 \\ 3 \\ 3 \end{array}$															
			${ }_{4}^{7}$						$\left.\begin{aligned} & 3 \\ & 10 \\ & 17 \\ & 36 \end{aligned} \right\rvert\,$	\cdots						1			1		1		
			4							45 68	${ }_{47}^{22}$	${ }_{29}^{13}$										1	
${ }_{67}^{66}$									115	111	7	${ }^{58}$	$\begin{aligned} & 156 \\ & 56 \\ & 59 \end{aligned}$		${ }_{9}^{9}$	$\begin{gathered} 6 \\ \hline 16 \\ 16 \end{gathered}$	$\begin{gathered} 7 \\ 7 \\ 8 \end{gathered}$	${ }_{2}$	${ }_{5}^{5}$	2			
									128	129	14	92	75		$\begin{aligned} & 20 \\ & 105 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{gathered} 80 \\ 100 \\ 10 \end{gathered}$	9	9	5	2	$\frac{1}{2}$	
									50	178	${ }_{98}^{134}$	${ }_{91}^{121}$	108 82	$\begin{aligned} & 81 \\ & 72 \end{aligned}$	$\begin{aligned} & 43 \\ & 47 \end{aligned}$		$\begin{aligned} & 13 \\ & { }_{20} \end{aligned}$	13 15	${ }_{8}^{8}$	${ }_{3}^{3}$	${ }_{2}^{2}$	$\frac{1}{2}$	
72.									${ }_{9}^{22}$	39	${ }_{36}^{57}$	$\begin{gathered} \frac{91}{73} \\ \hline 2 \end{gathered}$	$\begin{aligned} & 82 \\ & 63 \\ & 40 \end{aligned}$	${ }_{43}^{43}$	$\begin{aligned} & 48 \\ & 38 \\ & 18 \end{aligned}$	$\begin{aligned} & 31 \\ & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & \hline \end{aligned}$	17	11	6	5	3	
73. 74. 7									,	7	12	15	27	17	15	12	12	${ }_{7}^{12}$	${ }_{3}^{11}$	${ }_{4}^{5}$	3	i	
74		,	.	.								$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$		${ }_{3}^{10}$	${ }_{6}^{10}$	${ }^{7}$	${ }_{4}^{4}$	2	${ }^{3}$	i	1	
			.	.			1										1	1	1				
							1															1	
Total	6,121		19	56	133	238	423	569	722	764	738	638	520	406	282	216	126	92	${ }^{6}$	34	27	13	42

Table XXXII.-Correlation between height and chest circumference (expiration): Group 9, desert, first million draft recruits.

Table XXXIII.-Correlation between weight and chest circumference (expiration): Group 9, desert, first million druft recruits.

'I'ABLe XXXIV'.-Correlation betueen height and weight: Group 10, maritime, first million draft recruits.
Number of cases: 6,161. Height: Mean, 67.31 inches; standard deviation, 2.70 ± 0.016 inch. Weight: Mean, 140.38 pounds; standard deviation, 16.56 ± 0.103 pound.
Table XXXV.-Correlation between height and chest circumference (expiration): Group 10, maritime, first million draft recruits.

Height, in inches.	Total.	Chest circumference, in inches.										
		29	30	31	32	33	34	35	36	. 37	38	39
58 and under . .												
60..	33 30	2 3	${ }_{3}^{2}$	$\stackrel{+}{6}$	4	9	$\stackrel{3}{3}$	6	1	2		i
62.	62	9	13	12	9	5	9	3	1			1
63.	${ }_{2+4}^{113}$	13 27	15 29	22	${ }_{51}^{21}$	16	14	7	4	1		
64.	367	22	${ }_{43}$	59	82	70	${ }_{46}^{12}$	${ }_{25}$	11	${ }_{4}^{5}$	${ }_{3}$,
	620	28	62	107	145	117	76	40	27	9	6	3
67.	$\times 24$	28	51	138	189	185	111	61	39	13	5	4
67.	941	26	57	124	198	200	145	111	47	23	4	6
69.	752	18	47 34	116 69	157 132	209 139	139 162	98 87 8	68 59	26 21	10	
70	694	8	23	49	89	135	123	68	54	${ }_{22}^{21}$	12 9	14
${ }_{72} 71$.	324	2	10	24	52	73	70	39	31	14	6	3
73.	206 78	${ }_{1}^{2}$	3 1	15 2	$\stackrel{24}{15}$	42	41 20	24 12	27 15	20 1	${ }_{2}^{3}$	${ }_{4}^{5}$
75.	33		1	1	${ }_{9}$	6	$\stackrel{4}{4}$	7	$\stackrel{1}{2}$	7	1	
75.	17		1			2	5	2		1		
77.	${ }_{2}$					1	1					
	3				1			i		1		
Total..	6, 157	214	395	797	1,186	1,270	984	607	394	176	62	72

DIMENSIONS-GROUPS OF SECTIONS.
Table XXXVI.-Correlation between weight and chest circumference (expiration): Group 10, naritime, first million draft recruits.

Number of cases: 6,150. Weight: Mean, 140.43 pounds; standard deviation, 16.90 ± 0.103 pound. Chest circumference (expiration): Mean, 33 inches; standard deviation, 2.04 ± 0.012 inch.
Table XXXVII.-Correlation betueen height and weight: Group 11, mountain, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95}$	${ }_{104}^{100}$	${ }_{109}^{105}$	$\xrightarrow{110} 114$	${ }_{119}^{115}$	${ }_{124}^{120-}$	${ }_{129}^{125-}$	$\begin{array}{r} 130 \\ 134 \end{array}$	${ }_{139}^{135-}$	140 14	${ }_{149}^{145-}$	${ }_{\text {154 }}^{150}$	$\begin{aligned} & 1555 \\ & 159 \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 160- \\ 164 \end{array}\right) \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\begin{gathered} 175-9 \\ 179 \end{gathered}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	${ }_{189}^{185}$	$\begin{aligned} & 190- \\ & 199 \end{aligned}$	$\begin{aligned} & 195-5 \\ & { }_{199} \end{aligned}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
59.				$\begin{array}{r} 2 \\ 2 \\ 12 \\ 9 \\ 13 \\ 6 \\ 5 \\ 4 \\ 1 \\ 3 \\ 3 \end{array}$	$\begin{array}{r}2 \\ 3 \\ 32 \\ 12 \\ 37 \\ 38 \\ 56 \\ 46 \\ 39 \\ 39 \\ 13 \\ 13 \\ 4 \\ 3 \\ 1 \\ \cdots \\ \hline\end{array}$	$\begin{array}{r} 2 \\ 6 \\ 26 \\ 26 \\ 46 \\ 103 \\ 123 \\ 1103 \\ 110 \\ 102 \\ 43 \\ 21 \\ 21 \\ 1 \\ \ldots . . \\ \hline \end{array}$	6512194113519419122016017731316111	552738781541532382822232291306119711						6		${ }_{3}^{2}$	1	1			\cdots
${ }_{61}^{60}$			2 1 3 7 2							$\stackrel{+}{3}$	${ }_{3}^{3}$	${ }_{5}^{2}$	${ }_{3}^{1}$	2									
${ }_{63}^{62}$										15 42 4	-88888	$\begin{aligned} & 11 \\ & 30 \end{aligned}$	$\frac{4}{6}$	${ }_{3}^{4}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	${ }_{2}^{2}$		1					
										-	61 162 162	33 101 10	${ }_{74}^{25}$	${ }_{42}^{21}$				${ }_{9}^{2}$			1		
			${ }_{2}$							311	${ }_{2} 271$	151	141	${ }_{81} 8$	${ }_{48}^{24}$	${ }_{38}^{13}$	16	11	8	${ }_{3}^{3}$	$\stackrel{3}{2}$	1	
			1							${ }_{371}^{411}$	- 360	311 326	年194	124 193 19	80	${ }_{86}^{59}$	$\stackrel{22}{54}$	${ }_{19}^{20}$	${ }^{8}$	8	8	4	2
69.			1							319	${ }_{303}^{30}$	311	${ }_{2}^{278}$	196	155	${ }_{95}$	${ }_{53}^{54}$	${ }_{36}$	31	${ }^{8} 8$	${ }_{8}^{8}$	7	14
			2							182 90	228 14 14	${ }_{176}^{260}$	237 174 1	15	${ }_{125}^{137}$	${ }_{111}^{120}$	70 66	48	${ }_{30}^{22}$	${ }_{7}^{16}$	${ }^{7}$	- ${ }_{3}^{9}$	15
${ }_{73}^{72}$										37	${ }^{68}$	88	119	92	$\begin{aligned} & 128 \\ & 77 \end{aligned}$	59	50	${ }^{45}$	16	14	$\begin{gathered} 6 \\ 8 \\ 8 \end{gathered}$	3	11
74										2	${ }_{6} 6$		${ }_{13}^{48}$	${ }_{20}$	18	10	${ }_{20}^{33}$		12	${ }_{3}^{6}$	${ }_{5}^{6}$	4	15
${ }_{76} 7$.				..	1										$\begin{aligned} & 8 \\ & 1 \\ & 1 \end{aligned}$	7		11	2		1	3	4
77							1												2				
														1			2	1			1		1
				.																			
Tot	17,099		25	${ }^{60}$	282	674	1,090	1,559	1,93,	2, 141	2,050	1, 854	1,590	1,197	847	$6{ }^{6} 4$	404	268	181	87	${ }^{64}$	45	89

Number of cases: 17,099 . Height: Mean, 67.72 inches; standard deviation, $2.68 \pm 0.010 \mathrm{inch}$. Weight: Mean, 142.96 pounds; standard deviation, $16.76 \pm 0 . c 91$ pound.

Table XXXVIII.-C'orrelation betwcen height arul chest circumference (expiration): Group 11, mountain, first million draft recruits.

$\stackrel{ }{ }$	Height, in inches.	Total.	Chest circumference, in inches.										
			29	30	31	32	33	34	35	36	37	$3 \times$	39
39.		57471202202761761,372,392,3712,572,5652,2671,7621,7231706336135591910887	$\begin{array}{r}2 \\ 1 \\ 6 \\ 11 \\ 13 \\ 17 \\ 40 \\ 49 \\ 40 \\ 40 \\ 31 \\ 33 \\ 15 \\ 6 \\ 4 \\ \ldots \ldots . \\ \cdots \\ \hline\end{array}$		$\begin{array}{r} 10 \\ 88 \\ 23 \\ 51 \\ 87 \\ 152 \\ 224 \\ 257 \\ 328 \\ 249 \\ 200 \\ 128 \\ 83 \\ 33 \\ 11 \\ 11 \\ 1 \\ 1 \\ \ldots \ldots \\ \hline \ldots \ldots \end{array}$			8318183373124200381450454472435378158803811344222	5 5 5 18 24 49 142 227 322 331 394 291 192 116 59 28 12 4 $\ldots .1$ 1		2114415334065959878634525114221211		
61.													
${ }_{6}^{63} 6$													3 3 3
66													11
68.													21
${ }_{70}^{69}$													
71													${ }_{18}^{19}$
${ }_{73}^{73}$													${ }_{12}^{16}$
75													3
77													
79.													
Total.		17, 101	259	800	1,849	3,060	3,541	3,234	2,127	1,251	575	226	179

Table XXXIX.-Correlation between weight and chest circumference (expiration): Group 11, mountain, first million draft recruits,

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		95-99	$\begin{gathered} 100 \\ 104 \end{gathered}$	$\begin{gathered} 105- \\ 109 \end{gathered}$	$\stackrel{110-}{114}$	${ }_{119}^{115-}$	$\begin{gathered} 120- \\ 124 \end{gathered}$	${ }_{129}^{125-}$	$\begin{gathered} 130- \\ 134 \end{gathered}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{gathered} 145- \\ 149 \end{gathered}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\stackrel{155-}{159}$	$\begin{gathered} 160- \\ 164 \end{gathered}$	$\begin{aligned} & 105- \\ & 169 \end{aligned}$	$\begin{gathered} 170- \\ 174 \end{gathered}$	$\begin{array}{\|c\|} \hline 175- \\ 179 \end{array}$	$\underset{184}{180-}$	$\begin{gathered} 185- \\ 189 \end{gathered}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
29.	251	1	10	10	49	57	50	32	19	14	4	3	1				1						
30.	800		5	17	84	152	183	145	111	44	41	8	5	2	1	1							1
	1,850		${ }_{2}^{2}$	14	${ }_{5}^{69}$	191	304	356	${ }_{5} 325$	264	162	84	41	18	8	4	4	1			3		
33.	3, 3 , 52		2	10 4 4	${ }_{20}^{51}$	154 85	288	4	539 503	${ }_{6} 511$	${ }_{532}$	283 474	167 365	${ }^{73}$	${ }_{103}{ }^{1}$	${ }_{61}^{21}$	${ }_{4}^{4}$	3	1	3			
34.	3,235			2	1	27	59	172	307	408	503	499	458	333	217	119	65	39	16	8		1	1
${ }_{3}^{35}$	2,127		1		1	5	18	37	98	168	269	311	332	284	214	178	115	57	20	13	4	2	
${ }_{37}^{36}$	1,249			1		1	2	13	27	61	94	144	150	193	152	147	104	55	57	20	16	7	
${ }_{38} 37$.	${ }^{576}$				1		1	${ }^{6}$	3	10	25	39	56	67	76	84	62	61	39	13	12	11	10
	227		2	1				2	1		3	6	8	16	19	33	27	22	26	16	15	10	20
40.	99				6			3	3					3	3	8	3	9	11	7	11	9	18
	86		1	1		1	2	2	1	1	2	1				1	3	7	7		3	5	39
Total.	17, 103	1	23	60	282	674	1,087	1,563	1,937	2,141	2,055	1, 852	1,583	1,221	825	657	407	263	180	89	64	45	94

Table XI.-Correlation between height and weight: Group 12, mountain whites, first million draft recruits.

Table XLI.-Correlation between height and chest circumference (expiration): Group 12, mountain whites, first million draft recruits.

Number of cases: 21,233. Height: Mean 68.29 inches; standard deviation, 2.57 ± 0.008 inch. Chest circumference (expiration): Mean, 33.20 inches; standard deviation, 1.56 ± 0.006 inch.
Table XIII.- Correlation between weight and chest circumference (expiration): Group 12, mountain whites, first million druft recruits.

Table XLIII.-Correlation between height and weight: Group 13, Indian, sparsely settled, first million draft recruits.

Table XLIV.-Correlation between height and chest circumference (expiration): Group 13, Indian, sparsely settled, first million draft recruits.

Table NLV.—Correlation between weight and chest circumference (expiration): Group 1.3, Indiun, sparsely settled, first million druft recruits.

Table XL'I.-Correlation between height and weight: Group 14, Mexican, sparsely settled, first million draft recruils.

Table XLVII.-Correlation between height and chest circumference (expiration): Group 14, Mexican, sparsely settled, first million draft recruits.

Table XLVIII.-Correlation between weight and chest circumference (expiration): Group 14, Mexican, sparsely settled, first million draft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{98}$	${ }_{101}^{100}$	${ }^{105}$	$\begin{array}{\|l\|l\|} 110- \\ 114 \end{array}$	${ }_{119}^{115}$	${ }_{124}^{120}$	$\begin{gathered} 125 \\ 129 \end{gathered}$	${ }_{134}^{132}$	${ }_{139}^{135}$	$\underset{\substack{140 \\ 14 \\ 1}}{ }$	${ }_{149}^{145}$	$\begin{aligned} & 150 \\ & 153 \end{aligned}$	${ }^{185}$	$\left\lvert\, \begin{aligned} & 160- \\ & 164 \end{aligned}\right.$	${ }_{\substack{165 \\ 169}}$	$\begin{gathered} 170-174 \\ 17 \end{gathered}$	${ }_{179}^{175}$	$\begin{aligned} & 180- \\ & .184 \end{aligned}$	${ }_{189}^{185}$	${ }_{19}^{190}$	${ }^{198}$	200-
29.	220		12	${ }_{26}^{21}$	${ }_{66}^{37}$	${ }_{103}^{47}$	${ }_{120}^{38}$	${ }_{88}^{24}$	${ }_{73}^{18}$								1			1		1	1
31	${ }^{1}, 242$,	${ }_{3}^{6}$	29	78 38	131	${ }_{198}^{207}$	${ }_{296}^{241}$	${ }_{379}^{212}$	-	${ }_{28}^{1050}$	37 173	883	${ }_{36}^{9}$	${ }_{21}^{7}$		1				1		
${ }_{31}^{33}$	$\xrightarrow{2} 1,308$		1	5	${ }_{6}^{26}$	${ }_{13}^{46}$	${ }_{14}^{116}$	211 80	313 171	316 295	$\begin{aligned} & 380 \\ & 288 \\ & 288 \end{aligned}$	${ }_{312}^{305}$	$\begin{aligned} & 233 \\ & 245 \end{aligned}$	1×6	$\begin{array}{r} 83 \\ 143 \\ \hline 14 \end{array}$	${ }_{87}^{45}$	$\begin{aligned} & 17 \\ & 3 \\ & 30 \end{aligned}$	${ }_{26}^{1}$	${ }_{9}^{1}$	1	3		
${ }_{35}^{31}$	1,275	1			3 5 5	9	${ }_{20}^{25}$	$\begin{array}{r}61 \\ 13 \\ \hline\end{array}$	116	${ }^{157}$	165	209	${ }^{174}$	129	${ }_{6}^{97}$	$\begin{aligned} & 53 \\ & 59 \\ & 59 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	${ }_{28}^{28}$	11	14		${ }_{4}^{2}$
37.	${ }_{34}^{695}$		1	1				10	13	${ }_{4}^{25}$	${ }_{6} 6$	19	${ }_{30} 8$	${ }_{39}^{96}$	$\begin{array}{r} 102 \\ 55 \\ \hline \end{array}$	67 40	$\begin{aligned} & 59 \\ & 47 \end{aligned}$	$\begin{aligned} & 55 \\ & 24 \end{aligned}$	17	17	15	${ }_{9}^{2}$	17
39.	157												${ }_{2}^{9}$		14	14	${ }^{23}$	19	${ }_{12}^{22}$	15	${ }_{5}^{6}$	${ }_{3}^{6}$	${ }_{20}^{11}$
${ }_{40}^{39}$.	65 52					3	4	1	2														
Total.	10,785		37	${ }^{93}$	246	461	740	979	1,247	1,293	1,286	1,098	946	680	556	372	245	166	120	${ }^{-4}$	53	30	${ }^{7}$

Table XLIX.-Correlation between height and weight: Group 15, native whites of Scotch origin, first million draft recruits.

Height, in inehes.	Total.	Weight, in pounds.																					
		95-99	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	${ }_{114}^{110-}$	${ }_{119}^{115-}$	${ }_{124}^{120}$	$\begin{aligned} & 125- \\ & 129 \end{aligned}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{aligned} & 145- \\ & 149 \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 1550 \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\stackrel{175-}{179}$	$\begin{aligned} & 180- \\ & 184 \end{aligned}$	$\begin{aligned} & 185- \\ & 159 \end{aligned}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195-5 \\ & 199 \end{aligned}$	${ }_{204}^{200}$
	42		1		3	2	4	3	8	11	4	2		2		1							
	41		2	3	5	5	3	2	2		4	1	2	3	3	1							
	$\begin{array}{r}69 \\ 138 \\ \hline\end{array}$	1	1	$\stackrel{4}{9}$	$\begin{array}{r}8 \\ 24 \\ \hline\end{array}$	9 19	14 25	8 17	888888	${ }_{12}^{7}$	1	3 2	1	3					1			1	
	138		1	${ }_{18}^{9}$	24 36	$\stackrel{19}{9}$	25 62	17 4	${ }_{33}^{16}$	18	10	11	2	4					1			1	
	587		7	${ }_{20}^{18}$	${ }_{57} 5$	95	98	89	88	48	28	26	6	7		3	1	2	1		1	3	
	1,019		6	23	34	150	157	155	139	121	92	54	29	20	4	8	3				1	1	2
	1,495		1	14	54	114	214	247	235	207	148	105	${ }^{44}$	${ }_{71}$	${ }_{53}^{28}$	${ }_{1}^{15}$	10	10	${ }_{6}$		1	2	
	1,9+7		1	15	36	129	195	${ }_{272} 78$	302 329	284 327	215 307	177 229	17	88	$\stackrel{53}{74}$	32 40	32	17 15	7	${ }_{9}$	${ }_{3}^{4}$	4	5
	2,151		1	3	${ }_{9}^{25}$	${ }_{36}^{38}$	107	189	${ }_{261}^{329}$	307 327	271	2.5	174	127	83	:6	34	19	18	12	6	4	14
	1,952			2	5	16	38	87	160	189	198	240	195	124	106	70	34	24	24	14	7	6	13
	1,045				1	5	13	36	89	133	142	142	138	113	80	54	${ }^{27}$	24	15	14	5	$\stackrel{4}{4}$	10
	626				1		3	16	35	60	${ }_{24}^{64}$	83	91	${ }_{36} 8$	${ }_{30}$	${ }_{27}$	30 13 13	18	10	15	1	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	6
	136			2	-				3	8	${ }_{5}$	15	20	18	14	16	13	7	8	2	3	2	1
	53								1	1	2	4	7	${ }^{6}$	4	5	5	7	4	5		2	
	27							1	1					2	3	7 2	3 2 2	1		1		1	
	1																1						
	10						1		1		2		1		3			1				1	
Total	13,522	1	24	116	318	691	1,086	1,450	1,718	1,758	1,525	1,396	1,033	751	546	384	229	161	107	81	- 39	43	65

Number of cases: 13,522 . Height; Mean, 68 inches; standard deviation, 2.64 ± 0.011 inch. Weight: Mean, 140.26 pounds; standard deviation, 16.77 ± 0.069 pound.
Table L.-Correlation betucen height and chest circumference (expiration): Grcup 15, native whites of Scotch origin, first million draft recruits.

Height, in inches.	Chest circumference, in inches.											
	Total.	29	30	31	32	33	34	35	36	37	38	39
	27	2	4	2	7	4	5	1	2			
	${ }_{69}^{42}$	3 7	11	16	6	18	8	3				
	140	13 25	15 44	37 67	27 60	48	14 32	10	7			
	${ }_{584}$	${ }_{37}^{25}$	73	122	153	93	33	32	12	4	3	2
	1,016	${ }_{35}^{50}$	112	200 256	${ }_{362}^{238}$	198	116	${ }^{60}$	24 48	114	8	4
	1,485	50	144	307	446	409	306	154	82	20	12	13
	2,144	36	122	291	491	453	379	196	111	37	17	11
	1,975	19	94	232	406	${ }_{379}^{442}$	345	220	116	$\stackrel{5}{5}$	17	23 15
	1,550 1,042	18 5	${ }_{28}^{43}$	102	172	229	200	156	93	27	17	13
	${ }^{624}$	3	11	43	109	141	130	88	50	28	10	13
	${ }_{136}^{298}$		${ }_{3}^{2}$	15 5	38 21	74 24	56 30	${ }_{22}$	17	7	5	7
	132			1	$\begin{array}{r}6 \\ \hline\end{array}$	11	10	10	7	3	2	2
	${ }_{8}^{27}$			1	2	1	7 2	2		1	1	
	12				3	4	2	1		1		
Total	13,469	303	826	1,8\%3	2,811	2,904	2,213	1,315	730	280	129	113

Number of cases; 13,469 . Height: Mean, 68.01 inches; standard deviation, 2.63 ± 0.011 inch. Chest circumference (expiration): Mean, 32.94 inches; standard deviation, 1.89 ± 0.008 inch.

Table LI.-Correlation between weight and chest circumference (expiration): Group 15, native whites of Scotch origin, first million draft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{gathered} 105- \\ 109 \end{gathered}$	${ }_{114}^{110-}$	${ }_{119}^{115}$	$\underset{124}{120-}$	${ }_{129}^{125-}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{gathered} 140- \\ 1+4 \end{gathered}$	$\begin{gathered} 145- \\ 149 \end{gathered}$	$\begin{aligned} & 1: 50- \\ & 154 \end{aligned}$	$\underset{159}{135-5}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$170-$	$\begin{gathered} 175 \\ 179 \end{gathered}$	$\begin{gathered} 180 \\ 1 s 4 \end{gathered}$	$\underset{159}{185-}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{array}{\|l\|l} 195- \\ 199 \end{array}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
29.	298 827	3	13 5	$\begin{array}{r}45 \\ 33 \\ \hline\end{array}$	56 103		48 177			${ }_{60}^{6}$			4			1		1				2	
31	1,855	i	4	18	79	231	$3+9$	${ }_{374}$	301	-60 236		16 74								1			
32	2,813			10	58	165	293	435	576	487	336	217	125	64	29	10	5	1		1		1	
${ }_{34}$	2,909		1	4	14	49	159	299	440	515	467	423	251	15,6	70	34	11	9	3		1	2	
35.	2,216			1	5	12	38		212	305	343	369	306	219	152	85	49	16	9	9	3		1
${ }_{36}^{35}$	1,315			1	2	3	8	25	58	113	158	185	199	16.	146	110	57		23		4		
${ }_{37}$	730			1	1	3	3	8	18	22	55	82	82	92	106	95	59	41	29	23	6	3	3
38	130					1		${ }_{2}^{2}$	2	3	8	18	21	23	36	25	37	32	20	20	7	6	8
39	53			i	i		1	2	${ }_{2}^{1}$			2		9	4	15	7	11	15	18	13	13	
40	57											1	1	2		1	5 1	$\begin{gathered} 5 \\ 1 \end{gathered}$	7 2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	4 5	17 42
Total.	13,473	4	24	115	319	687	1,078	1,436	1,705	1,748	1,520	1,389	1,024	750	548	3 s 1	232	158	108	s0	39	38	90
Number of cases: 13.473.																							

Table LII.-Correlation between height and weight: Group 16, Russian, 10 per cent plus, first million draft recruits.

11 eight, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95}$	$\xrightarrow{100}$	${ }_{109}^{105}$	${ }_{\text {112 }}^{110}$	${ }_{119}^{115}$	${ }_{124}^{120}$	${ }_{129}^{125}$	$\begin{gathered} 130 \\ 133 \end{gathered}$	${ }_{139}^{135}$	$1+0$ 14	${ }_{149}^{145}$	$\begin{gathered} 1,50 \\ 135 \end{gathered}$	${ }_{159}^{15}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{gathered} 165- \\ 169 \end{gathered}$	${ }_{177}^{170-}$	$\underset{179}{175}$	${ }_{\substack{180 \\ 18 \\ 1}}$	$\underset{\substack{185 \\ 1 \times 9}}{ }$	$\underset{\substack{190-\\ 190}}{ }$	${ }^{198} 19$	$200-$ 204
59	5151561362535278631,3131,7691,8131,7841,31496696331717363256816		$\begin{array}{r} 3 \\ 3 \\ 3 \\ 2 \\ 9 \\ 10 \\ 8 \\ 1 \\ 3 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 13 \\ 12 \\ 18 \\ 18 \\ 17 \\ 5 \\ 7 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 3 \\ 11 \\ 19 \\ 33 \\ 43 \\ 41 \\ 56 \\ 44 \\ 13 \\ 6 \\ \hdashline \cdots \\ \hdashline 7 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 9 \\ 32 \\ 33 \\ 74 \\ 87 \\ 94 \\ 106 \\ 54 \\ 31 \\ 31 \\ 8 \\ 4 \\ 1 \end{gathered}$	2814407811014615411862434377	83234078713138212112912417733101011	299347771322022202222221212125553585		3111717383814223223725613312055311311	6 3 1 7 33 47 106 102 174 214 224 175 139 91 29 13 1 3	$\begin{array}{r}4 \\ 3 \\ 1 \\ 1 \\ 12 \\ 36 \\ 36 \\ 17 \\ 173 \\ 203 \\ 201 \\ 145 \\ 141 \\ 99 \\ 12 \\ 12 \\ 8 \\ 2 \\ \hline . . \\ \hline\end{array}$	11218273934128.145.13310985421422112	2	+ 3							
${ }_{62}^{61}$																i	.						
${ }_{63} 6$																3	2	1		1		.	
6															${ }_{26}^{13}$	18						1	
${ }_{67}^{66}$															${ }_{78}^{52}$	${ }_{53}^{38}$	16	${ }^{9}$					
68															98								
${ }_{70}^{69}$															98 ${ }_{92}$	${ }_{70}^{65}$	${ }_{36}^{42}$	${ }_{34}^{21}$	${ }_{19}^{18}$	11	${ }_{5}^{9}$	6	7
71																40	${ }_{36}$	20	19		9	8	
72															${ }_{26}^{46}$	$\stackrel{23}{15}$	30	${ }_{8}^{17}$	${ }_{13}^{12}$	9	${ }_{6}^{6}$	${ }_{2}^{2}$	
71																	7	7	13 3 1			1	
76																	1	3					1
77																	1		2			1	1
								1			...	1	1	i	1				...	1		
Total..	12,076		39	9	271	538	759	1,091	1,399	1,423	1,425	1,265	1,057	829	622	${ }^{436}$	274	183	130	${ }^{69}$	65	3	13

Table LIII.-Correlation betteen height and chest circumference (expiration): (roup 16, Russian, 10 per rent plus, first million droft recruits.

Height, in inches.	Total.	Chest circumference, in incites.										
		23	30	31	32	33	34	3.	$3{ }^{i}$	37	$3{ }^{5}$	39
	58	4	4	8	10	${ }_{1}^{9}$	11	6	2	2	1	1
	134	8	16	23	30	23	11	12	8	1	1	1
	252	10	22	44	${ }^{64}$	5	36	14	9		1	
	825	$\stackrel{27}{27}$	43 61	$\begin{array}{r}73 \\ 119 \\ \hline\end{array}$	168	15	+152	90	28 4	10 22	$\stackrel{4}{5}$	${ }_{15}$
	1,310	41	86	192	231	264	228	139	79	24	15	11
	1,768	48	91	214	334	360	304	214	119	49	21	14
	1, 812	24	75	209	324	371	319	245	144	60	${ }^{29}$	22
	1,780	14	59	186	318	364	313	243	154	71	34	24
	1,385	$\xrightarrow{11}$	33 15	108 68	200 137	200	${ }_{225}^{281}$	${ }_{143}$	124	53	${ }_{25}^{30}$	16 12
	630	4	12	36	89	116	143	85	69	43	16	17
	316	1	2	11	36	63	67	62	40	14	13	7
	157 63	1		6	10 3	22 10	31 14 14	38 11	28 9	10 6	4 3	7 6
	25				3	4	4	7	4		2	1
	${ }_{8}^{6}$			1		1	1	4	${ }_{1}^{2}$	1	1	
	1						1					
	6				1	1	1	3				
Totai	12,037	228	. 227	1,305	2,075	2,390	2.215	1,570	973	421	20.5	148

Number of cases: 12,057. Height: Mcan, 67.11 inches; standard deviation, 2.69 ± 0.012 inch. Chest circunference (expiration): Mean, 33.39 inches; standard deviation, 2 ± 0.009 inch.
Table LIV.-Correlation between weight and chest circumference (expiration): Group 16, Russion, 10 per cent plus, first million draft recruits.

Table LJ.-Correlation between height and weight: Group 1\%, Scandinaziun, 10 per cent, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		95-99	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	$\begin{gathered} 110- \\ 114 \end{gathered}$	115-119	120-124	125-129	130-134	135-139	140-144	145-149	150-154	155-159	160-164	165-169	170-174	175-179	$\underset{184}{180-}$	$\begin{gathered} 185- \\ 189 \end{gathered}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
59.	171	2		3	5	8	13	10	17	14	23	18	12	13	11	11	6			2		1	
60.	95		4	5	6	19	6	14	5	5	${ }^{6}$	5	4		3		2		1	2			1
${ }_{62}^{61}$	${ }_{525}^{236}$	1	${ }_{3}^{5}$	14 16	29 68	${ }_{72}$	${ }_{79}^{30}$	${ }_{93}^{33}$	${ }_{64}^{23}$	${ }_{41}^{10}$	13 35	10	12	${ }^{7}$	${ }_{5}^{2}$	5	1	1				1	
63.	1,174		8	30	84	157	177	199	163	127	74	59	33	26	15	10	5	1	2	1	1	3	
61.	2,250		4	24	85	193	339	374	382	310	208	131	86	40	34	17	8	7	4		i	3	
65.	3, 892	1	5	33	106	${ }^{262}$	410	563	611	606	439	341	207	120	71	42	33	13	8	2	4	7	$\ddot{8}$
66	5,941		1	23	86	220	472	726	922	948	824	623	437	261	135	105	61	37	22	15	11	8	
67	7,441		2	7	39	174	$\begin{array}{r}390 \\ 255 \\ \hline\end{array}$	$\begin{array}{r}678 \\ 466 \\ \hline\end{array}$	${ }_{8}^{945}$	1,138	1,119	${ }_{1}^{907}$	688 978	501 690	348	197	107	76 109	${ }_{40}^{43}$	${ }_{5}^{33}$	17	14	18
68	8,163		5	7	23	64	255	466	${ }^{831}$	1,137	1,217	1,191	978	${ }_{7}^{690}$	471	354	154	109	${ }_{60}$	52	25	19	25
69	7,279		2	1	3	35	145	277	534	832	1,015	1,062	946	772	5×2	410	232	171	99	60	29	30	42
70	5, 735		2		5	14	49	126	240	583	689	802	804	${ }_{6}^{677}$	569	454	$\stackrel{296}{296}$	151	115	73	43	34	
72	2, 254		1	1		${ }_{3}^{6}$	17	19	120 44	$\stackrel{80}{89}$	369 147	${ }_{228}^{473}$	573 276	508 310	463 309	350 246	19	${ }_{134}^{147}$	99 92	$\begin{array}{r}61 \\ 53 \\ \hline\end{array}$	$\begin{array}{r}33 \\ 43 \\ \hline\end{array}$	26	${ }_{41}$
73.	1,138		1					5	8	18	56	94	138	139	147	141	131	82	68	35	23	21	31
74.	526				1		1	1	3	8	19	18	43	48	s0	81	56	45	$\stackrel{37}{ }$	$\stackrel{25}{25}$	27	8	25
75	217								3	3	2	12	17	17	26	26	24	13	25	23	9	8	9
77.	70								1			6	1	4	8	9	8	11	6	5	2	2	
77.	19						1			2	1	1	2		4 1	3 1	5	3 4	4	$\stackrel{1}{2}$	1	1	${ }_{2}^{2}$
79.	24								1	1	5	2				2	1	1	2	2	1	1	
Total	51, 009	4	44	166	541	1,264	2, 388	3,625	4,917	6,075	6, 262	6,003	5,271	4,148	3,286	2,461	1,608	1,006	691	447	271	211	320

Table LVI.-Correlation between height and chest circumference (expiration): Group 17, Scandinavian, 10 per cent, first million draft recruits.

Table LVII.-Correlation between weight and chest circumference (expiration): Giroup 1\%. Scamlinuriun, 10 per cent, first million druft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		${ }_{99}^{95-}$	$\begin{array}{\|c} 100- \\ 104 \end{array}$	$\begin{array}{\|c} 105- \\ 109 \end{array}$	${ }_{110}^{110-}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\begin{gathered} 120- \\ 124 \end{gathered}$	${ }_{129}^{125-}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{gathered} 135- \\ 139 \end{gathered}$	$\begin{gathered} 140- \\ 144 \end{gathered}$	$\begin{aligned} & 145- \\ & 149 \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & { }_{159} \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{gathered} 165- \\ 169 \end{gathered}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	${ }_{179}^{175-}$	$\underset{184}{180}$	$\begin{aligned} & 185 \\ & 159 \end{aligned}$	$\begin{gathered} 190- \\ 194 \end{gathered}$	$\begin{aligned} & \text { 19.7-7 } \\ & 199 \end{aligned}$	204
0.	498 1,699	2 1	15 9	52 46	87 159	$\begin{array}{r}96 \\ 288 \\ \hline 8\end{array}$	93 352	61 317	$\begin{array}{r}38 \\ 230 \\ \hline\end{array}$	20 150	15 65		12	${ }_{7}^{2}$	${ }_{3}^{2}$	${ }_{5}$	1	1	1				
1	4,285		$\stackrel{9}{5}$	${ }_{37}$	174	${ }_{382}^{288}$	${ }_{663}$	821	${ }_{803}^{230}$	616	355	213	108	55	${ }_{25}^{3}$	${ }_{15}^{5}$	6	1	$\frac{1}{3}$	1	1	3
2.	7,987	1	2	16	72	302	716	1,099	1,395	1,500	1,224	775	464	223	95	63	18	12	5	3	1		1
3.	10,281		6	4	19	125	367	-802	1,373	1,768	1,885	1,483	1,081	665	386	159	71	33	13	2	5	4	
4.	10,232		2	3	10	41	131	382	735	1,253	1, 538	1,789	1, 553	1,116	760	509	238	97	51	13	6	4	i
5.	7,559			1	1	13	39	106	274	533	802	1,082	1,235	1,093	924	642	395	214	115	51	21	13	5
	4, 545		2	2	2	3	10	30	75	139	267	${ }^{4} 49$	${ }_{570}$	${ }_{627}$	651	590	452	278	179	116	49	37	17
7.	2,255		1	3	3	7	1	2	9	39	70	129	216	261	322	301	256	213	156	101	75	47	43
8	986			1	4	2	3	1		7	9	25	44	50	89	108	134	101	118	99	62	41	79
	379		2	1					2	1	4	6	5	15	23	26	34	33	34	40	42	${ }^{41}$	70
	247		1		3	2	6	1	3	1	5	2	1	11	4	9	9	13	13	12	12	20	119
Total.	50, 953	4	45	166	534	1,261	2,381	3,622	4,946	6,027	6,239	6,001	5,291	4,125	3,244	2, 4(0)	1,618	1,001	689	439	275	210	335

Table L'III.-Correlation between height and weight: Group 18, Finn, 10 per cent, first million draft recruits.

Table LIX.-Correlation between height and chest circumference (expiration): Group 18, Finn, 10 per cent, first million diaft recruits.

Table LX.-Correlation between weight and chest circunference (expiration): Group 18, Finn, 10 per cent, first million draft recruits.

Table LXI.-Correlation between height and weight: Group 19, French-Canadian, 10 per cent, first million draft recruits.

Height, in inches.	Total.	Weight, in pounds.																					
		95-99	$\begin{gathered} 100- \\ 104 \end{gathered}$	$\begin{aligned} & 10 .- \\ & 109 \end{aligned}$	110-114	115-119	120-124	125-129	130-134	135-139	140-144	145-149	150-1.4	135-1:19	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\begin{gathered} 175- \\ 179 \end{gathered}$	$\begin{gathered} 180- \\ 184 \end{gathered}$	$\begin{aligned} & 185- \\ & 189 \end{aligned}$	$\begin{gathered} 190- \\ 190 \end{gathered}$	$\begin{gathered} 195- \\ 109 \end{gathered}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
	101	1	2 4 4	3 10	6 15	5 23	17	13 6	15 13	11	9	3	$\stackrel{9}{2}$	7	5 3	1	1	1			1	2	
	376	1	18	30	71	72	52	39	36	22	8	10	9	2	1		1	1				3	
	845	3	17	69	131	151	142	110	81	49	41	18	10	7		3	1		1		i	1	
	1,532		21	77	199	267	242	212	170	124	82	51	22	20	23	8	4	3	2	2	1	2	
	2,321		23	56	196	${ }_{3} 355$	362	363	308	240		100	84	41	19	19	10	6	7	5	,		
	3,210		13	4	176	338	478	510	451	367	264	206	131	65	60	39	25	12	11		5	3	3
			13		143	315			574	484	373	303	192	135	96	56	44	26	16	10	12	9	4
	3,833		11	15	63	187	342	487	568	593	444	341	271	189	98	80	54	30	19	14	12	8	7
	3,478		6	13	24	120	256	381	${ }_{251}$	482	440	${ }_{3}^{393}$	286	185	137	112	59	53	28	23	16	8	5
					11	32	-90	222	${ }^{277}$	354	340	324	269	221	131	97		58	28	18	16	11	13
	1,732		3	5	5	15 6	43	82 30	145	215	248	${ }_{23}^{233}$	${ }^{214}$	150	98	89	52	47	31	17	17	14	9
	1,036 508				$\stackrel{1}{3}$	6	16 3	30 9	76 13	89 32	146 58 5	132 61 1	116	103	${ }_{57}^{82}$	72	50	41	31	13	9	9	14
	${ }_{217}$			2		i		9 2	13 2	11	19	61 31	$\stackrel{65}{27}$	$\stackrel{64}{27}$	${ }_{23}^{57}$	${ }_{20}^{39}$	25 20	${ }_{8}^{27}$	15	11	9	11	$\stackrel{3}{7}$
	76						1		1	3	7		10	7	7	14	7	2	5	2	${ }_{2}^{2}$	3	7
	31					1				1	3	2	3	${ }_{5}^{9}$	3	1	3	3		2			i
	4										1	1	3	5	1		2	2				1	
	6										2	1		i					1				1
	7						1	1		1			1		1	1			1				
Total.	25, 862	5	133	349	1,044	1,888	2,528	3,004	3,181	3,085	2,618	2,215	1,724	1,239	852	652	427	323	201	131	109	87	67

Table LXII.-Correlation between height and chest circumference (expiration): Group 19, French-Canadian, 10 per cent, first million draft recruits.

n, 2.05 ± 0.008 inch.
Table LXIIr.-Correlation between weight and chest circumference (expiration): Group 19, French-Canadian, 10 per cent, first million draft recruits.

Table LXIV.-Correlation between height and veight: Group 20, German and Scandinavian, 10 per cent plus, first million draft recruits.

Table INV.-Correlation betwcen hevgnt and chest circumference (expiration): Group 20, German and Scandinavian, 10 per cent plus, first million draft recruits.

TAble LXVI.-Correlation between weight and chest circumference (expiration) Group 20, German and Scandinavian, 10 per cent plus, first million draft recruits.

Chest circumference, in inches.	Total.	Weight, in pounds.																					
		$\begin{aligned} & 9,- \\ & 99 \end{aligned}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{array}{r} 105 \\ 109 \end{array}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\begin{gathered} 115- \end{gathered}$	$\underset{124}{120-}$	$\begin{gathered} 125 \\ 129 \end{gathered}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	$\begin{aligned} & 135- \\ & 139 \end{aligned}$	$\begin{aligned} & 140- \\ & 144 \end{aligned}$	$\begin{aligned} & 145 \\ & 149 \end{aligned}$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 165 \end{aligned}$	$\begin{aligned} & 165- \\ & 169 \end{aligned}$	$\underset{174}{170-}$	$\begin{gathered} 175- \\ 179 \end{gathered}$	$\underset{184}{180-}$	$\begin{gathered} 185- \\ 159 \end{gathered}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{aligned} & 200- \\ & 204 \end{aligned}$
29.	240	1	\times	24	48	48	42	24	14	12	10	4	1	1	1		1		1			I	
30	299					1	336	406	431	319	194	121	59	29	17	6	2		I			,	
31.	-	4	8	${ }_{33}$	164	282	560	736	7×2	611	435	240	128	60	36	11	s	5				
33.	L, 616		4	1	12	64	192	441	774	987	1,064	S23	569	335	20s	119	40	18	6	2	3	1	
34.	5,757		1	3	6	16	72	202	408	733	563	1,022	$\times 8$	${ }^{603}$	432	299	138	43	29	7	4	3	
35.	4,306					6	15	59	1.9	288	468	${ }_{2}^{646}$	704 310	${ }_{3}^{603}$	327 378	367	292	162	${ }^{73}$	23 61	9	10	10
36	2, in 2		1	2	2	1	6	16	35	68	145	239	310	367	37.8	374	236	162	9	61	30	,	$\xrightarrow{10}$
37.	1,310	.	1	1	2	5		1	6	1	37	14	133	15	1.4	61	8	57	67	${ }_{6}$	31	2	49
38	365		2	1	1	1	2		1	1	1	1	2	9	11	16	is	20	22	26	23	22	40
$\begin{aligned} & 39 . \\ & 49 . \end{aligned}$	215 152		1		3	2	5		3	1	3	2	1	-	3	4	5	7	8	7	9	13	Gs
Total.	28, 056	1	27	S2	2×2	652	1,222	1, 256	2, 650	3,262	3, 428	3,421	2,031	2, 28s	1,875	1,416	953	365	395	235	146	121	195

Table LXVII.-Correlation between height and weight: Group 21, German and Austrian, 20 per cent plus, first million draft recruits.

Number of cases: 38,962 . Height: Mean, 67.41 inches; standard deviation, 2.69 ± 0.007 inch. Weight: Mean, 143.27 pounds; standard deviation, 18.05 ± 0.044 pound.
Table LXVIII.-Correlation between height and chest circumference (expiration): Group 21, German and Austrian, 20 per cent plus, first million draft recruits.
Table 1.NIX.-Correlation between weight and chest circumference (expiration): Group 21, German and Austrum, 20 per cent plus, first million draft recruits.

Height, in Inches.	Total.	Weight, in pounds.																					
		9-99	${ }_{104}^{100-}$	09	110-114	115-119													Q-1st	1159	${ }_{19}^{190}$	${ }_{198}^{195}$	200 and over
		5591111611	$\begin{array}{r} 14 \\ 17 \\ 36 \\ 60 \\ 60 \\ 54 \\ 38 \\ 24 \\ 7 \\ 10 \\ 4 \\ 5 \\ 1 \\ 1 \\ \cdots \end{array}$	$\begin{gathered} 25 \\ 51 \\ 58 \\ 98 \\ \hline 275 \\ 192 \\ 1122 \\ 93 \\ 60 \\ 37 \\ 12 \\ 4 \end{gathered}$	$\begin{array}{r} 29 \\ 70 \\ 193 \\ 329 \\ 345 \\ 593 \\ 540 \\ 399 \\ 295 \\ 114 \\ 32 \\ 21 \\ 21 \\ 5 \\ 2 \\ 2 \\ 2 \end{array} .$											22 15 16 14 40 86 167 302 742 718 786 787 727 307 261 119 41 11 11 8 2 2 4	94662535301722954264387383832941699230198112	3 $\cdots \cdots$ 6 6 11 34 63 118 174 276 332 256 258 213 124 64 26 7 7 4 3 1 1	2224351131371301321322021981811339191171777332		2$\cdots$$\cdots$11919316693988784707033113222233		
S																							
d																							
99																							
1.																							
					i																		
				1																			
												13,139	10,734	®,245	6,141	4,729	2,992	2,007	1,315	900	625	465	5
Total	120,994	42	336	1,138	2,912	3,886	8,3,2	11,008	1, 114	15,293	14, 07												

Table LXXI.-Correlation between height and chest circumference (expiration): Group 22, German and Austrian, 15 per cent plus, first million draft recruits.

Height, in inches.	Total.	Chest circumference, in inches.										
		29	30	31	32	33	34	35	36	37	38	39
59.	548	27	47	58	111	102	83	59				
60.	530	29	65	78	117	98	69	42	17	8	13 5	${ }_{2}^{3}$
61.	1,307	69	149	268	233	242	151	96	46	19	8	6
63.	${ }_{5}, 125$	144	2510	482	${ }_{1} 533$	498	335	216	${ }^{88}$	8	14	12
64.	8,486	328	692	1,286	1,753	1,646	1,299	764	420	180	69	49
65.	12,948	411	1,028	1,858	2,558	2,511	2,041	1,318	644	328	142	109
66.	16,912	442	1,060	2,236	3,316	3,433	2,775	1,828	959	438	214	151
67.	19,010	378	1,033	2,211	3,449	3, 990	3,378	2, 292	1,259	624	254	212
69.	18,620 15 15 15	281 158	799 54	1,861	3,191	3,766		2,421	1,450	720	339	220
70.	15,273 11,159	158 99	544 346 10	1,351	2,326 1,586	3,021 2,203	2,997 2,263	2,241 1,729	1,405	656 598	300	274
71.	7,059	44	178	492	${ }^{1} 863$	1,360	1,427	1,156	${ }^{765}$	396	203	213 175
72.	4,034	10	70	230	475	724	860	672	496	271	132	9
73.	1,859	5	18	91	199	293	384	360	240	$1+0$	71	58
74.	819	3	12	35	71	119	172	151	133	65	32	26
75.	312	2	3	7	21	47	57	64	49	30	18	14
77.	105		2	5	8	12	24	27	13	9	2	3
77.	54		${ }^{-}$	1	1	7	12	12	9	6	1	
							9			3	3	2
Total.	126, $\times 87$	2,639	6,839	14,168	21,909	24; 971	22,624	15, 871	9,377	4,616	2,147	1,720

Number of cases: 126,887 . Height: Mean, 67.27 inehes; standard deviation, 2.72 ± 0.004 inch. Chest circumference (expiration): Mean, 33.32 inches; standard deviation, 2.04 ± 0.003 inch.
Table LXXII．－Correlation between weight and chest circumference（expiration）：Group 22，German and Austrian， 15 per cent plus，first million draft recruits．

Chest clrcumference， In Inches．	Total．	Weight，in pounds．																					
		${ }_{99}^{95-}$	$\begin{aligned} & 100- \\ & 104 \end{aligned}$	$\begin{aligned} & 105- \\ & 109 \end{aligned}$	$\begin{aligned} & 110- \\ & 114 \end{aligned}$	$\begin{aligned} & 115- \\ & 119 \end{aligned}$	$\begin{aligned} & 120- \\ & 124 \end{aligned}$	$\begin{aligned} & 125- \\ & 129 \end{aligned}$	$\begin{aligned} & 130- \\ & 134 \end{aligned}$	${ }_{139}^{13)^{-}}$	$\begin{aligned} & 1+0- \\ & 144 \end{aligned}$	$145-$	$\begin{aligned} & 150- \\ & 154 \end{aligned}$	$\begin{aligned} & 155- \\ & 159 \end{aligned}$	$\begin{aligned} & 160- \\ & 164 \end{aligned}$	${ }_{169}^{165}$	$\begin{aligned} & 170- \\ & 174 \end{aligned}$	$\begin{aligned} & 175- \\ & 179 \end{aligned}$	$\begin{gathered} 150- \\ 154 \end{gathered}$	$\begin{aligned} & 183- \\ & 159 \end{aligned}$	$\begin{aligned} & 190- \\ & 194 \end{aligned}$	$\begin{aligned} & 195- \\ & 199 \end{aligned}$	$\begin{aligned} & 200- \\ & 200 \end{aligned}$
29.	2，583	37	130	314	532	576	424	263	131	65	36	19	14	9	4	6	${ }^{4}$	2	1	1	3	10	2
30.	6，837	6	92	373	811	1，334	1，407	1，123	774		208	108	50	26	${ }_{46} 1$	11	13	${ }^{8}$	15	4	1	12	
31.	14，168	3	${ }_{2}^{44}$	280	86				2,355 4,003 3,	1，704	989 2.684	1，755	${ }_{988}^{254}$	483	－ 207	128 128	${ }_{47}^{12}$	${ }_{26}^{16}$	7	8	2	4	2
32.	21，917	2	${ }_{21}^{22}$	112 40	434 166	1，${ }_{590}$	2,430 1,331	3,540 2,420	$\xrightarrow{4,003}$	3,690 4,368	2，684	1， 1245	2，231		679	379	135	69	21	10	6	7	
${ }_{31}^{33}$	24，978		21	40	166	590 179	1，${ }_{518}$	2，${ }^{120}$	3，689	4，368	4,259 3682	3,245 3,626	2，231	1，310	679 1,440	379 909	${ }_{433}^{133}$	$\begin{array}{r}69 \\ 182 \\ \hline\end{array}$	${ }_{65}^{21}$	43	22	8	${ }_{6}$
34.	22， 633		7	16	43	179	118	1， 321	2，083	1，352	1，932	${ }_{2} \mathbf{3 , 3 8 5}$	2，378	2，164	1， 661	1，264	639	391	238	70	48	18	6
${ }_{3}^{35}$	15， 871		3	5	11	49	143 33	${ }_{89}^{321}$			1，932	2，985	1，276	2， 1310	1，257	1，071	810	510	290	194	101	64	53
37	9，369		1	4	6		3	19	22	39			${ }^{1}$	1，319	${ }^{1}$	${ }_{615}$	535	445	308	223	146	92	107
37	4，613		4	7	8	14	3	19	5	${ }_{23}^{90}$	16	74	104	$1+9$	205	236	257	221	231	179	138	95	163
35	2，154		2	3	7	$1{ }^{7}$	7	12	13	9 9	29	15	${ }_{23}$	31	43	63	87	97	89	106	95	81	177
4	967 805		1	${ }_{1}^{2}$	15	16	18	9	14	12	14	17	2	17	19	16	27	40	46	38	54	63	335
Total．	123，895	48	337	1，137	2，902	5，883	8，772	11，635	14，104	15，271	14，690	13，037	10，735	8，315	6，140	4，729	2，899	2，007	1，312	901	2	459	80

\footnotetext{
Number of cases：126，s85．Weight：Mean， 142.3 pounds；standard deviation， 17.76 pounds；probable error ± 0.024 pound．Chest circumference（expiration）：Mean， 33.36 inches；standard devi－
Table LIXXIII．－Comparative frequency distribution of color races by Q．M．C．distribution zones，demobilization．

		篣
à ※ N N		\％
̇． 气㐅 N		¢
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{.}{0} \\ & \text { N } \end{aligned}$		\pm
$\begin{aligned} & \dot{\circ} \\ & \stackrel{\circ}{\circ} \\ & \text { ভ் } \end{aligned}$		皆
$\begin{aligned} & \text { ó } \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	ボำ：	$\stackrel{\infty}{\infty}$
$\begin{aligned} & \therefore \\ & \vdots \\ & \stackrel{y}{0} \\ & \text { N } \end{aligned}$		楽
® © E． N	sin	\％ $=$ $=$
¢ É Ṅ	ง	－
$\begin{aligned} & \text { 犬่ } \\ & \text { © } \\ & \text { 犬̌ } \end{aligned}$	ส゙	咢
$\begin{aligned} & \text { - } \\ & \text { N } \\ & \text { N } \end{aligned}$		㫛
$\begin{aligned} & \text { 苞 } \\ & \text { E. } \end{aligned}$	ぶ～～－	雨

Color．

Table LXXIV.-Correlation between stature and weight in white and colored troops, demobilization.

Height, in centimeters.	Totai.	Weight, in pounds.											Mean weight.
		100-109	110-119	120-129	130-139	140-149	150-159	160-169	170-179	180-189	190-199	200 and	
149-149.	18							2					Pounds.
150-151.	42	6	9	11	¢	4	2		1				126.17
${ }_{154}^{152-153.5}$	120	10	48	29	${ }_{66} 1$	${ }^{6}$	4	1	1		1		123.33
156-157.	622	${ }_{33}^{21}$	162	119	$\begin{array}{r}66 \\ 153 \\ \hline\end{array}$	51	18	3	2		1		126.59
158-159.	1,210	42	285	436	269	115	39	13	6	2	3		127. 49
$160-161$.	2, 300	${ }^{60}$	414	723	634	317	102	37	8	4	1		129.98
${ }_{164-165}^{162-163 .}$	3,569	71	491	1,077	1,055	556	199	68	35	14	3		132.02
164-165.	5,408	66 5	495	1,445	1,730	967	459	152	57	20	13	4	134. 76
166-167.	7,056	35	457	1,564	2,100	1,732	747	260	123	16	17	5	1337.52
170-171.	9,557	16	233	1,276	2,600	2,609	1,649	801	123 234	${ }_{90}$	${ }_{31}$	18	143.10
172-173.	9,563	4	152	,960	2,327	2,758	1,918	904	366	115	40	19	145.42
174-175.	8,936	7	93	643	1,822	2,478	2,0×3	1,137	449	129	58	37	148.21
176-177.	7,651	5	56	334	1,211	2,068	1,986	1,175	503	210	64	39	151.26
178-179.	5,902	3	22	157	739	1,468	1,560	1,088	534	216	76	39	154.13
${ }_{182-183}$	4,031	4	23	86	361	${ }_{841}$	1,058	877	463	209	68	41	156.92
184-185.	2,657		5	47	158	529	${ }_{6}^{694}$	617	351	151	59	46	159.14
186-187.	1,029		3	14	34	92	214	222	182	201	32	31	166.53
188-159.	${ }^{1} 55$	3	4	10	27	66	109	135	98	57	32	14	163.85
190-191..	221	1		2	8	23	35	52	${ }^{41}$	32	15	12	168.07
${ }_{19+193-193 .}$	111			5	6	18	11	25	13	13	8	12	166.84
${ }_{196-197}^{19+1}$	48			4	4	7 2	10 3	4	10	${ }_{6}^{4}$	$\begin{array}{r} 3 \\ 2 \end{array}$	${ }_{2}^{2}$	160.96 164.82
199-199.	17			1	1	1	5	5	3	1			159.21
200-201.	4					1	1		1		1		167.00
${ }_{204}^{202-2035 .}$	1					1							144.50
204-205.	2			1	1								129.50
Totai.	81,558	424	3,393	10,815	18, 151	19,243	14,488	8, 487	3,915	1,679	591	372	
Mean height		163.33	164.61	167.31	169.78	172.24	174.30	176.14	177.38	179.15	178.73	179.93	

Weight: Mean, 144.92 pounds; standard deviation, 17.06 ± 0.0285 pound. Heigit: Mean, 171.93 centimeters: standard deviation, 6.70 ± 0.0112 centimeter. Correiation: 0.5198 ± 0.0017.
Table LXXV.-Correlation between stature and waist circuinference, white and colored troops, demobilization.

Table LXXVI.-Correlation between leg length and knee height, white troops, demobilization.

Table I.XXVII.-Correlation between chest circumference (rest) and weight, white troops, demobilization.

Table LXXVIII.-Correlation between chest circumference (rest) and neck rircumference, white troops, demobilization.

Neck circumference, in centimeters.	Total.	Chest eircumference (rest), in centimeters.											$\begin{gathered} \text { Meall } \\ \text { chest } \\ \text { circum- } \\ \text { ference. } \end{gathered}$
		68-7.5	7+-77	78-81	82-8,	N6-89	901-93	94-97	98-101	1(12-105	$1 \mathrm{NGF-109}$	110 and over.	
28 and under.	151	1	4	2									$\underset{86.36}{C m .}$
29............					4	2	17	25	7				93.61 8794
31.	${ }_{314}^{219}$	7	31	- 73	80	${ }_{63}$	33	17	9	1	-		57.94 84.33
32	1,133	13	93	340	418	193	49	19	6				82. 95
33.	4,286	21	133	860	1,796	1,162	247	50	15	2			84. 14
34.	11,353	$\stackrel{29}{29}$	124	1,354	4,407	3,897	1,284	205	40	10	2	1	85.48
35	20, 094	28	116	1,244	5,494	8,010	4, 144	883	156	17	2		87. 10
37.	18,047	${ }_{21}^{20}$	26	299	1,827	5,468	6,300	3,218	769	99	14	6	90.37
38	10,051	11	15	112	611	2, 175	3, 491	2, 539	906	153	34	4	91.94
39.	4,426	4	3	4	199	6.50	1,263	1,322	694	191	44	12	93.58
40	1,716		1	11	33	168	384	499	402	160	46	14	95. 62
41	147	1		-	4	+	14	19	37	37	- 24	11	100.97
43.	52	2	...	2	2	2	5	5	11	8	5	10	99. 12
44	${ }_{22}^{23}$			1	1 3	${ }_{6}^{4}$	1	1	$\stackrel{1}{2}$	1	5	-	95. 68
46	17				1	7	3	2	2	1			92.44
47.	16					5	5	2	3			1	93. 50
48.				1			${ }_{1}$	2		1			
$\begin{aligned} & 49 .- \\ & 50 \end{aligned}$	6 18			1	6	4	7	2		1		1	${ }_{87}$
Number measurel.	95, 271	166	599	5,046	18, 8.57	30,615	24, 120	11, 163	3,600	N01	223	81	
Not measurerl.	603												
Total	95, 874												-
Mean neck circumference.		34.90	33.86	34. 48	35.02	35. 72	36. 45	37. 19	37.88	38. 82	39.71	40.77	

Chest circumference (rest): Mean, 88.79 centimeters; standard deviation, 5.18 ± 0.0050 centimeters. Neck circumference: Mean, 35.98 centimeters; standard deviation, 1.00 ± 0.003 centi-
meter. Correlation: 0.5061 ± 0.0016.
Table LXXIX.-Correlation between chest circumference (rest) and transverse pelvic diameter, white troops, demobritization.

Table LXXX.-Correlation between chest transverse and chest antero-posterior, white troops, demobilization.

[^23]Table LXXXI.-Correlation between waist circumference and transverse pelvic diameter, white troops, demobilization.

Table LXXXII.-Correlation between length of arm and forearm, white troops, demobilization.

Forearm, in centimeters.	Total.	Arm length, in centimeters.																				$\begin{gathered} \text { Mean } \\ \text { sarm } \\ \text { fergth. } \end{gathered}$
		60-61	62-63	64-65	66-67	6s-69	70-81	72-73	74-75	76-77	78-79	80-81	82-83	(4-S"	86-87	88-s9	90-91	92-93	94-95	96-97	9\%-99	
20.	85					3	12						7									Cm .
${ }_{22}^{21 .}$	117		3	4	5	${ }_{5}^{5}$	${ }^{26}$	13	10	12	12				5	1	$\stackrel{1}{2}$	3	1		1	77.48
23.	1,098	3		28	60	151	222	-311	172	19 97	${ }_{6} 16$	${ }_{33}^{23}$	9	${ }^{9}$	3	5	1	3		1		74.03
24.	3,745	1	8	30	81	288	676	844	860	456	276	111	42	15	${ }^{9}$	5	5	1				72.75
${ }_{2} 25$	10, 404	1	6	12	49	320	1,035	2,036	2,513	2,081	1,374	550	251	89	48	16		6	4			73. 53
	18, 146	2		7	17	126	717	2,049	3,714	4,216	3,469	2,047	1,045	447	150	69	16	5	9	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	${ }_{2}^{2}$	${ }_{7}^{75.12}$
${ }_{28}^{27}$	20, 374		3	5	11	36	261	915	2,393	4,133	4, 871	3,587	2,188	1,158	310	228	36	16	9	5	${ }_{9}$	76. 78
${ }_{29}^{28}$	15, 194	1		2	2	16	67	197	757	1,747	3,154	3,610	2,681	1,591	817	386	102	27	16	12	9	78.71 80.58
	8,037					4	20	53	161	404	${ }_{986}$	1,695	1, 801	1,390	835	485	128	50	14	5	5	81.38
	3,301		1	1		${ }_{4}^{4}$	8	10	30	89	184	${ }_{4} 56$	${ }^{666}$	717	565	352	136	54	16	9	3	${ }_{83.98}$
32.	1, 240							${ }_{2}^{3}$	$\stackrel{4}{4}$	11	25	88	131	190	215	182	74	54	19	9	4	85. 91
${ }^{33}$	93							${ }_{1}^{2}$	3 2 2	3 2 2	11		12		$\stackrel{50}{16}$	59	38	22	18	2	3	87.77
	388			2	,		24	5	50	56	72		10 49		16 42	${ }_{31}^{20}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 13 \\ & 18 \end{aligned}$	10 9	$\stackrel{2}{9}$	1	87. 42
Number measured. . Not measired.	$\begin{aligned} & 82,492 \\ & 13,832 \end{aligned}$	10	30	99	254	997	3,108	6,382	10,703	13,373	14, 532	12, 200	8,934	5,630	3,315	1, 449	566	274	126	70	40	
Total.	96, 324																					
										-			
Mean forearm....cm. .		24. 20	24. 33	24. 22	24.24	24. 59	25. 12	25. 53	26.00	26.46	26.91	27.41	27. 83	28.25	28. 58	2¢, 93	29.34	29.77	29.79	28.94	28. 50	

Table LXXXIII.-Correlation between stature and sitting height, white troops, demobilization.

Table LXXXIV.-Correlation between stature

Span, in centimeters.	Total.	Height, in centimeters.												
		148-149	150-151	152-153	154-155	150-157	15*-159	160-161	162-163	164-165	$\begin{aligned} & 160- \\ & 167 \end{aligned}$	$\begin{aligned} & 108- \\ & 169 \end{aligned}$	$\begin{aligned} & 170- \\ & 171 \end{aligned}$	$\begin{gathered} 172- \\ 173 \end{gathered}$
148-149.	20				2	1			1	1	1	1		2
150-151.	75	1		6	19	13	12		4	2	3	1		
152-153.	162	1	9	11	26	32	25	25	17	,		3		1
154-155	259	1	6	22	44	50	62	39	18	16	9	7	3	4
156-157.	496		5	23	47	77	109	87	61	39	22	13	4	
158-159.	900		3	24	(i3)	118	175	181	134	96	56	22	14	
160-161.	1,618		13	20	64	125	220	349	327	221	151	83	32	
162-163.	2,614	2	4	12	43	99	258	455	548	488	343	207	78	43
164-165.	3,772		3	5	25	87	245	479	759	842	579	424	184	72
166-167.	4,933	2	2	2	11	51	129	393	750	1,060	1,051	758	428	165
168-169.	(6,458	2	2	5	11	27	75	302	679	1,094	1,469	1,294	800	400
170-171.	7,966				5	12.	65	155	430	942	1,470	1,846	1,500	820
172-173.	8,984			2	6	8	18	89	249	679	1,205	1,736	2,022	1,519
174-175.	9,781				3	4	9	54	142	417	862	1,481	2,208	2,000
176-177.	9,613	1		2	1	3	1	21	62	195	518	1,035	1,747	2,070
178-179.	9, 188	4			2	2	1	11	24	99	264	618	1,252	1,752
180-181	7,936						2	4	11	24	94	283	755	1,252
182-183.	6, 478				1		1	2	4	10	36	97	366	719
184-185.	5,048					1	3.	3	6	7	16	51	176	375
186-187.	3,752				1	2	1	1	I	13	8	32	71	144
188-189.	2,591					1	1	1	3	8	10	9	38	63
190-191.	1,681				1					${ }^{2}$	4	6	10	23
192-193.	999						2	2	2	3	,	4	2	14
194-195.	604					1				1			7	3
196-197.	331						1	1		2	2	1	1	2
198-199.	200							1		,		1	4	7
200-201.	68												1	1
202-203.	19													
204-210.	20						1							2
Number measured Not measured.	$\begin{array}{r} 96,596 \\ 596 \\ \hline \end{array}$		43	136	375	714	1,417	2,663	4,235	6,269	8,180	10,013	11,705	11,559
Total.	97, 192													
Mean.		169.55	158.36	158.88	159.53	160.95	162.43	164.51	166.33	168.32	170.16	171.99	174.30	176.24

Height: Mean, 171.99 centimeters; standard deviation, 6.66 ± 0.0102 centimeter. Span: Mean, 175.58 centimeters; standard deviation, 7.95 ± 0.0122 centimeter. Correiation: 0.7944 ± 0.0008.

Table I،XXXV.-Correlation between stature

Height: Mean, 171.99 centimeters; standard deviation, 6.66 ± 0.0102 centimeter. Sternal notch: Mean, 141.18 centi. meters; standard deviation, 5.91 ± 0.0091 centimeter. Correlation: $0.5 .567 \pm 0.0000$.
and span, white troops, demobilization.

Height, in centimeters.																Mean height.
174-175	176-177	178-179	180-181	1:2-183	184-185	1081-157	184-190	100-191	192-193	$\begin{aligned} & 194- \\ & 195 \end{aligned}$	$\begin{aligned} & 196- \\ & 197 \end{aligned}$	$\begin{gathered} 198 \\ 199 \end{gathered}$	$\begin{aligned} & 200- \\ & 201 \end{aligned}$	$\begin{gathered} 202 \\ 203 \end{gathered}$	$\begin{aligned} & 204- \\ & 210 \end{aligned}$	
				2												Cm. 170.10
	1				1											158.39
				1			1									158.37
3							1									159.10
4				1												159.79
3	2						1									160.78
					1											161.94
15	6	\pm									1					163.31
34	13	7	4		1	4	4									164.36
66	38	12	6	1			4									165.85
180	55	33	4	6	7	6	2	1	2	1	1					167.19
420	167	86	16	4	7	7	5	2	4		2					168. 65
835	383	153	30	12	7	10	7	7	3		1	1				169.98
1,406	685	252	81	18	9	7	7	1	8	4	1					171.23
1,982	1,189	530	157	57	11	10	11	1	6	1	1	1				172.61
1,983	1,687	963	365	98	33	6	9	7	3	2	3					173.96
1,547,	1,624	1,314	629	215	103	41	19	8	4	4	3					175. 47
1,059	1,334	1,293	931	415	151	64	29	6	5		3					176.90
715	928	998	825	551	228	101	39	11	3	3	1	3				177.95
339	554	710	728	574	343	145	58	14	3	3	1	2	1			179.18
156	295	434	514	455	317	189	73	17				1				180.40
52	123	233	291	328	271	174	112	36	10	1	3		1			152.00
13	43	98	137	198	184	139	87	45	14	3	6					183.09
11	26	39	55	95	113	100	72	42	23	7	2	2				184.25
	8	12	23	45	64	65	54	28	18	2	1	1				185. 12
	4	12	8	23	26	33	2 s	23	10	9	1	3				185, 09
			4	4	7	13	10	7	12	4	2	2	1			188, 35
				1		9	3	2	1	3	1					188, 61
										1						190.6
10, 833	9,169	7,176	4,814	3, 106	1,887	1,128	639	261	140	49	37	18	1	2	5	
		
178. 07	130.03	181.86	184.03	186.11	187.62	188,78	159.04	190.97	190.34	190. 29	187.04	189.50	195.50	204. 50	182.10	

and height of sternal notch, white troops, demobilization.

Height, In centimeters.																Mean height.
$\begin{gathered} 17+ \\ 175 \end{gathered}$	$\begin{aligned} & 176 \\ & 177 \end{aligned}$	$\begin{gathered} 178 \\ 179 \end{gathered}$	$\begin{aligned} & 180- \\ & 181 \end{aligned}$	$\begin{aligned} & 182 \\ & 183 \end{aligned}$	$\begin{gathered} 181 \\ 185 \end{gathered}$	$\begin{aligned} & 186- \\ & 187 \end{aligned}$	$\begin{gathered} 188 \\ 189 \end{gathered}$	$\begin{gathered} 190- \\ 191 \end{gathered}$	$\begin{aligned} & 192 \\ & 193 \end{aligned}$	$\begin{aligned} & 194- \\ & 195 \end{aligned}$	$\begin{gathered} 196- \\ 197 \end{gathered}$	$\begin{aligned} & 198 \\ & 199 \end{aligned}$	$\begin{aligned} & 200- \\ & 201 \end{aligned}$	$\begin{gathered} 202 \\ 203 \end{gathered}$	$\begin{gathered} 204- \\ 210 \end{gathered}$	
3							1									$\begin{aligned} & 159.24 \\ & 157.14 \end{aligned}$
3	3					1										159.90
1		4				2	3	1								159.58
13	5	3			\pm	2	1	1								161.38
28,	13	2	6	6	10	7	2			1						163.34
63	67	34	5	${ }^{6}$	4	9	7	1	1	1	3			1		165. 40
66	${ }^{61}$	30	14	16	7	11	11				2	i				167.24
${ }_{1}^{292}$	109	91	331	16	5	11	10	4	3	5	2					169.28
1,734	416		81	11	16	16	8	,	13	1		1			2	171.56
3,943	1,760	+36	74	39	21	18	8	9	8	4	1	1				173. 42
3,318	3,554,	1,709	${ }^{342}$	73	39	28	12	5	8	4	8	1	1			175.32
1,035)	2,355	2,613	1,216	250	71.	34	39	7	4	,	1	3	,			177.42
241	657	1,540	1,726	885	208	59	33	10	7	1	1	3	1			179.08
46	115	1377	${ }^{913}$	1,062	490	153	4.5	8	8	2	1	2				181.32
12	27	72 20	$3+3$ 16	497	627 281	310	77 148	11	.	1	2	1	1			183.14
8	8	20	16	145	281 78	307	148	35	5	2	2					184.58
\therefore	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	4	11	32 15	78 11	129 20	163 61	70 61	13 37	3 2	2	1				185.78
2	${ }^{7}$	16		. 8	12	9	13	30	35	20	11		2	1		184.81
10,818	9,172,	7,148	4,799	3,095	1,847	1,126	642	260	142	47	36	19	6	2	6	
						
14.3 .12		146. 14	$11 \times .01$	149.85		131. 22	152, 63	1.5.80)	173.43	152. 2			150. $\times 3$	147.50	141.33	

Table LXXXVI.-Correlation between stature and height of pubic arch, white troops, demobilization.

TAble Lixixiti-Correlation between stature and sitting height, colored troops, demobilization.

Sitting height, in centimeters.	Total.	Height, in centimeters.																											
		$\begin{aligned} & 148 \\ & 149 \end{aligned}$	150-	(132	${ }_{1}^{13,5}$	${ }_{\substack{156 \\ 157}}^{1}$	${ }_{\substack{158 \\ 159}}$	$\underset{160}{160}$	${ }_{1}^{162-3}$	${ }_{1}^{165}$	${ }_{1}^{106}$	${ }_{1}^{169} 1$	${ }_{171}^{170}$	${ }_{173}^{172-}$	$\frac{17!}{175}$	$\begin{aligned} & 176- \\ & 177 \end{aligned}$	$\underset{179}{175}$	$\left\lvert\, \begin{gathered} 180- \\ 181 \end{gathered}\right.$	${ }_{1 \times 3}^{1,2-2}$	1st	$\begin{aligned} & 156 \\ & 157 \\ & 150 \end{aligned}$	$\begin{array}{\|c} 1589 \\ i s 9 \end{array}$	$\begin{gathered} 190 \\ 199 \end{gathered}$	$\begin{gathered} 192 \\ 193 \end{gathered}$	$\left.\begin{aligned} & 195 \\ & 195 \end{aligned} \right\rvert\,$	$\begin{aligned} & 196 \\ & 197 \end{aligned}$	${ }_{198}^{19}$		
75.	99232015221,1091,5151,379930102170609221	+1.	$\begin{array}{r} 2 \\ 1 \\ 2 \\ 2 \end{array}$	$\left\|\begin{array}{r} \cdots \\ \cdots \\ 3 \\ 6 \\ 6 \end{array}\right\|$	1	1			\cdots	${ }^{1}$	1			1	2		1	$\ldots .$					
78-79.					668	$\left.\begin{array}{r} 5 \\ 11 \\ 22 \\ 13 \\ 13 \\ 2 \end{array} \right\rvert\,$	$\begin{gathered} 3 \\ 24 \\ 29 \\ 29 \\ 9 \\ 9 \\ 4 \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 5 \\ 28 \\ 23 \\ 53 \\ 52 \\ 22 \\ 3 \end{gathered}\right.$	$\begin{array}{r} 1 \\ 33 \\ 76 \\ 78 \\ 97 \\ 75 \\ 21 \\ 21 \\ 1 \\ 1 \\ 1 \end{array}$		$\begin{array}{r} 70 \\ 21 \\ 70 \\ 157 \\ 153 \\ 90 \\ 24 \\ 27 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 10 \\ 600 \\ 1922 \\ 222 \\ 130 \\ 37 \\ 37 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 10 \\ 49 \\ 120 \\ 121 \\ 164 \\ 96 \\ 90 \\ 30 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \end{array}$	$\begin{array}{r} 2 \\ \frac{10}{23} \\ 92 \\ 929 \\ 209 \\ 230 \\ 112 \\ 29 \\ 29 \\ 3 \\ 3 \end{array}$	$\begin{array}{r} 1 \\ 16 \\ 74 \\ 720 \\ 232 \\ 139 \\ 139 \\ 59 \\ 16 \\ 3 \\ 1 \\ 1 \end{array}$	$\begin{array}{r} 13 \\ 13 \\ 412 \\ 110 \\ 113 \\ 151 \\ 61 \\ 14 \\ 5 \\ 1 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 4 \\ 5 \\ \hline 1 \\ 215 \\ 119 \\ 118 \\ 85 \\ 22 \\ 2 \\ 4 \end{array}$	$\begin{array}{r} 31 \\ 37 \\ 37 \\ 37 \\ 63 \\ 102 \\ 64 \\ 26 \\ 26 \\ 7 \\ 1 \end{array}$											
																			1171333635030663	$\cdots \cdots$$\cdots$131834344324544	$\left.\begin{array}{rr} \cdots & 1 \\ 1 \\ \cdots \\ \cdots \\ 10 \\ 21 \\ 18 \\ 10 \\ 7 \\ 2 \end{array} \right\rvert\,$	$\cdots$$\cdots$1111110107711		$\begin{gathered} \cdots \\ \cdots \\ \cdots \\ 1 \\ 1 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ \ldots \end{gathered}$	\cdots				
8t-87.		$\cdots \mathrm{i}$	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\left\|\begin{array}{r} 1 \\ \cdots \cdots \end{array}\right\|$																					$\cdots$$\cdots$2	$\stackrel{4}{4}$	-.....		
82-59.					1																								
$92-93$.																													
91-93)			1																						1	1			
92-93.										1																1			
			\ldots	…..	$\overline{314}$	462				i		\cdots					26	$\frac{18}{18}$					
	1																10												
Number measured. Not measured Total.	6, ${ }_{60}$	2	9	13	23	55	87	159						743	745	556		470	313	207	${ }^{138}$	74			46				
	6,493			\qquad	$\cdots \cdots$	$\cdots \cdots$									$\cdots,$														

Table LXXXVIII．－Correlation between stature and span，colored troops，demobilization．

蛔	－－\％¢ ¢ ¢－－	－	
す。		\％	
	：－－－－－－－－	$1:$	
\＄${ }_{\text {dot }}$	（－－	\％	
教	（：	\％	
包		is	
dia	-	第	
包过		\％	
家馬		㐌	
dig		｜8	
－刲		\％	
是		令	
dix	：	\％	
		\％	
	：	发	
	（－r－＋000	䓪	
きった		希	
		${ }_{\text {m }}^{\infty}$	
\＄		O	！
管兑		\＆	
雩匋		8	
需		æ	
空㿽		®	
家司	：－ーーーール	－	
京号		－	
它		7	篣

Table L.XXXIX.-Correlation between stature and height of sternal notch, colored troops, demobilization.

Table XC.-Correlation between staiure and height of pubic arch, colored troops, demobilization.

Pubic height, in centimeters.	Total.	Stature, in centimeters.																									
		$\begin{gathered} 148 \\ \vdots \\ \vdots 49 \end{gathered}$	$\begin{array}{r} 150- \\ 151 \end{array}$	$\begin{array}{\|l\|l} 152- \\ 153 \end{array}$	${ }_{155}^{15 t-}$	$\begin{aligned} & 156- \\ & 157 \end{aligned}$	$\begin{gathered} 158- \\ 159 \end{gathered}$	$\begin{gathered} 160- \\ 161 \end{gathered}$	$\begin{gathered} 162- \\ 163 \end{gathered}$	$\begin{array}{\|c} 164 \\ 165 \end{array}$	$\begin{array}{\|c\|} \hline 166- \\ 167 \end{array}$	$\begin{gathered} 16 \mathrm{~K} \\ 169 \end{gathered}$	$\begin{array}{\|} 170- \\ 171 \end{array}$	$\begin{array}{\|} 172- \\ 173 \\ \hline \end{array}$	$\begin{array}{\|c} 174- \\ 175 \end{array}$	$\stackrel{176-}{176}$	$\begin{array}{\|c} 17 x- \\ 179 \end{array}$	$\begin{aligned} & 180- \\ & 180 \end{aligned}$	$\begin{gathered} 182- \\ 183 \end{gathered}$	$\begin{gathered} 1.4- \\ 185 \end{gathered}$	$\begin{gathered} 186- \\ 187 \end{gathered}$	$\begin{gathered} 1 \leqslant 8 \\ 1 \$ 9 \end{gathered}$	$\begin{aligned} & 190- \\ & 191 \end{aligned}$	$\begin{gathered} 192- \\ 193 \end{gathered}$	$\begin{array}{r} 194- \\ 195 \end{array}$	$\begin{aligned} & 196- \\ & 197 \end{aligned}$	$\frac{194}{199}$
$70-71$.	6						1		1	1		2	1														
${ }_{74-75} 72$.	18 27	1	${ }_{2}$		1		2	1	5		2		1	1	2		1		1	1							
76-77.	47	1	2	${ }_{2}$	$\begin{array}{r}3 \\ 2 \\ \hline\end{array}$	6 5	$\frac{1}{7}$	3 4 4	4	3 6	3	${ }_{7}^{2}$	${ }_{6}^{1}$														
78-79.	107		1	3		12	5	18	12	13	12	13	${ }_{9}^{6}$	1	2												
$80-81$.	229			2	7	7	22	28	40	30	27	16	14	9	12	6	5		2		1						
${ }_{81-85}^{82-83}$	370		1	1	1	12	18	36	51	67	59	39	29	21	11	$\stackrel{8}{\square}$	8	2	1		1		3		1		
86-87.	782	1				${ }_{1}$	13	35	80	117	102	80	42	25	21	14	12	4	3	1	1		1				
88-59.	939			i	1	${ }_{3}^{1}$	11	14 10	${ }_{36}^{58}$	97	${ }_{123}^{131}$	145	120	88	46	33	11	10	8	5			1		1		
$90-91$.	959		1		\ldots	3	1	10 6	36 7	64 30	123 56	115	177	${ }_{197}^{148}$	125	${ }_{4}^{44}$	23 62	8	5	2	2	2	2	+	1	1	
92-93.	800					i		1	5	10	16	37	18	140	177	137	${ }_{99}^{62}$	23 53 53	${ }_{24}^{14}$	$\stackrel{5}{8}$	3	3 4 4	1	${ }_{2}^{4}$	1		
$96-97$.	600 406			1	...		,	1	3	4	${ }_{3}^{6}$	14	28	58	115	135	114	72	25	22							
95-99.	241					.	i			1	3 4	1	${ }_{2}^{7}$	$\begin{array}{r}30 \\ 5 \\ \hline\end{array}$	34		75	78	50	37	15				1		
100-101.	92 20					.	1		1	1	4	1	2		7 3	16 2	36 7	37 12	47 19	36 14	${ }_{1}^{22}$	14	${ }_{5}^{6}$	2	1	1	i
104-105.	20 13																2		${ }^{3}$	${ }_{3} 1$	3	2	\cdots	3	1		I
Number measured. .		2	7	12	21	53	85	157	308												3	6	3	1			
Not measured.......	273										Нь	633	684	725	717	561	455	302	202	134	74	44	24	17	10	3	2
Total.	6,493																										

Table XCI.-Currelution between height and knee height, colored troops, demobilization.

Table XCII.-Correlation between leg length and knee height, colored troops, demobilization.

Knnee height, in centimeters.	Total.	Leg length, in centimeters.															
		60-61	62-63	64-65	66-67	68-69	70-71	72-73	74-75	76-77	78-79	80-81	82-83	84-85	s6-87	88-89	
38-39.	74	1	5	4	6	8	14	13	13	8	2						
$40-41$	177	2	8	${ }^{6}$	16	15	37	24	25	24	13	${ }^{4}$	1	1			
42-43.	${ }_{928}^{402}$	${ }_{3}^{5}$	10 6	19 32	49 58	$\begin{array}{r}69 \\ 114 \\ \hline\end{array}$	$\begin{array}{r}78 \\ 174 \\ \hline\end{array}$	$\begin{array}{r}61 \\ 159 \\ \hline\end{array}$	177	36 126	5	${ }_{22}^{11}$	${ }_{3}$	2			
${ }_{46-47}^{45}$	1,386	3	8	14	47	111	220	259	253	229	136	68	25	8	4		
48-49.	1,245	2	2	6	19	48	158	226	236	221	173	92	42	13	6		
50-51.	802			3	8	14	${ }_{26}^{52}$	79	146	193	139	101	42	19	${ }_{9}^{4}$	$\stackrel{2}{10}$	
52-53.	382			2	3	8	26	25	38	58	70	72	44	17	9	10 3	
5455	150			$\stackrel{2}{2}$	1	1	12	11 4	16 10	$\begin{array}{r}16 \\ \hline\end{array}$	19	${ }_{2}^{18}$	27	13 5			
56-57.	49																
Number measured. Not measured	5, 595	16	39	89	207	388	776	\$61	95	917	631	390	192	78	36	20	
Total.	6,493																
Leg length: Mean, 74.38 centimeters; standard deviation, 4.59 ± 0.029 centimeter. Knee height: Mean, 47.32 centimeters; standard deviation, 3.37 ± 0.0229 centimeter. Correlation:																	
Table XCIII.-Correlation betueen chest circumference (rest) and weight, colored troops, demobilizution.																	
Weight, in pounds.					Total.	Chest circhmfereace, in centimeters.											
					68-73	7+77	78		82-8;	M 6 -89	$90-93$	94-9		-101	102-109		
110-119.						79 289	3			65	144	55	i1		2	i	
130-139.					602	2			47	253	250	${ }^{4}$		${ }^{2}$	1	1	
140-149.					757 73.5	4			23 14	171 75	356 321	${ }_{267}^{153}$		19 50	1		
$150-159$. $160-169$.					433	1			$\stackrel{+}{4}$	15	127	20		73	10		
170-179.					228			1	2	7	28	91		81	18	3	
$180-189$.					110					1	10 1	31		49 20	16 16	3	
${ }_{200}^{190-199 ~}$					$\stackrel{52}{23}$					1	1			20 5	10		
Number measured. Not measured.						13		2	184	707	1,184	899		304	80	16	
					3,036												
Total.					6,355												

Weight: Mean, 149.53 pounds: standard deviation, 17.53 ± 0.045 pound. Chest circumference (rest): Mean, 88.14 centimeters; standard deviation, 4.79 ± 0.040 centimeter. Correlation:
$0.6 .59 \pm 0.0067$.

CORRELATIONS UNIFORM MEASUREMENTS.
Table XCIV.-Correlation betucen chest circumference (rest) and neck circumference, colored troops, demobilization.

Table XCV．－Correlation between chest circumference（rest）and transverse pelvis，colored troops，demobilization．

	$\begin{aligned} & \frac{8}{1} \\ & \frac{1}{d} \end{aligned}$		
	$\frac{\vec{b}}{d}$		禁
	$\frac{\stackrel{\rightharpoonup}{\Phi}}{\frac{1}{\infty}}$		迢
	$\begin{aligned} & \text { \% } \\ & \text { § } \\ & \hline \end{aligned}$		$\begin{gathered} \text { 忩 } \\ = \end{gathered}$
	$\begin{aligned} & \frac{8}{2} \\ & \frac{6}{6} \end{aligned}$		令：
			$\underset{=}{\underset{7}{8}}$
	$\begin{aligned} & \text { b } \\ & \text { d } \end{aligned}$		風
	$\stackrel{\text { F }}{ }$		15
	$\frac{\tilde{d}}{d}$		\％
		ージ	$\begin{aligned} & 100 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$

Chest circurnference（rest）：Mean， 87.93 centimeters；standard deviation， 4.86 ± 0.029 centimeter．Transverse pelvis：Mean， 28.54 centimeters：standard deviation， 2.64 ± 0.016 centimeter．
Correlation： 0.3297 ± 0.0075 ．
Table XCVI.-Corrclation between chest transverse and chest antero-posterior, colored troops, demobilization.

Chest, antero-posterior, in centimeters.	Total.	Chest, transverse, in centimeters.													
		18-19	20-21	22-23	24-25	26-27	28-29	30-31	32-33	34-35	36-37	35-39	$40-41$	42-43	41-45
14-1.5.	3							${ }_{3}^{1}$							
16-17.	777	1		4	4	202	330	150	36			1			
${ }_{20}^{20-21 .}$	${ }^{3,116}$		24 9	16	98	575	1,318	842	211	${ }_{50}^{22}$	3 9	5 9	1		1
$24-25$	${ }^{2}, 57$			13	${ }_{5}$	26	100	132	73	19				i	
${ }_{28}^{26-27}$.	50 16					1	13 4	17	9	8	1				
30-31.	13				i	1	3	4	3	i	.				
32-33.	2							1							
34-3i.	3						1						1		
Numbered measured.	6,430	1	39	35	199	1,057	2,548	1, 862	573	102	14	15	2	1	
Total.	6,493														

Table XCVII.-Correlation between waist circumference and transverse diameter of pelvis, colored troops, demobilization.

Transverse pelvis, in centimeters.	Total.	Waist circumference, in centimeters.										
		63 and under.	64-67	6-71	72-75	76-79	80-83	84-87	8*-91	92-95	96-99	100-109
20.	5			1	2	2						
${ }_{22} 21$.	18			4	4	9	1					
23.	35	.	$\stackrel{\square}{5}$	13	8	7		2				
24.	126	3	8	33	43	33	4	1	1			
25.	$\begin{array}{r}337 \\ 752 \\ \hline\end{array}$	$\stackrel{2}{3}$	10 19	-94	129 289	$\begin{array}{r}83 \\ 235 \\ \hline\end{array}$	14 52	${ }_{14}^{4}$	$\frac{1}{2}$		1	
	752 1,017	${ }_{3}^{3}$	19	104	${ }_{342}^{289}$	$\begin{array}{r}235 \\ 374 \\ \hline\end{array}$	$\begin{array}{r}142 \\ 147 \\ \hline\end{array}$	14 28	${ }_{6}$		1	
23.	1,146	5	7	82	267	449	244	68	16	5	2	i
29.	1,014	5	6	43	169	339	282	118	41	5		
31.	539	4	1	18	62	151	160	82	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	12	6	4
32.....	343	1	1	12	39	87	86	65	28	14	7	3
${ }_{3}^{33}$	158	1	1	3	15	32	47	12	16	${ }_{4}^{5}$	1	${ }_{5}^{6}$
35.	32			2	1	4	11	$\begin{aligned} & 12 \\ & 6 \\ & 3 \end{aligned}$	1	1	1	
${ }_{37} 36$.	20				5	1	2	1	3	2	1	
35.	4								1			
39 and o	1								1			
Number measured..	6,354	33	71	576	1,499	2,069	1,247	533	205	59	36	26
Total..	6,445						
Correlation: 0.4456 ± 0.0068.												

Table XCVIII.-Correlation between arm length and forearm, colored troops, demobilization..

Forearm, in centimeters.	Total.	Arm length, in centimeters.															
		68-69	70-71	72-73	74-75	76-77	78-79	80-81	82-83	84-85	86-87	88-89	90-91	92-93	94-85	96-97	98-93
20.	13				3	1	1	1	2	3	1	1					
21.	12				1	5	1	1	1	1	2			3			
23.	17	2	4	2	3	1	1				1	1	2				
24.	54	2	10	13	10	9	6	2	1		1						
25.	235	6	23	54	51 116	42 151	$\begin{array}{r}40 \\ 138 \\ \hline\end{array}$	12 59	4 30	1		1 3	1				
26.	613	3	26	72 55	116	151 206	138 267	59 176	30 120	5	-828	3 9	1	1			
27.	1,071	2	16 4	55 15	141 57	206 133	205	301	214	123	58	30	5	1			
29.	1,060		3	6	12	54	136	211	245	193	121	52	17	8			2
30.	-692	1	2	1	3	9	35	117	138	159	117	62	39	4	2	2	1
31.	317				1	2	9 2	28 3	43 12	58 26	75 22	53 19	24 9	19 10	$\stackrel{2}{9}$	2	1
32.	115							1		4	6	7	8	4	4	1	
34.	18				1			2				6	3	1	4	1
35.	8			2				1		1	...	4				
36.	8				.-.		3	2	1		2	:-					
37.	9						3	1	3	6	1	2		1	1		
38.	11					1		1	6	6	1	2	2		1		
Number measured	5,514	16	88	220	399	614	909	921	822	632	441	246	119	52	22	8	3
Not measured....	979																
Total.	6,493																
Arm length: Mean, 80.79 cent $0.57 \alpha^{2} \pm 0.0060$.	andard	deviatio	4.76	0.0306	entimet	r. For	arm: M	an, 28	0 centi	neter:	standard	deviat	n, 2.03	± 0.013	entime	r. Co	relation:

Table XCIX．－Correlation betueen chest circumference and sitting height，white troops，demobilization．
［Basls of construction of blouse groups shown by heavy lines；eircled symbols are the＂blousc＂group designations．For relative frequenc＇y of＂groups＂see Table 121．］

	サロスถู	昭采	तิ	37	증	E－3	$8 \pm$	¢	5	
c	ह\％8\％	48	98	\％\％	¢゙ฺ	ब்ड	¢๐		¢్ర¢\％	\＄\％

siting height: Mean, 90.41 centimeters; standard deviation, $3.45 \pm 0.00 ;$ centimeter. Chest circumference (rest): ss. 79 centimeters; standard deviation, 5.09 ± 0.0068 centimeter.
Table C.-Association betucen blouse groups and weight, white troops, demobilization.

Weight: Mear, 144.67 pounds.
Table CI.-Association between blouse groups and shoulder uidth, white troops, demobilization.

Shoulder width, in centimeters.	Total.	Chest circumference (rest), in centimeters.																						
		68-73	74-77	78-81 s.	$78-81$ m.	78-81.	$\begin{gathered} 82-85 \\ \text { s. } \end{gathered}$	82-85	$82-85$ 1.	$\begin{gathered} 86-89 \\ \text { S. } \end{gathered}$	86-89	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathbf{s} . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	${ }^{90-93}$	$\begin{gathered} 94-97 \\ \text { s. } \end{gathered}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	${ }^{94-97}$	98-101	$\begin{gathered} 98-101 \\ \mathrm{~m} . \end{gathered}$	${ }^{9+101}$	102-105	106-109	110and over.
30	425	1	9	10	46	8	18	85	21	34														
${ }_{32} 31$	${ }_{112}^{136}$	1	1	2	10	3	7	25 14	8	5	31	10 9	8	14	1	2	26 6	3	$\frac{1}{2}$	${ }_{1}^{2}$		3	1	
33.					7		3	14 16	${ }_{3}^{6}$	9	${ }_{23}^{20}$	9		11	7		7		2	2		2		
34	129		4	2	12	2	10	${ }_{23}$	8	3	${ }_{15}$	${ }^{6}$		9	7	4	5		1	2				
35	144	2	6		20	2	7	22	6	${ }_{8}^{8}$	${ }_{21}^{15}$	7	4	17	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	${ }_{2}^{2}$	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	6				
	419	7	35	25	70	9	33	100	19	32	40	5	,	11	4		13	1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1		1	2	
-37	1,168	11	58	65	179	37	94	320	70	91	147	13	16	42	3		15	i		4	1		2	
	3,154	15	111	149	430	70	194	833	201	275	511	79	54	141	18	7	30	3	3	6	3	1		
	- $\begin{aligned} & \text { 12, } 392\end{aligned}$	25 31	117	168 166	667 713	137 196	386	${ }_{2}^{1,707}$	844	$\begin{array}{r}6619 \\ \hline 137 \\ \hline 15\end{array}$	1,334	191	175	477	75	28	92	3	10	10	3	4	2	2
4	16,928	29	73	${ }^{165}$	773 575	196 204 1	418	$\underset{2,7+1}{2,54}$	-845	- 1,137	2,930	478	451	1,427	277	82	374	36	33	55	7	6	1	
+2	17,790	22	45	44	309	171	240	1,929	${ }^{1} 955$	1,155	$\xrightarrow{4,498}$	1,100	759	3,320	${ }_{977}^{612}$	${ }_{233}^{172}$	1, 425		$\begin{array}{r}113 \\ \hline 1\end{array}$	130 241	18	31 53	3	
± 3	14,948	24	28	11	142	76	96	${ }^{\text {r }} 931$	623	${ }^{1} 710$	${ }_{3}{ }^{4} 203$	${ }^{1} 1085$	668	${ }_{3,278}$	1,193	245	$1 \begin{aligned} & 1,820 \\ & 1,82\end{aligned}$	${ }_{211}^{131}$	$1+8$	${ }_{387}^{2+1}$	${ }_{73}$			$\begin{aligned} & 3 \\ & 5 \end{aligned}$
4	10,005	12	15		38	42	33	350	300	319	1,660	605	422	2 2, 253	${ }^{1} 908$	210	$1,7+7$	243	$1+7$	${ }_{453}$	73 91	116	${ }_{28}^{15}$	${ }_{9}$
45	5,713		10	2	24	19	15	111	109	105	644	289	171	1,168	633	120	1,223	245	108	398	96	168	37	11
46	2, 800	3	3		11	8	6	55	45	32	185	114	60	+25	265	70	'702	147	80	332	69	136	39	13
	1,121				6	3	4	25	14	11	63	35	20	116	86	24	245	76	35	171	52	96	27	10
+9	${ }_{266} 237$			$\stackrel{1}{2}$	10 14	1	4	${ }_{26}^{27}$		${ }_{10}^{10}$	${ }_{29}^{37}$	17	11	${ }_{30}^{41}$	30	${ }_{6}^{6}$	${ }_{80}^{84}$	22	14	72	29	68	28	10
50 and o	159	1	2	1	14	$\frac{1}{2}$	${ }_{3}^{4}$	${ }_{16}^{26}$	12	3		6 3	4	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	13 6	1	$\begin{array}{r}30 \\ 8 \\ \hline\end{array}$	11 4	7	15	8	${ }_{17}^{22}$	17 13	10
Number measured.	95, 167	191	632	754	3,313	992	2,056	11,910	4,859	5,922	19,813	4,790	3,493	15, 452	5,138	1,213	8,732	1,209	768	2,310	513	802	223	82
-																								
Total	35,874																							
Mean shoulder width.......em				39.17	39.71	40.59	39.99																	
Blouse group desig-											41.54	42.14		42.33	42.94	42.75	43.26	+3.98	43. 49	44.10	44.48	44.99	45.72	46.21
				2 s .	2 m .	21.	3 s .	3 m	31.	4 s .	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m .	61.	7 s .	7 m .	71.	8	9	10

Shoulder width: Mean, 41.81 centimeters; standard deviation, 2.41 ± 0.037 centimeter.
Table CII.-Association between blouse groups and chest transverse diameter, white troops, demobilization.

Chest, transverse, in centimeters.	Total	Chest circumference (rest), in centimeters.																						
		68-73	74-77	79-81	78-81	78-81	$82-85$ s.	$\begin{gathered} 82-85 \\ \mathrm{~m} . \end{gathered}$	${ }^{82-85} 1$.	$\begin{gathered} 86-89 \\ \text { s. } \end{gathered}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	${ }^{86-89}$	$\begin{gathered} 90-93 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	$\begin{aligned} & 94-97 \\ & \text { s. } \end{aligned}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 94-97 \\ 1 . \end{gathered}$	$\begin{gathered} 98-101 \\ s . \end{gathered}$	$\begin{gathered} 9-101 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 98-101 \\ 1 . \end{gathered}$	$\begin{gathered} 102- \\ 105 \end{gathered}$	$\left\lvert\, \begin{aligned} & 100- \\ & 109 \end{aligned}\right.$	$\begin{aligned} & 110 \\ & \text { and } \\ & \text { over. } \end{aligned}$
19.	19		5		1			3		2	1	1		2	1	1						1		1
20	154		1	2	7	2	3	32	9	7	31	9	1	20	11	1	15	1	1	1				
22		1	2	2	16	3	8	42	19	16	64	13	8	43	13	7	32	4	1	8	1	2		
23	311	1	14	10	32	8	11	51	17	12	46	20	10	36	6	3	21	1	1	6	1	1	3	
24.	682	9	58	40	118	24	32	131	41	26	75	18	9	37	11	4	30	3	4	4	2	5	3	i
25	2,4:52	23	128	107	385	82	166	665	174	130	361	71	32	84	25	5	29	1		2	4	1	1	1
26	6,381	24	134	179	733	169	342	1,670	552	475	1,190	206	114	372	74	17	92	7	9	15	4	2	1	
27	11,915	19	101	179	782	222	510	2,669	923	1,052	2,831	550	291	1,143	267	50	242	21	17	31	8	6		1
$\stackrel{28}{29}$	17,469	28	75	131	590	181	474	2,756	1,152	1,475	4,527	977	656	2,527	720	144	762	78	48	110	19	8	1	
30	18,618	30	45	64	328	135	256	2,012	918	1,231	4,529	1, 125	838	3,611	1.107	23	1,500	177	89	251	56	30	3	
31.	10,232	12	38 28	24 8	$\begin{array}{r}191 \\ 65 \\ \hline\end{array}$	${ }_{36}$	153	1, 054	603 236	${ }_{360}$	3,241	862 479	739	3, 354	1,172	275	1,954	254	135	431	91	85	5	1
32.	5,705	13	9	7	23	22	23	174	120	142	${ }^{7} 709$	242	238	1, 149	458	123	1,176	179	140	493	9	132	48	
33.	2,668	3	4	2	16	3	4	64	28	57	261	99	86	${ }^{1} 436$	207	72	-609	115	78	234	68	169	45	8
34.	1,204	1	3		4	1	2	29	16	27	93	46	26	166	93	22	245	54	37	152	39	87	36	25
35.	566		2	1	5	3	4	12	9	8	37	15	11	79	44	6	106	29	14	66	19	51	33	12
36.	320		2		7	3	3	21	9	8	39	19	10	31	18	5	41	8		34		27	10	7
37.	206				3	3	5	19	8	7	41	9	5	27	8	4	18	3	- 4	9	2	15	7	9
38.	160				4	4	1	16	7	7	28	8	5	29	7	1	14	3	1	8	1	5	5	6
40	147				4			12	11	17	27	9	11	24	8	2	11	3		3	3		1	1
40	${ }_{29}^{55}$				1			2	3		15	1	1	12	3		7	3		2	1	2		
42 and ove	115				5			15	2	6	27	3	1	22	${ }_{3}$	\cdots	11	1	2	13		1	2	
Number measured	95, 590	195	647	758	3,331	992	2,059	11,961	4,867	5,956	19,924	4,797	3,506	15,523	5,154	1,217	8,766	1,215	774	2,324	514	s05	223	82
Not measured	2×4																							
Total.	95, 874															
Mean chest transverse																								
Blouse group designa-																				31.18	31.25	1217	33.17	
tion...		1		2 s .	2 m .	21.	3 s .	3 m .	31.	4 s	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m .	61.	7 s	7 m .	71	8	9	10

Table ('III.-Association between blouse groups and chest diameter, antero-posterior, white troops, demobilization.

Chest antero-posterior diameter: Mean, 21.57 centimeters.

Transwerse pelvic diameter. in centimeters.	Total.	Chest eircumference (rest), in centimeters.																						
		69-73	74-77	78-81	$78-81$ m.	$78-81$ 1.	82-85		$\stackrel{82-85}{\mathrm{I} .}$	$\begin{gathered} 86-89 \\ \mathbf{s} . \end{gathered}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 80-89 \\ \mathrm{I} . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	$\begin{gathered} 9+97 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	94-97	$\begin{aligned} & 98-101 \\ & \text { s. } \end{aligned}$	$\begin{gathered} 98-101 \\ \mathbf{m} . \end{gathered}$	${ }^{98-101}$	102-105	106-109	$\begin{gathered} 110 \\ \text { and } \\ \text { over. } \end{gathered}$
19 and under	3								1	1														
20.	-80		3	2	19	${ }_{3}^{1}$	4	21 42	6 9	8	13 46	${ }_{8}^{2}$	$\begin{array}{r}5 \\ 15 \\ \hline\end{array}$	11 30	${ }_{2}^{2}$	$\frac{1}{2}$	${ }_{12}^{7}$	1	1	3	1	1		
22	335	2	6	9	30	14	13	63	22	23	64	11	5	36	11	3	12			5	2	2	i	
23.	734	6	28	19	66	15	40	167	49	51	124	28	14	52	30	6	26	5	1	4	3	1	1	
24.	1,450	5	24	45	123	30	77	312	106	127	326	62	26	124	31	4	40	,	2		1	4		
25	3,235	8	50	73	291	45	175	714	224	272	682	112	96	299	66	10	86	10	5	12	1	3	1	
28.	6,112	19	98	124	432	97	305	1,190	363	539	1,316	238	219	704	144	43	195	9	10	41	4	1	1	
27.	9, is8	20	116	$1+1$	552	133	350	1, 8.0	517	881	2,160	356	378	1,222	269	78	419	39	31	55	11	1		1
28.	14, 419	34	103	13.5	609	154	413	2,366	772	1,230	3, 218	645	621	2, 215	551	144	868	78	60	128	25	21		1
23.	15, 817	34	65	77	452	149	257	1,879	841	999	3,725	750	992	${ }_{2}^{2,907}$	765	232	1,401	136	103	245	54	48	4	2
	13, 885	28	52	67	323	123	161	1,321	668	693	2,951	798	i32	2,634	88	210	1,537	208	135	347	69	90	15	
31.	10, 014	13	32	32	177	90	112	781	476	435	1,901	574	330	1,849	734	165	1,327	195	133	377	97	109	29	6
32.	7,243	8	22	12	106	57	70	544	317	277	1,352	395	246	1,320	567	132	975	162	102	327	67	147	+31	
33.	5,099	6	23	5	53	31	24	303	240	163	912	323	154	923	430	88	705	130	77	269	53	105	45	5
34.	2,956	4	7	1	18	23	12	133	100	5.	429	216	65	542	285	36	479	99	46	204	30	110	27	12
35.	1,676	3	6	3	20	11	B	42	49	35	197	120	28	254	199	27	307	69	31	130	30	68	24	17
36.	82.5		4	4	4	3	8	46	22	36	49	52	14	96	73	15	147	30	17	83	18	38	18	11
37.	448		1	2	11	2	8	34	13	23	67	18	14	72	20	3	48	15	6	37	15	25	9	,
${ }_{39} 38$	365			1	8	${ }_{2}$	4	${ }_{35}^{45}$	${ }_{23}^{20}$	16	87	${ }_{21}^{24}$	9	4	18	4	36	7	3	18	${ }_{3}^{3}$	4	7	3
39	334		3	2	9	2	4	35	${ }_{15}^{23}$	22	94	21	7	47	16	3	40	1	4	9	3	4	4	+
41	79		1	1	1	2		10		4	13	11		12	8		9		i	2		2	1	
12 and over	331			2	13	2	8	27	6	23	$6{ }_{6}$	11	16	55	11	5	4	5	4	17	3	6	5	2
Number measured.	95, 479	195	643	757	3, 325	991	2,061	11,948	4, 85	5, 953	19,902	4,786	3,508	15, 503	5,149	1,217	8, 736	1,210	772	2,320	514	805	223	K2
Not measured.	395																							
Total.	95, 874					
Mean pelvic transverse diameter, cm			. 95	27.44	27.92	28, 66	27. 86	28.39	29.07	2, 64	29.23	29.92	29.24	29.78	30. 47	30.11	30.59	31.27	30, 98	31.51	31.67	31, 95	33.41	34. 68
Blouse group designation.			1	2 s	2 m	21	3 s	3 m .	31.	48.	4 m .	41.	5 s	5 m .	51.	fis.	6 m .	61.	7 s	m.	71.	s	9	10

Table CV.-Association between blouse groups and neck circumference, white troops, demobilization.

Neck circumference, in centimeters.	Total.	Ch																						
		68-73	74-77	$78-81$ s.	$78-81$ m.	$78-81$ 1.	$\stackrel{82-85}{\mathbf{s} .}$	$\begin{gathered} 82-85 \\ \mathrm{~m} . \end{gathered}$	$\stackrel{82-85}{1 .}$	$\underset{\text { s. }}{86}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\stackrel{90-93}{1 .}$	$\begin{gathered} 94-97 \\ \text { s. } \end{gathered}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 94-97 \\ 1 . \end{gathered}$	$\begin{gathered} 98-101 \\ \text { s. } \end{gathered}$	$\begin{gathered} 95-101 \\ \mathrm{~m} . \end{gathered}$	$8-101$	102-105	106-109	110and over.
28 and under.	151	1	4			2		40	13		51	18			17			2			3			
30.	219	2	5	-	20	6	9	$\stackrel{2}{16}$	15	15	35	$\stackrel{1}{9}$	${ }_{3}^{4}$	${ }_{33}^{12}$	${ }_{13}^{1}$	1	${ }_{17}^{22}$	2	1	4	2			
31.	314	7	31	16	40	17	9	52	19	16	41	6	6	22	5	1	13	3	2	6	1		1	
32.	1,133	13	-93	59	230	51	73	278	67	47	134	12	7	36	6	3	13	3	2	2	2	2		
34	11,353	29	124	230	894	123	225	1,899	${ }_{996} 36$	${ }_{842}^{298}$	${ }_{2}, 581$	${ }_{474}^{146}$	221	${ }_{867}$	196	${ }^{6}$	- 168	${ }_{6}^{6}$	7	9	3	2		
35	20,094	28	116	177	827	240	596	3,451	1,447	1,628	5,179	1,203	691	2,732	721	109	681	93	47	88	21	17	2	1
36	22,628	26	48	89	436	145	371	2,390	1,116	1,625	5,657	1,362	981	4,340	1,418	252	1,719	205	112	251	45	36	4	
37	18,047	21	26	26	170	103	189	1,085	553	944	3,524	1,000	870	3,980	1,450	373	2,529	316	156	506	107	99	14	6
	10,051	11	15	8	64	40	57	370	184	346	1,433	396	44	2,200	847	260	1,970	309	169	616	121	153	34	
40	4,426 1,716	4	3 1	2	31	12	8	118	73	124	401	125	150	-803	310	113	1,051	158	149	441	104	191	44	12
40	1,716			2	4	5	2	- 21	10	30	100	36	48	230	106	43	381	75	84	254	64	160	46	14
41	492	1						4		7	10	8	9	39	13	18	112	20	28	72	20	75	40	16
42	147				1						3	1	1	11	2	3	14	2	7	21	9	37	24	11
44.	52	2			2			2			2		1	4			3	2	1	6	4	8		10
45.	23				4						3			4			1		1			4	1	3
	12				1			1	1	1	5			1		1				2		1	5	
47	16									1	4	1		4	1		i	1	1	1	1	1	1	1
	5					1								2			2							
	18				1			6			4			7	1	...	2					1		1
Number measured.	95, 271	166	599	754	3,311	981	2,053	11,946	4,858	5,927	19,890	4,798	3,494	15, 480	5,146	1,211	8,737	1,215	72	2,315	513	801	223	81
Total..........	95,874					
Mean neck circum-		34.38		34.222 s.	$\begin{aligned} & 34.45 \\ & 2 \mathrm{~m} . \end{aligned}$	$\begin{gathered} 34.80 \\ 21 . \end{gathered}$	$\begin{gathered} 34.85 \\ 3 \mathrm{~s} . \end{gathered}$	$\begin{array}{\|c\|} \hline 34.98 \\ 3 \mathrm{~m} . \end{array}$	$\begin{gathered} 35.20 \\ 31 . \end{gathered}$	$\begin{gathered} 35.60 \\ 4 \mathrm{~s} . \end{gathered}$	$\begin{gathered} 35.72 \\ 4 \mathrm{~m} . \end{gathered}$	$\begin{gathered} 35.89 \\ 41 . \end{gathered}$	36.305 s.	$\begin{aligned} & 36.44 \\ & 5 \mathrm{~m} . \end{aligned}$	36.6151.	37.086.8.	37.196 m.	37.361.	37.817 s	37.897 m.	37.9771.	38. 82	39.79	40.7710
Blouse group desig-																								
nation...		1																						

Neck circumference: Mean, 35.98 centimeters.
Table CVI.-Association betucen blouse groups and total arm length, white troops, demobilization.

Arm length, in centimeters.	Total.	Chest circumference (rest), in eentimeters.																						
		68-73	74-7.	$78-81$ s.	78-81	$78-81$ 1.	82-85	82-85.	${ }^{82-85} 1$.	${ }_{86}^{86-89}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	86-89	$\begin{gathered} 90-93 \\ \text { 8. } \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	${ }_{8 .}^{94-98}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	${ }_{1}^{94-97}$	98-101	${ }^{\text {m }} \mathrm{m}$.	${ }^{98} 1$.	102-105	106-109	110 and over.
${ }^{60-65}$	310				31	2 5	36		3 7			4	12	13	3	2								
68 -69.	1,210	8	25	64	107	10	125	223	40	180	169	14	66	63	9	11	24	2	3	2	${ }^{-}$	4		
70-71	3,700	12	47	113	237	45	271	774	146	501	611	71	206	349	43	48	122	2	21	21	2	7		1
72-73	7, ${ }^{7}{ }^{230}$	${ }_{22}^{17}$	-86	${ }_{152}^{130}$	468	123	379	${ }_{2,218}^{1,516}$	${ }_{6} 635$	1,115	${ }_{2}^{1,970}$	177	478	1,832	${ }_{271}$	132	${ }_{737}$	33	${ }_{93}$	135	15	47	14	
76-77	15,710	32	105	108	572	162	330	2 2,324	822	1,027	3 3,670	681	656	2, 2446	531	239	1,199	62	129	272	28	74	29	12
78-79	16,910	31	92	69	500	187	229	1,931	877	949	3,823	908	646	2,997	889	235	1,634	151	156	373	70	127	2 i	10
s0-81	14,112	17	65	50	339	152	164	1,328	778	${ }_{602}$	2,920	836	423	2,619	979	100	1,632	230	116	414	79	${ }^{153}$	41	5
82-83	9,9:5	14	37	17	149	100	71	751	555	330	1,973	720	250	1,824	851	100	1,257	216	92	401	${ }^{100}$	${ }_{93}^{127}$	38	12
8485	6, 184	8	18	,	84	54	28	358	313	155	1,121	477	124	1,116	624	60	${ }^{338}$	150	56	${ }^{307}$	93	83	20	15
81-87	3,521	2	8	2	42	34	14	179	189	71	581	279	75	$(37$	395	34	513	131	30	173	42	6	19	7
88.89	1,936	7	9	3	13	16	8	88	74	32	257	176	33	${ }^{325}$	25	15	83	14	6	108	4	12	13	
${ }_{92}^{93} 91$	569 24 1			1	7	6	$\frac{1}{3}$	12 4 4	33 15	11 4	35 23	${ }_{20}^{47}$	6 2	${ }_{36}^{95}$	${ }_{35}$	3	${ }_{35}^{83}$	17	2	14	${ }_{8}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	3	
94-95.	103				4			3	4	1	12	,	3	13	16	1	14	9	1	\%	5	3	2	
93 and over	113				5	1		5	4	3	17		5	15	10	2	16	6	4	5	4	3	1	
Number measured Not measured. Total.	94,940	170	617	741	3,254	938	2,033	11,858	4,839	5,896	19,831	4,783	3,494	15,440	5,134	1,211	8,727	1,209	771	2,303	510	799	222	so
	934																							
	95,874																			
Mean arm length		76.78		$\begin{array}{\|c} 74.19 \\ 2 \mathrm{~s} . \end{array}$	$\begin{gathered} 76.09 \\ 2 \mathrm{~m} . \end{gathered}$	$\begin{gathered} 78.14 \\ 21 . \end{gathered}$	$\begin{gathered} 74.94 \\ 3 \mathrm{~g} . \end{gathered}$	$\begin{aligned} & 76.67 \\ & 3 \mathrm{~m} . \end{aligned}$	$\begin{array}{\|c} \hline 78.65 \\ 31 . \end{array}$	$\begin{gathered} 76.19 \\ 4 \mathrm{~s} . \end{gathered}$	$\begin{aligned} & 78.17 \\ & 4 \mathrm{~m} . \end{aligned}$	$\begin{gathered} 80.13 \\ 41 . \end{gathered}$	$\begin{array}{\|c} 77.13 \\ 5 \mathrm{~s} . \end{array}$	$\begin{array}{c\|c} 79.04 \\ 5 \mathrm{~m} . \end{array}$	$\begin{array}{\|c\|} \hline 81.12 \\ 51 . \end{array}$	77.8568.	$\begin{gathered} 76.91 \\ 6 \mathrm{~m} . \end{gathered}$	82.7261.	78.94	$\begin{gathered} 81.09 \\ 7 \mathrm{~m} . \end{gathered}$	82.7571.	81.27s	81.649	$\begin{gathered} \text { s1. } 65 \\ 10 \end{gathered}$
louse group desig. nation \qquad																								

Arm length: Mean, 78.42 centimeters; standard deviation, 4.58 ± 0.0013 centimeter.
Table CVII.-Correlation between chest circumference (rest) and sitting height, colored troops, demobilization.
[Basis of construction of blouse groups shown by heavy lines; circle symbols are the "blouse" group designations, For relative frequency of "groups" see Table 121.]

Chest circumference (rest): Mean, 87.99 centimeters: standard deviation, 4.76 ± 0.0285 centimeter. Sitting height: Mean, 87.35 centimeters; standard deviation, $3.43 \pm 0.020 .5$ centimeter

Chest circumference, in centimeters.
Number measured
Table CVIII.-Association between blouse groups and weight, colored troops, demobilization.

Weight, in pounds.	Total.	Chest circumference (rest), in centimeters.																					
		68-73	74-77	78-81 s.	78-81 m.	78-81	$\begin{gathered} 82-85 \\ \text { s. } \end{gathered}$	$\begin{gathered} 82-85 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 82-85 \\ 1 . \end{gathered}$	$\begin{gathered} 86-89 \\ \mathbf{s .} . \end{gathered}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \text { s. } \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	90-93.	$\begin{gathered} 94-97 \\ \text { s. } \end{gathered}$	$\underset{\mathrm{m} .}{94-97}$	${ }^{9+97} 1$.	$\begin{gathered} 98-101 \\ \text { s. } \end{gathered}$	$\begin{gathered} \text { 98-101 } \\ \mathrm{m} . \end{gathered}$	$\left.\right\|_{1 .} ^{98-101}$	102-103	100-109
100-109.	10	1	3	2	1												2				1		
110-119.	79 2×9	3	6 8 8	1388888	$\begin{array}{r}16 \\ 43 \\ \hline\end{array}$		4	88	11	15	39	1		10	1		1	1	1				
130-139.	602	2	2	7	34	6	38	187	28	45	194	11	13	29	2	2				i		i°	
140-149.	757	4		4	15	4	8	116	47	32	332	22	25	114	14	5	10	4			1		
150-159.	733	1	1	1	6	7	5	41	29	13	257	51	33	197	37	15	32	3	2	4			
$160-169$. $170-179$.	434	1			3	2		${ }_{3}^{3}$	12	${ }^{6}$	107	14	14	159	$\begin{aligned} & 31 \\ & 95 \end{aligned}$	12	$\begin{aligned} & 46 \\ & 46 \end{aligned}$	${ }_{26}$	${ }_{6}^{2}$	${ }_{10}^{8}$			
180-199.	110		.						1		5	5	2	15	14	2	28	19		13			
190-199..	52		1		1				1			1		6	1	3	6	11		14		5	
200 and nver.	23																	2		.	3	4	
Number measured.	3,319	13	22	3.5	119	30	113	461	133	114	9.5	116	89	594	126	53	170	81	11	57	12	12	4
Total.	6,3i5																					
Mean weight. . 11 s s..		135. 27	126. 77	128.21	131.47	140.50	129.63	136.34	145.85	140.38	147.24	154.16	151.47	157.09	163.31	164.31	167. 00	175.61	164. 50	181.87	179.50		3.25
Biouse group ignatlon........		1	2	3 s .	3 m .	31.	4 s .	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m .	61.	7 s	7 m.	71.	8 s .	8 m .	\$1.		9

Weight: Mean, 149.50 pounds.
Table CIX.-Association between blouse groups and shoulder width, colored troops, demobilization.

Shoulder width, in centimeters.	Total.	Chest circumference (rest), in centimeters.																					
		68-73	74-77	$78-81$ 8.	$78-81$ m.	78-81	$\begin{gathered} 82-85 \\ \text { s. } \end{gathered}$	$\begin{gathered} 82-8.5 \\ \mathrm{~m} . \end{gathered}$	82-85	$\begin{gathered} 86-89 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \text { s. } \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	$\begin{gathered} 94-97 \\ \text { s. } \end{gathered}$	$\begin{gathered} 94-97 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 94-97 \\ 1 . \end{gathered}$	$\begin{gathered} 9 \times-101 \\ \text { s. } \end{gathered}$	$\begin{gathered} 98-101 \\ \mathrm{n} . \end{gathered}$	$\begin{gathered} 98-101 \\ 1 . \end{gathered}$	2-105	106-109
34.	3							1						1			1						
${ }_{36}^{35 .}$	${ }_{11}^{7}$		2	1	1		1	1		1	1			1		1							
37.	23		4	1	2			5			2	i		2									
38	74	2	$\stackrel{3}{9}$	11	${ }_{33}^{21}$	5	6 6	14		${ }_{11}^{4}$													
39. 40.	201	4	9 14	${ }_{21}^{10}$	${ }_{41}^{33}$	7	${ }_{44}^{28}$	119	23	${ }_{30}$	100	7	${ }_{6}^{2}$	28	4	3	6	1	1	1			
41	813	1	10	17	58	8	66	207	47	45	245	19	8	52	16	1	8	3		1	1		
42	1,121	3	5 3	15 10	$\begin{array}{r}30 \\ 25 \\ \hline\end{array}$	8	$\begin{array}{r}57 \\ 36 \\ \hline\end{array}$	235 160	${ }_{47}^{46}$	${ }_{44}^{61}$	375 397	32 51	27 42	150	15 45	16 15	${ }_{42}^{18}$	$\begin{array}{r}3 \\ 12 \\ \hline\end{array}$	$\stackrel{2}{3}$	3			
	1,211	${ }_{2}^{1}$	$\stackrel{3}{2}$	10	19	${ }_{2}$	14	160 87	28	29	350	40	39	250	46	21	74	24	7	10	i		1
	+632	4	3		2	2	5	39 +3	14	21	154	17	27	178	33	15	68	24	${ }_{2}$	${ }_{18}^{21}$	3		
	383 194		1	1	2	1	2	- 12	8	${ }_{2}^{7}$	49 15	13 6	18 3	100 40	25 14	15 14	$\begin{aligned} & 60 \\ & 41 \end{aligned}$	${ }_{21}$	$\stackrel{2}{2}$	18	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	10	
	70				1			2			${ }_{6}$	3		12	3	5	10	-	1	9	4	5	
	32							1	1		2	1		5	2		5	\pm		6	1	3	
50 and over	13								1	1				2			1	t					
Number measured	6,289	18	56	88	257	45	264	930	225	257	1,742	191	172	1,089	204	107	334	141	20	94	22	25	8
Total.	6,355														
Meanshoulder width		41.72	40.41	40.44	40.95	41. 29	41.26	41.82	42.30	42.17	42.73	43.30	43. 52	43.72	44. 01	44. 26	44.74	45. 35	44.25	45. 67	46. 27		. 55
Blouse group desig- nation...........		1	2	3 s .	3 m .	31.	4 s .	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m .	61.	7 s .	7 m .	7.	ss.	$s \mathrm{~m}$.	81.		9

Shoulder width: Mean, 42.89 centimeters; standard deviation, 2.15 ± 0.0130 centimeter.

Transverso chest, in centimeters.	Total.	Chest circumference (rest), in centimeters.																					
		64-73	71-77	78-81	$\begin{gathered} 78-81 \\ m . \end{gathered}$	78-81	$\begin{aligned} & \text { x2-85, } \\ & \text { s. } \end{aligned}$	$\begin{gathered} 82-85 \\ m . \end{gathered}$	$\begin{gathered} 82-85 \\ 1 . \end{gathered}$	$\begin{gathered} \text { sb-s9 } \\ \mathbf{8} . \end{gathered}$	$\begin{aligned} & \mathrm{sa}-\mathrm{s9} 9 \\ & \mathrm{~m} . \end{aligned}$	$86-89$	$\begin{gathered} 90-93 \\ \text { s. } \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	$\begin{gathered} 91-97 \\ \text { s. } \end{gathered}$	$\begin{gathered} 9+-97 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 94-07 \\ 1 . \end{gathered}$	$\begin{aligned} & 98-101 \\ & \text { s. } \end{aligned}$	$\underset{\mathrm{m} .}{98-101}$	$\begin{gathered} 9<-101 \\ 1 . \end{gathered}$	102-103	106-103
19.	1						1																
21	24		2	1	1			3			10		1	3	3								
24.	64	2	6	5	9	2	4	10	1	2	9	2		8	1			2		1		,	
25	134				19	1	13	${ }_{88}$	${ }^{8}$	${ }_{19}$	75	2		23	3		2	1		1			
27	658	3	11	18	64	8	61	178	34	43	170	20	6	50	9	2	8						
28.	1,211	3	7	23	57	10	70	249	58	65	390	37	36	133	20	10	35	5	2		1		
29.	1,293	5	7	10	29	12	43	193	4.	$5!$	416	48	40	200	35	16	50	16	1	15	2		
30.	1,109	1	3		17	4	$\stackrel{30}{+}$	$\stackrel{99}{41}$	31 16	16	172	14	29	202	41	25	73	37	4	14	4	2	
32.	404		1					15	9	6	78	13	17	95	25	15	60	24	3	27	4	4	
33.	164							8	5		3.5	4	6	28	10 3	7	18	9	$\stackrel{4}{2}$	14	3 5	7	
35.	19							i			1			1		1		1				2	2
36.	10										2	1		1		2	2	2					
37.	6						1				1			1			1	1					1
$\begin{aligned} & 38 . \\ & 39 . \end{aligned}$	${ }_{9}^{6}$						$\dddot{2}$	2	1		3						i		i				
40 and over	1							1															
Number measured.	6,339	20	57	91	25x	46	267	934	228	254	1,757	193	172	1,097	203	110	338	143	20	93	22	24	8
Not measured......	16																						
Total	6,355														
Mean chest circumference.......cm.		27.70	26. 44	26.88	27.31	27.54	27. 81	2x, 13	2N, 54	$2 \mathrm{~N}, 4$	25, 97	29.05	29.67	29.64	29. 87	30.37	30.44	30.74	31.60	31. 49	31. 91		56
Blouse group desig. nation.		1	2	$3 \mathrm{s}$.	3 m .	31.	1 s .	4 m .	11.	5 s.	5 m .	S1.	6 s .	6 m .	61.	7 s .	7 m .	71.	8 s .	8 mm .	s 1.		9

Chest circumference: Mean, 29.01 centimeters.
Table ('XI.-Associution between blouse groups and antero-posterior diameter of chest, colored troops, demobilization.

Chest antero-pasterior: Mean, 21.20 centimeters.
TAble CXII.-Assomintion between blouse groups and transverse pelvic diameter, colored troops, demobilization.

Transverse pelvis, incentimeters.	Total.	Chest circumference (rest), in centimeters.																					
		6s-73	74-77	78-81	78-81	$78-81$ 1.	82-85	82-85	82-85	86-89	$\begin{gathered} \mathrm{s} 6-89 \\ \mathrm{~m} . \end{gathered}$	80-89	$\begin{gathered} 90-93 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 90-83 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 90-93 \\ 1 . \end{gathered}$	9+97	$\begin{aligned} & 91-97 \\ & \mathrm{~m} . \end{aligned}$	$91-97$ 1.	$\frac{9-101}{\text { s. }}$	$\begin{gathered} 98-101 \\ \mathrm{~m} . \end{gathered}$	98-101.	102-10;	106-109
20.	8				1			1			2					1							
21.	22			i	1	1	2	3	2	3	4			3		1				1			
23.	14				$\frac{1}{3}$		2	3		3	3												
21.	12.5	3	10	4	8	3	21	${ }_{21}^{9}$	8	$\stackrel{\square}{ }$	${ }_{23}$		3	8									
25.	331	1	5	21	41	4	39	66	9	11	83	6	10	26	3	1	2	2		1			
29	744	3	7	18	71	5	49	178	21	41	218	15	17	71	8	7	9	3	1	2			
${ }_{2}^{27}$	1,003	5	12	15	35	9	55	209	44	49	302	18	31	146	21	6	28	11		5	2		
23.	-128	2	5	13 8 8	$\stackrel{41}{24}$	5	${ }_{31}^{30}$	163	${ }_{34}^{52}$	${ }_{31}^{52}$	${ }^{368}$	42	${ }_{26} 27$	202	29	17	55	12	5	5	1		
30.	$7{ }^{7}$	1	3	8	17	4	14	72	15	${ }_{25}$	190	36 26	24	144	45	20 16	77 53	35 27	4	14 15	4		
31.	130	1	1	3	5	4	9	43	18	22	132	20	10	132	19	16	48	19	3	17	2	5	1
33.	312		2		4	2	9	22	11	10	72	14	13	s0	22	12	28	18	1	14	4	4	
33.	1.58		1	1		1		11	4	1	30	10	2	38	6	8	15	6	1	9	4	5	
31.3.	${ }_{32}$	1			1	1		4	1	1	7 3	${ }_{1}^{3}$	1	16	3	1	7	3		7	2	3	
36.	19							2			3			${ }_{3}$	3 1	1	${ }_{2}^{3}$	${ }_{2}$				1	
37.	8				.			1	1		2			1		1	1					1	
39.	17				.	1	1	4	1	1	7	1	1	1	1	...	2		1				
40.	7						1	1	2	1	${ }_{2}^{5}$	1	1	3	1		\%	1	1				
41.........	4									1	1	i					1						
42 and over	22				1			1	2		7		1	5			2			2		1	
Number measured Not measured	$\begin{array}{r} 6,345 \\ 10 \end{array}$	20	37	91	258	46	268	934	227	259	1,756	194	173	1,097	204	110	339	143	20	91	2	25	s
Total.	6,355																						
																,	
pelvic diameter.		27. 10	26.67	26. 81	27. 08	27.08	27.09	27.69	28.44	25. 03	28. 40	29.18	2S. 66	29.15			29. 83	30.05	30. 35	30.78	31.14	32	
ignation.........		1	2	3 s .	3 m .	31.	1 s.		41.	is.	5 m .	51.	6 s .	6 m .									

Table CXIII.-Association between blouse groups and neck circumference, colored troops, demobilization.

Neck eireumferenee, incentimeters.	Total.	Chest eircumference (rest), in centimeters.																					
		73 and under.	74-77	78-81	$78-81$ m.	78-81	$\begin{gathered} 82-85 \\ \text { s. } \end{gathered}$	$\begin{gathered} 82-85 \\ \mathrm{~m} . \end{gathered}$	82-85	$\begin{gathered} 86-89 \\ \text { s. } \end{gathered}$	$\begin{gathered} 86-89 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \text { s. } \end{gathered}$	$\begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}$	${ }^{90-93} 1$.	$\begin{gathered} 94-97 \\ \text { s. } \end{gathered}$	$\begin{gathered} 9+-97 \\ \mathrm{~m} . \end{gathered}$	$\xrightarrow{94.97} 1$.	$\begin{gathered} 98-101 \\ \text { s. } \end{gathered}$	$\begin{gathered} 9-101 \\ \mathrm{~m} . \end{gathered}$	99-101	102-105	106-109
29.	1										1												
31.	14			1	${ }_{3}^{1}$		1	1		1	${ }_{3}^{3}$		1	6			1						
32	61		6	5	11		s	16	3		12	1		2									
3	177 519	${ }_{2}^{2}$	15	15	22	5	14	46	9	5	29	4	3	5									
35	1,074	6	12	17	67	1	${ }_{71}^{54}$	${ }_{273}^{134}$	30 56	26 53	103 316	$3{ }_{3}^{8}$	5 19	$\begin{array}{r}36 \\ 114 \\ \hline\end{array}$	4 13	1	${ }_{12}^{3}$	1	2	1			
36	1,474	3	9	19	59	13	75	235	70	77	500	47	36	223	36	18	36	11	2	6	1		
	1,415	1	2	7	17	8	32	131	31	61	468	60	49	307	67	27	85	40	4	13	5		
39	${ }_{398}^{920}$	1			10 3	1	12	59	18	30	221	29	35	248	55	33	89	41	6	18	5	6	
40	161							+ 5		2	69 15	${ }_{2}$	18 5	${ }_{35}^{96}$	17	16 10	73 28	31 14 1	3 2 2	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	3 5	10	2
42	11							1						8			28 8	${ }_{3}^{14}$		$\begin{array}{r} 19 \\ 8 \end{array}$	${ }_{3}^{5}$	8 1	
43.	2													1			3			5			
44..................	1																			1			
Number measured . Not measured.	$6,280$	16	57	89	257	46	267	921	224	259	1,741	192	172	1,083	201	110	338	142	17	93	22	25	8
Total.	6, 355																	
Mean neck circum.																							
ference......em..		35. 37	34.40	34. 53	34.91	35. 20	35. 32	35. 50	35.70	36.06	36.28	36.42	36.90	36.95	37.14	37.56	37.86	37.99	37.82	38. 87	38.68	39.	
ignation.		1	2	3 s .	3 m .	31.	s	4 m .	1.	5 S .	5 m .	51.	6 s .	6 m .	61.	7 s .	7 m .	71.	8 s .	8 m .	81.		

Neck eircumferenee: Mean ,36.37 centimeters.

Arm length, in centimeters.	Total.	Chest circumference (rest), in centimeters.																					
		68-73	74-77	78-81	$\begin{gathered} 78-81 \\ \mathrm{~m} . \end{gathered}$	$78-81$ 1.	$\begin{array}{\|c} 82-85 \\ \text { s. } \end{array}$	$\begin{gathered} 82-85 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 82-85 \\ 1 . \end{gathered}$	$86-89$	$\begin{gathered} \text { s6-89 } \\ \mathrm{m} . \end{gathered}$	$\begin{gathered} 86-89 \\ 1 . \end{gathered}$	$\begin{gathered} 90-93 \\ \text { s. } \end{gathered}$	$\left\lvert\, \begin{gathered} 90-93 \\ \mathrm{~m} . \end{gathered}\right.$	$\begin{gathered} 90-83 \\ 1 . \end{gathered}$	$\begin{gathered} 94-97 \\ 8 . \end{gathered}$	$\begin{aligned} & 94-97 \\ & \mathrm{~m} . \end{aligned}$	$\begin{gathered} 94-97 \\ 1 . \end{gathered}$	$\begin{gathered} 98-101 \\ 8 . \end{gathered}$	$\begin{gathered} 98-1 \mathrm{cl} \\ \mathrm{~m} . \end{gathered}$	$\begin{array}{\|c} 98-101 \\ 1 . \end{array}$	102-105	100-109
${ }_{60-65}^{60-65}$	2			1			1				1			1	1								
$68-69$	19			3	1		1	6			3	1		1			1						
72-73.	1249	1	7	2 16	${ }_{23}^{10}$	$\frac{1}{3}$	${ }_{27}^{12}$	${ }_{51}^{17}$	${ }_{6}^{6}$	$\begin{aligned} & 11 \\ & 23 \end{aligned}$	${ }_{68}^{22}$	5	4	${ }_{17}^{2}$	$\begin{array}{r} \dddot{2} \\ 2 \end{array}$	2	1		1				
745	464	2	10	15	36	6	39	93	14	28	127	8	14	45	4	7	9	1	3	1		1	1
$76-77$	723		7	23	47	5	55	157	31	34	203	14	26	82	7	9	13	5		3			
78-79.	1,042	5	10	12	59	10	${ }_{36}^{50}$	187	36	51	325	$\stackrel{23}{ }$	34	153	21	13	30	14	2	4			
$880-81$	1,057	5 1	${ }_{3}^{7}$	6 4 4	11	8	36 18	175 108	45 30	41 28	294 295	28 39	${ }_{32}^{24}$	${ }_{176}^{202}$	31 32	20 16	54 70	15 18 18	5	16	1	B	
S4-55	684			4	15	3	10	53	29	18	180	35	11	164	42	13	43	$\begin{aligned} & 18 \\ & 32 \end{aligned}$	${ }_{2}$	14	1	6	
$8 \mathrm{C}-87$.	460		1		6	2	7	44	16	5	114	13	10	120	24	10	42	21	1	20	2	$\frac{4}{3}$	
88.89	244				2	1		16	4	7	65	14	3	54	11	6	28	12	2	12	3	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	
${ }^{90} 90.91$	115	1			2			6	1	2	22	4	4	27	9	4	17	8	2	4	1	1	
	52 21					1	2		3	11	4	1	9	5	2	5	4		3	2	1	
96 and over.	14							i			3			${ }_{3}^{8}$	$\begin{aligned} & 5 \\ & 2 \end{aligned}$		1	2		1	${ }^{\circ}$	1	
Number measured	6,135	19	51	86	252	44	259	915	221	248	1,705	190	165	1,064	202	102	318	134	18	93	19	24	
Not measured....	220																						6
Total.	6,355					
Mean arm length																							
……....cm.		79.03	76. 26	76.06	38.87	79.18	73.45	79.05	80.33	7א.62	80.41	82.15	80.22	82.01	83.36	81. 79	\$3.20	84.14	81.17	S. 46	\$6. 18		50
nation.............		1	2	3 s .	3 m .	31.	4 s .	4 m .	41.	5 s.	5 m .	51.	6 s .	6 m.	61.	\%s.	7 m .	71.	ss .	8 m .	81.		9

Table CXV.-Correlation between waist circumference and leg length, white troops, demobilization.
[Basis of construction of breeches groups shown by heary lines: cirele symbols are the "breeches" group designations. For relative frequency of "groups" see Talle 211.)

[^24]Table CXVI.-Association between breeches groups and transverse pelvic diameter, white troops, demobilization.

Transverse pelvis, In centimeters.	Total.	Waist circumference, in centimeters.																							
		$\begin{gathered} 50-63 \\ 1 . \end{gathered}$	64-67	$\begin{gathered} \text { 68-71 } \\ \text { s. } \end{gathered}$	$\begin{gathered} \text { 6s-71 } \\ \mathrm{m} . \end{gathered}$	$\begin{gathered} 64-71 \\ 1 . \end{gathered}$	$\begin{gathered} 72-75 \\ \text { s. } \end{gathered}$	$\begin{gathered} 72-75 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 72-75 \\ 1 . \end{gathered}$	$\begin{gathered} 7 \AA-79 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 76-79 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 76-79 \\ 1 . \end{gathered}$	$\begin{gathered} \mathrm{so-} 83 \\ \mathrm{s.} \end{gathered}$	$\begin{aligned} & 80-83 \\ & \mathrm{~m} . \end{aligned}$	$\begin{gathered} 80-83 \\ 1 . \end{gathered}$	$\begin{gathered} 84-87 \\ 8 . \end{gathered}$	$\begin{gathered} 84-87 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 81-87 \\ 1 . \end{gathered}$	$\begin{gathered} 88-91 \\ 8 . \end{gathered}$	$\begin{gathered} \mathrm{R} *-91 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 84-91 \\ 1 . \end{gathered}$	$92-95$	96-99	100-103	104 and over.
19 and under	25				19	1		2			1			1											1
20.	80	2	3		9		3	17	2	5	13		1	15	1		7			2					
21.	216	10	17	4	20	3	5	46	11	9	29	5	5	28	3	3	11	2	1	3			1		
22	333	7	42	24	61	9	12	52	17	12	29	14	3 9	13	3	2	18	2		7	1	3	1	1	
23	730	7	87	46	139	10	41	155	32	22	73	16	9	31	5	4	17	1	2	7	1	1	2	1	$!$
24	1,473	10	96	98	285	35	104	377	, 3	86	170	46	20	39 133	10	5	18	2	1	7	3	\pm	4	2	1
20	6,123	45	193	242	840	68	465	1, 6,56	174	511	995	186	14.5	390	42	31	83	10	7	26	2	7	4		1
27	9,603	47	235	2×6	1,101	99	559	2,535	247	833	1,792	300	30.3	128	81	61	190	20	11	44	10	13	10		1
2 S	14,460	73	222	233	1,196	138	508	3, 305	437	1,145	3, 176	57.5	566	1,766	140	180	523	25	43	139	13	34	21		2
29	15, 828	35	158	112	1,017	149	337	2,907	475	963	3,309	707	64.5	2,651	276	249	1,040	79	95	276	25	64	32	4	3
30	13,955	55	104	65	726	142	186	1,9<8	448	579	2, 795	765	469	2,722	329	252	1,446	114	94	435	56	124	50	7	4
31	10,060	36	75	32	419	109	94	1,232	372	266	1,712	645	278	1,939	317	146	1,253	124	92	502	82	239	71	19	6
32.	7,274	23	43	23	328	107	48	845	342	163	1,127	539	140	1,229	257	96	894	119	54	414	112	24.5	89	25	12
33	5,096	24	21	9	138	83	19	496	281	89	742	541	77	850	246	41	601	98	30	309	79	180	88	34	20
34.	2,971	11	8	3	68	24	6	229	174	42	348	335	32	489	194	10	350	116	14	188	75	126	69	44	16
3.5	1,683	10	3	5	29	19	5	91	63	20	174	194	14	248	114	15	212	93	7	143	57	84	38	23	22
3.	823	1	5	5	21	3	8	59	28	15	81	62	11	130	47	9	90	41	6	68	31	45	29	16	12
37.	453	1	3	5	25	3	6	56	11	17	63	2*	9	50	13	3	35	17	1	23	18	25	24	8	9
34.	363	1	4	3	22	8	7	65	9	9	75	24	9	59	6	6	22	5		8	3	3	5	2	8
33.	362		5	1	20	2	6	72	20	9	69	19	9	51	6	9	26	1	2	11	4	5	6	5	4
40 and over	492	4	7	1	20	5	7	72	14	19	85	38	10	72	24	9	40	12	5	14	4	11	9	2	8
Number measured Not measuret.	$\begin{array}{r} 95,6 i 8 \\ 499 \end{array}$	452	1,495	1,381	7,057	1,054	2,667	17, 155	3,316	5,023	17,531	5, 132	2,813	13, 734	2,135	1,138	6,915	855	466	2,633	579	1,218	553	193	133
Motal	98, 157																								
Mean transverse pelvic diameter. .cm.		2人 59	27.23	26.95	2\%,05	29.39	27.52	2x. 59	29.83	22, 40	29.30	30.48	29.13	30. $0 \times$	31.13	29.84	30.75	32.05	30. 46	31.36	32. 42	32.05	32.41	33,44	34.06
Breeches group desInnation.		1	2	3 s.	3 m .	31.	4 s .	4 m .	41.	5 s .	5 nm .	51.	6 s .	6 m .	61.	7 s .	7 m .	71.	S 8.	8 m .	\$1.	9	10	11	12

Table CXVII.-Association between breeches groups and knee height, white troops, demobilization.

Knee height, in centimeters.	Total.	Waist circumference, in centimeters.																							
		50-63	64-67	$68-71$ s.	$\begin{gathered} 68-71 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 68-71 \\ 1 . \end{gathered}$	$\begin{gathered} 72-75 \\ \text { s. } \end{gathered}$	$\begin{array}{\|c} 72-75 \\ \mathrm{~m} . \end{array}$	$\begin{gathered} 72-75 \\ 1 . \end{gathered}$	$\begin{gathered} 76-79 \\ \text { s. } \end{gathered}$	$\begin{array}{\|c} 76-79 \\ \mathrm{~m} . \end{array}$	$\begin{gathered} 76-79 \\ 1 . \end{gathered}$	$\left\lvert\, \begin{gathered} 80-83 \\ \mathrm{~s} . \end{gathered}\right.$	$\begin{gathered} 80-83 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 80-83 \\ 1 . \end{gathered}$	$\begin{gathered} 84-87 \\ \mathrm{~s} . \end{gathered}$	$\begin{aligned} & 84-87 \\ & \mathrm{~m} . \end{aligned}$	$\begin{gathered} 84-87 \\ 1 . \end{gathered}$	$\underset{\text { 88-91 }}{\text { s. }}$	$\left\lvert\, \begin{gathered} \text { RR-91 } \\ \mathrm{m} . \end{gathered}\right.$	SL-91	92-9.5	$96-99$	100-103	104 and over.
36.	349	1		15	27	1	32	68	10	34	74	5	20	2*	4	6	18	1	2	2	1				
37	210	1	6	3	19	3	13	35	4	15	$3 \times$	2	${ }^{18}$	21	3	5	12		1	4		6		1	
39	${ }_{506}$	1	${ }_{15}^{8}$	13 20	$\stackrel{41}{36}$	1	17 48	55 81	9 5	39 69	78	5	$\stackrel{28}{28}$	${ }_{62} 8$	3 1	${ }_{14}$	$\stackrel{11}{22}$		3 3 3	4		$\stackrel{2}{4}$	1	i	1
40	1,088	,	28	51	84	3	104	170	15	147	140	14	72	114		34	$4 \times$	2	14	21	i	16	1	2	1
41	1, 843	18	49	34	133	10	169	327	35	223	264	42	99	151	3	59	90	6	22	27	1	18	9	1	3
42	3, 052	14	85	115	250	15	237	588	49	337	471	57	201	275	18	70	125	4	32	47	3	28	21	4	6
43	4,642	24	84	118	417	26	253	877	81	484	769	104	237	542	30	111	242	9	63	83	4	57	23	3	
4	6,243	31	122	122	590	44	235	1,293	128	509	1,105	162	331	736	48	119	376	11	44	123	11	63	22	9	9
45	8,242	42	138	95	682	77	202	1,714	160	511	1,667	250	314	1,163	75	134	530	34	43	234	19	92	38	12	16
46	8,904	34	115	73	648	82	156	1,784	208	389	1,956	332	257	1, 437	93	95	704	41	34	255	30	97	52	15	17
47	8,734	${ }^{35}$	97	74	576	112	136	1,509	277	284	1,957	458	168	1, 460	157	54	813	37	37	293	38	123	58	18	13
48	8, 183	29	92	73	440	111	139	1,286	346	260	1,632	477	138	1,505	186	69	755	64	20	295	37	134	64	22	9
49	6, 468	22	83	58	322	96	123	894	332	218	1,176	510	121	1,132	197	51	565	78	17	247	46	99	50	23	8
50	5,369	34	59	38	271	63	51	699	288	167	854	495	107	887	236	25	561	108	15	205	62	79	51	14	
51	3,596	15	27	19	186	54	30	492	235	90	549	406	61	545	192	27	308	86	5	129	56	50	20	10	4
52	2,867	11	32	6	137	47	9	406	157	54	488	319	40	424	185	14	229	78	2	93	55	48	22	5	6
53	2,131	8	12	2	92	28	1	287	114	17	380	252	15	339	139		196	66	5	68	42	38	15	6	4
54	1,467	3	7		39	32		147	105		247	183	5	265	100	2	126	76	2	49	29	26	9	4	2
5	962	2	6		31	21	2	76	78	3	137	130	5	156	90	1	86	39	2	30	25	22	11	7	2
56	577		4		10	14	1	34	44	2	61	96		84	59	1	60	31		28	22	13	4	3	4
57	336	1	1		6	3	1	18	20		29	64	2	50	41		32	29		10	18	6	2	3	
53.	177	1	1	1	2	6		6	16		12	32		23	20	1	14	16		6	14	4	1		1
59 and over	231	1	4	1	4	6	9	11	18	14	22	32	8	17	19	3	19	11	3	4	16	6	3		
Nuinber measured Not measured. .	$\begin{aligned} & 76,560 \\ & 19,597 \end{aligned}$	337	1,075	981	5,043	856	1,970	12, 857	2,734	3, 869	14, 151	4,432	2,282	11, 454	1,899	908	5,9+2	827	369	2,264	530	1,031	477	163	109
Total.	96, 157																		...						
Mean knee height, centimeters.		46. 58	45.81	44.39	46. 09	48.30	44.28	46. 40	48, 67	44.90	46.91	49. 20	45.06	47.44	50. 11	44.94	47.67	50. 79	44.96	47.76	50.85	47.70	47. S2	48.33	47. 12
ignation...........		1	2	3 s .	3 m .	31.	4 s .	m.	41.	5 s .	m.	51.	6 s .	6 m .	61.	7 s .	7 m .	1.	8 s .	8 m .	81.	9	10	11	12

Knee height: Mean, 47 centimeters.

	Total.	Breeches groups (waist clrcumference, In centimeters).																							
in centimeters.		50-63	61-67	68-71 s.	[68-71	$\begin{gathered} 68-71 \\ 1 . \end{gathered}$	$\begin{gathered} 72-75 \\ \text { S. } \end{gathered}$	$\begin{gathered} \text { 72-75. } \\ \text { m. } \end{gathered}$	$\begin{gathered} 72-75 \\ 1 . \end{gathered}$	$\begin{gathered} 76-79 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} \text { 70-79 } \\ \text { m. } \end{gathered}$	$\begin{gathered} 76-79 \\ 1 . \end{gathered}$	$\begin{gathered} \mathrm{sO}-83 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} \text { No-83 } \\ \mathrm{m} . \end{gathered}$	$\begin{gathered} 80-83 \\ 1 . \end{gathered}$	$\underset{\text { s. }}{\mathrm{N} .-67}$	$\begin{gathered} 8-87 \\ \mathrm{~m} . \end{gathered}$	$8+87$	$\begin{aligned} & \mathrm{x} 4-91 \\ & \mathrm{~s} . \end{aligned}$	$\begin{aligned} & \text { 88-91 } \\ & \mathrm{m} . \end{aligned}$	$\begin{gathered} \text { S世-91 } \\ 1 . \end{gathered}$	92-9:5	9f-99	$\begin{aligned} & 100- \\ & 103 . \end{aligned}$	104 and over.
42.	112	15	18	2	19		2	21	7	1	11	5	2	5		2	1					1			
43.	256	11	45	9	57	12	10	52	10	5	21	9	2	8			1	1				2		1	
44.	434	19	65	26	123	14	10	92	19	6	34	7	3	8	2	2	,	1			1				1
4.5	914	27	145	48	232	32	39	186	34	25	73	21	6	21	6	3	8		2	2		1	2	1	
46	1,568	21	177	79	372	72	62	420	90	46	122	47	6	25	11	3	7	3	2	1	1	1			
47	2,837	43	216	147	690	103	130	780	143	100	291	84	16	64	7	3	20	2	2	5	2	6	2		1
48	+,596	31	256	190	1,004	134	206	1,350	232	198	553	169	26	134	27	7	32	2	1	8		2	4		
49	6,638	24	196	208	1,084	167	330	2,060	366	296	1,045	314	55	285	54	8	60	8	5	13	1	9	8	1	1
50	9,236	18	127	234	1, 0s0	158	413	2, 5.59	481	5.3	1,792	525	143	695	100	36	190	27	12	47	13	15	8		
51	10,078	21	83	157	-812	119	440	2,622	487	629	2,279	831	208	993	15.5	38	235	37	14	60	19	23	10	1	5
52.	11, 147	16	4	109	640	76	361	2,300	492	794	2, 748	750	256	1,494	256	64	388	60	18	101	20	43	14	2	5
53.	10,922	15	36	71	360	67	256	1,830	369	718	2,710	799	386	1,945	292	108	642	91	24	133	31	20	13	3	3
54.	9,441	9	18	29	208	33	161	1,191	225	576	2,104	619	384	2,124	316	121	816	119	23	232	59	48	20	4	2
55	7,203	6	12	21	101	19	116	673	124	454	1,558	447	415	1,848	305	166	965	114	44	262	66	61	20	2	4
56	5,730	8	6	17	70	9	57	36.5	98	266	922	269	325	1,437	213	148	882	115	56	294	70	68	28	5	2
57	4,200	8	3	2	34	8	27	190	45	148	517	170	212	1,010	173	13.)	844	109	57	340	65	10.5	46	12	
5	2,9:9	3	1	3	19	5	14	108	25	84	280	91	1.54	662	S 4	10x	610	66	57	293	63	1.5	57	9	2
(3).	2,175	3	2	2	19	3	8	96	23	55	1×3	61	91	440	54	60	477	42	42	256	45	151	41	13	5
60.	1,328			1	11	3	6	31	6	18	69	22	46	212	31	49	30.1	35	35	209	43	126	47	19	\%
61.	799	1		2	2		3	14	2	12	39	18	20	124	13	26	152	18	26	121	33	93	43	24	11
62	204			3	2		,	9	4	9	20	6	5	54	12	24	9.5	11	21	97	1s	$\times 3$	48	19	110
13	352				2		1	8	2	3	21	5	10	29	4	5	51	4	6	57	8	63	. 48	15	11
6 H	243	1	1		3	2		8		2	9	2	2	20	4	7	33	5	6	34	7	46	26	16	6
86.	1×1				2	1	2	2	2		10	$\stackrel{ }{ }$	2	10	1	3	2.5	3		23	3	29	24	14	11
til ando	59.5	9	6	7	15	8	4	49	10	7	55	8	13	66	11	11	64	7	4	48	9	59	4	30	45
Number measured Not measured.	$95,1 \times 8$	309	1,461	1,367	6,984	1,015	2,662	17,106	3,296	5,00i	17,506	j,090	2, 821	13,713	2, 131	1,137	6,906	880	465	2,636	577	1,213	533	193	132
Total	96, 157																								
Mean thlgh circumference.........cm.		49. 17	47.95	49. 51	49. 58	49.73	50.90	50.99	51. 13	52. 39	52.49	52.51	54. 23	5-19	54.06	55.5. 63	23, 73	5i, 40	56. 89	57.04	Sfi. 73	5 C 65	59.24	61.10	61. 76
Breeches group desig. nation..............		1	2	3 s .	3 m .	31.	Is.	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m.	61.	7 s.	7 m .	71.	\& 8.	$s \mathrm{~m}$.	S1.	9	10	11	12

Thigh clrcumference: Mean, 52.71 centimeters.
Table CXIX.-Association between breeches groups and suprapatella, white troops, demobilization.

Suprapatella, in centimeters.	Total.	Waist circumference, in centimeters.																							
		63and un- der.	64-67	68-71	$\begin{gathered} 68-71 \\ \mathrm{~m} . \end{gathered}$	${ }^{68-71} 1$.	$\begin{gathered} 72-75 \\ \text { s. } \end{gathered}$	$\begin{gathered} 72-75 \\ \mathrm{~m} . \end{gathered}$	72-75	$\begin{gathered} 76-79 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 76-79 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 76-79 \\ 1 . \end{gathered}$	$\left\|\begin{array}{c} 80-83 \\ \mathrm{~s} . \end{array}\right\|$	$\begin{gathered} 80-83 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 80-83 \\ 1 . \end{gathered}$	$\begin{gathered} 8+87 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 5+87 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 8+87 \\ 1 . \end{gathered}$	$\begin{aligned} & \text { 88-91 } \\ & \text { s. } \end{aligned}$	$\begin{gathered} \mathrm{x} \times-91 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 88-91 \\ 1 . \end{gathered}$	92-95	96-99	100-103	$\begin{aligned} & 101 \text { and } \\ & \text { over. } \end{aligned}$
33.	1,815	29	191	s9	387	61	62	370	87	56	173	58	35	91	11	4	51	8	1	2	5	9	4	6	
334	3,473 6,637	414	${ }_{307}^{266}$	${ }_{251}^{168}$	${ }_{1}^{756}$	116	151	8988	170	140	355	118	24	13.5	22	8	52	6	4	10	14	11	5	2	
3.5	10, 814	66	267	286	1, 394	${ }_{207}$	485	2, 2,884	${ }_{531}^{299}$	${ }_{636} 3$	-9,029	246	87 179	304	56 136	17 55	${ }_{222}^{106}$	$\begin{array}{r}13 \\ 25 \\ \hline\end{array}$	14	32 60	$\begin{aligned} & 6 \\ & 10 \end{aligned}$	20 18	${ }_{13}^{6}$	5	
36	14,058	65	192	229	1,272	165	530	3,335	620	879	3,038	${ }_{846}$	317	1,616	219	72	402	78	20	89	24	29	17	4	
37.	15, 508	64	85	162	,927	148	471	3,197	644	906	3, 435	999	451	2, 288	315	139	823	89	41	207	42	4	${ }_{28}$	2	
35	14, 014	42	64	73	491	88	308	2,216	444	814	3,013	895	560	2,550	402	184	1,128	146	67	321	79	88	31	4	
39.	10, 722	32	34	70	287	51	175	1,161	237	549	2, 102	686	453	2, 266	372	196	1,181	138	51	${ }_{388}$	103	133	46	8	
40	7, 5×3	$\stackrel{29}{ }$	22	$\stackrel{23}{23}$	134	2.5	93	594.	148	370	1,280	386	314	1,618	28.	155	1,098	$1+2$	$\times 3$	428	77	190	68	15	6
41	5. 023	23	55	29	146	19	59	352	61	189	${ }^{625}$	184	204	1,023	142	113	820	101	68	3×3	83	197	85	24	8
42	6,510	14	17	11	110	23	47	356	82	168	638	189	214	1,156	1s0	174	1,072	139	113	708	139	487	252	122	99
Total	96,157	454	1,500	1,391	7,073	1,0.59	2,684	17,248	3,323	5,057	17,644	5,147	2,838	13, 802	2,140	1,147	6,955	885	470	2,6:3	582	1,223	535	194	133
Mean suprapatella circumference.em.		36. 34	34. 89	35. 41	35.74	35. 72	36. 25	36.38	36. 50	37. 11	37.25	37.33	32.09	38. 22	8.25	38. 92	39.98	38.94	39. 47	39.63	39. 41	10. 22	40. 29	40. 65	41.06
Breeches group desig. nation............		1	2	3 s .	3 m .	31.	4 s .	m.	41.	¢s.	5 m .	51.	6 s	6 m .	61.	7 s .	7 m .	71.	8 s .	$\checkmark \mathrm{m}$	81.	9	10	11	12

Suprapatella: Mean, 37.34 centimeters; standard deviation, 2.45 ± 0.0056 centimeter.
TABLE CXX.-Association betucen brecehes groups and patella circumference, white troops, demobilization.

l'atella circurnference, in centimeters.	Total.	Waist circumference, in centimeters.																							
		63 and under.	04-67	$\begin{gathered} 68-71 \\ \text { s. } \end{gathered}$	$\begin{gathered} 68-71 \\ \mathrm{~m} . \end{gathered}$	${ }_{\text {ç-71 }}^{68}$	$\begin{gathered} 72-75 \\ \text { s. } \end{gathered}$	$\begin{gathered} 72-75 \\ \mathrm{~m} . \end{gathered}$	72-75	$\begin{gathered} 76-79 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 70-79 \\ \text { in. } \end{gathered}$	76-79	$\begin{gathered} \text { S0 - } 83 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 80-83 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} \text { sol-83 } \\ 1 . \end{gathered}$	$\begin{gathered} 84-87 \\ \text { s. } \end{gathered}$	$\begin{gathered} 84-87 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 84-87 \\ 1 . \end{gathered}$	$\begin{gathered} \text { S8-91 } \\ \text { s. } \end{gathered}$	$\begin{gathered} \text { 88-91 } \\ \text { m. } \end{gathered}$	$\begin{gathered} 88-91 \\ 1 . \end{gathered}$	92-95	96-93	100-103	104 and over.
31	976	26	54	40	99	10	31	135	27	49	90	26		109	22		84	24						6	
22.	1,745	45	134	122	337	28	114	391	4.5	88	180	47	30	87	12	9	35	6	2	11	3	10	6	2	i
,	4, 821	59	326	286	894	79	332	1,209	148	333	567	123	85	220	25	14	69	15	7	16	2	9	9	3	
3	10,459	95	431	376	1,587	192	615	2,790	38	769	1,656	315	211	618	67	66	183	17	19	56	10	18	14	4	
35	16, 926	6.5	299	310	1, 820	274	698	4, 250	645	1,188	3,364	731	508	1,603	168	164	507	54	49	141	20	42	20	3	
36	19, 637	61	170	158	1,328	220	519	4,095	820	1,176	4,305	1,093	628	2,829	311	209	1,077	87	67	288	46	96	42	4	
37	17, 627	34	45	60	${ }^{648}$	143	245	2,710	672	¢ 83	3, 831	1,239	667	3, 280	476	265	1,470	167	88	428	98	155	54	12	7
28.	12,025	26	20	24	252	67	78	1,136	394	405	2,329	903	401	2,593	481	186	1,451	182	99	547	125	214	90	15	7
39	6, 724	20	11	6	70	32	35	375	156	157	883	447	205	1,520	331	135	1,093	165	76	516	93	255	92	37	14
¢)	3,338	17	,	4	34		13	124	53	50	335	166	70	${ }^{6} 68$	178	63	624	93	37	340	92	189	102	37	23
	1,879	,	5	5	14	5	1	33	15	,	104	57	13	263	69	26	362	75	25	263	75	206	107	71	67
Tot	96,157	454	1,500	1,391	7,073	1,059	2,684	17,248	3,323	5,057	17,644	5, 147	2,838	13, 802	2,140	1,147	6,955	885	470	2,653	5\$2	1,223	555	194	133
Mean patella circum. ferenceem		. 90	34. 15	25	88	35.41	34.90	35.48	36. 03	35. 61	36. 20	36.64	36. 36	36. 02	37.38	36.87	37.48	37.69	37.42	37.95	38.10	38, 33	38.27	39.08	39.65
Breeches group desig-		1	2	s.	3 m .	31.	4 s .	4 m .	4.	5 s .	5 m .	5 .	6 s .	6 m .	61.	7 s.	7 m .	31.	8 s .	8 m .	81.	9	10	11	12

[^25]Table CXXI.-Assoriation between breeches groups and calf circumference, whte troops, demobrilization.

Calf circumference, in centimeters.	Total.	Waist circumference, in centimeters.																							
		$\begin{aligned} & 63 \text { and } \\ & \text { un- } \\ & \text { der. } \end{aligned}$	64-67	68-71	$\begin{gathered} 68-71 \\ \mathrm{~m} . \end{gathered}$	${ }_{6}^{68-71}$	$\begin{gathered} 72-75 \\ \text { s. } \end{gathered}$	$\begin{gathered} 72-75 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 72-75 \\ 1 . \end{gathered}$	$\begin{gathered} 76-79 \\ \text { s. } \end{gathered}$	$\begin{gathered} 76-79 \\ \text { in. } \end{gathered}$	$\begin{array}{\|c} 76-79 \\ 1 . \end{array}$	$80-83$	$\begin{gathered} 80-83 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 80-83 \\ 1 . \end{gathered}$	$\begin{gathered} 84-87 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 84-87 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 84-87 \\ 1 . \end{gathered}$	$\left\lvert\, \begin{gathered} 8 s-91 \\ \mathrm{~s} . \end{gathered}\right.$	$\begin{gathered} \text { se-91 } \\ \text { m. } \end{gathered}$	$\begin{gathered} 88-91 \\ 1 . \end{gathered}$	92-95	96-99	100-103	$\begin{aligned} & 104 \text { and } \\ & \text { over. } \end{aligned}$
29	587	13	67	35	141	16	26	119	23	16	43	10	9	29	3	4	10		4		2	5	4	2	
30	2,472	35	239	124	${ }_{1} 551$	74	126	${ }_{6}^{60}$	81	106	256	44	19	79	14	8	32	6	3	25	7	15	16	5	
	6,021 12,115	${ }_{72}^{47}$	348 361	${ }_{360}^{246}$	1, 204	${ }_{225}^{165}$	${ }_{604}^{294}$	1,690	- 292	${ }_{6} 315$	718 2076	175	74 210	247 783	135	18	${ }^{88}$	7	${ }_{5}^{5}$	29	4	7	8	2	
33	17, 224	60	238	289	1, 478	246	646	- ${ }^{1,134}$	743	1,172	${ }_{3,618}$	${ }_{950}$	454	1,733	102	114	${ }_{5}^{203}$	71	${ }_{35}^{14}$	47 136	10	19	12		${ }_{5}^{2}$
34.	18,651	62	111	182	1,017	166	515	3,596	709	1, 108	4,141	1,183	583	2,951	412	194	1,077	117	58	292	55	76	$\begin{aligned} & 23 \\ & 36 \end{aligned}$	${ }_{7}$	$\stackrel{5}{3}$
35	16, 485	66	49	73	505	92	295	2,228	500	860	3,502	1,036	671	3,286	466	276	1, 505	175	92	471	112	154	53	11	7
36	11,346	51	9	38	188	48	112	1,010	236	500	2,031	668	453	2,490	421	220	1,517	190	104	576	123	223	90	11	7
37.	6,303	20	17	9	79	13	30	327	84	206	868	352	233	1,371	250	157	1,057	158	73	493	105	277	88	27	9
38	3,039	10	20	6	37	3	16	104	32	54	253	123	103	${ }^{6} 61$	98	71	-586	88	50	346	79	21.4	91	42	12
39	2,044	17	41	25	80	11	16	112	29	36	138	40	26	223	65	35	299	49	32	${ }_{228}$	62	193	132	83	72
Numbu. measured Not measured	$\begin{array}{r} 96,087 \\ 70 \end{array}$	453	1,500	1,387	7,067	1,059	2,680	17,240	3,319	5,055	17,644	5,145	2,835	13,793	2,136	1,147	6, 9:0	84	470	2,643	582	1,221	553	192	132
Total.																									
										
Mean calf circumference.cm.		3.57	32.07	32. 49	32.60	32.80	33.02	33. 27	33. 48	33.78	34.04	34. 25	34.56	34. 83	34.99	35. 16	35. 47	35. 65	35. 64	35. 97	36. 07	36.51	36. 47	37.43	36.92
Breeches group designation.		1	2	3 s	3 m .	31.	4 s .	4 m .	41.	5 s .	5 m .	51.	6 s .	6 m .	61.	7 s .	7 m .	71.	8 s .	8 m .	81.	9	10	11	12

Table CNIII.-Correlation between waist circumference and leg length, colored troops, demobilizution.
[Basis of construction of breeches grcups shown by healy lines; circle symbols are the "breeches" group designations. Ficr relative frequency of "groups," see Table 121.]

Waist circumference: Mean, $77-83$ centimeters; standard deviation, 5.76 ± 0.034 centimeter.

Table CXXIV.-Association betrcen lrceches groups and knee height, colored troops, demotrilization.

Knee helght: Mean, 47.30 centimetels.

	$\frac{8}{\frac{1}{6}}$			吅｜	
	$\begin{aligned} & \text { \% } \\ & \text { 8 } \end{aligned}$		\bigcirc	交	¢
	$\begin{aligned} & 8 \\ & 8 \\ & 1 \\ & 1 \end{aligned}$	－	\％		$\begin{aligned} & \circ \\ & \stackrel{10}{1} \\ & \frac{1}{6} \end{aligned}$
	$\begin{aligned} & \text { ® } \\ & \text { \& } \end{aligned}$		号 \vdots		$\frac{\pi}{8} \infty$
	$\overrightarrow{⿹ 丁 口 ⿹ 丁 口 ⿹_{x}^{-}}$	－！！：ロールNminoか ！nN	\％	！	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$
	$\overline{⿹_{\infty}}$		\％		$\begin{aligned} & 8 \\ & 8 \\ & \text { 名 } \end{aligned}$
	$\stackrel{\vec{\Phi}}{\dot{x}}$		$1 \sim$	\vdots	
	$\begin{aligned} & \frac{5}{x} \\ & \frac{1}{x} \end{aligned}$		$\infty \quad \begin{aligned} & \text { ！}\end{aligned}$	！	$\begin{aligned} & \text { 앙 } \\ & \stackrel{1}{1} \\ & \end{aligned}$
	$\frac{\sqrt{x}}{x} \dot{x}$		号䓵		
	$\frac{s}{x}$		엉	｜r	
	$\frac{\tilde{B}}{\tilde{x}_{x}^{\prime}}$	（：	䘨	\vdots	$\begin{aligned} & 8 \\ & 10 \\ & 180 \end{aligned}$
	$\frac{8}{\frac{1}{x}} \dot{E}$	（N－1 \－HT	융		Fig
	$\begin{aligned} & \tilde{x}_{x}^{x} \\ & \dot{x} \end{aligned}$		จ	｜	
	$\begin{aligned} & \text { R. } \\ & \text { 令- } \end{aligned}$		蒜 \vdots	！	$\begin{aligned} & \vec{\infty} \\ & \text { 郘 } \\ & \hline \end{aligned}$
	$\begin{aligned} & 8 \\ & \stackrel{y}{1} \equiv \end{aligned}$		$\begin{aligned} & \mathrm{M} \\ & \mathrm{~m} \\ & \mathrm{y} \end{aligned}$	\vdots	
	${ }_{0}^{\infty}$		呇	\vdots	
	䢒-		¢		
	閣		E		$\begin{aligned} & \text { ci } \\ & \text { 웅 } \end{aligned}$
	足		矬	！	$\begin{array}{cc} \text { is } \\ \text { is } \\ \end{array}$
	下－		8 ）	\vdots	$\stackrel{\leftrightarrow}{\circ}$
	なぁ		F	！	\& घ
	dis		N	！	$\begin{array}{ll} \text { § } \\ \text { \& } \\ \text { in } \end{array}$
	¢		ㅇ	！	$\begin{aligned} & \text { 艹゙ } \\ & \text { ه } \end{aligned}$
			${ }^{-1} \vdots$		$\begin{aligned} & 8 \\ & 80 \\ & 8 \\ & 8 \end{aligned}$
	感		$\begin{aligned} & \mathbf{W}^{\infty} \\ & 0^{\infty} \\ & \hline \end{aligned}$	\％	\vdots

Thigh circumference：Mean， 51.08 centimeters；standard deviation， 3.72 ± 0.0330 centimeter．

Table CXIVI.-dssociation between blouse groups and suprapatella circumference, colored troops, demobilization.

Table CXXVII.-Association between breeches groups and circumference at patella, colored troops, demobilization.

Patella circumference, in centimeters.	Total.	Waist circumference, in centimeters.																							
		63 and	64-67	68-71	$\begin{gathered} \text { 68-71 } \\ \mathrm{m} . \end{gathered}$	64-71	72-75	$\begin{gathered} 72-75 \\ \mathrm{~m} . \end{gathered}$	${ }^{72-75} 1$.	${ }^{76-79}$	$\begin{gathered} 76-79 \\ \mathrm{~m} . \end{gathered}$	${ }_{1}^{76-79} 1$	$50-x 3$	$\begin{gathered} 80-83 \\ \mathrm{~m} . \end{gathered}$	$80-83$	$\frac{\mathrm{x}+-\mathrm{x} 7}{\mathrm{s.} .}$	$\begin{gathered} \left.\begin{array}{c} \mathrm{s}-\mathrm{s} 7 \\ \mathrm{~m} . \end{array} \right\rvert\, \end{gathered}$	$\begin{gathered} 84-\times 7 \\ 1 . \end{gathered}$	$\begin{gathered} 8<-91 \\ \mathrm{~s} . \end{gathered}$	$\begin{gathered} 88-91 \\ \mathrm{~m} . \end{gathered}$	$\begin{gathered} 8 \times-91 \\ 1 . \end{gathered}$	92-95	96-99	100-103	104-109
31 and under	53			3	5		3	3		2	8	4	1	\pm	3	1	8	3		1	3		1		1
32.	83 249	4	13 15	[4	15 53	${ }_{8}^{6}$	${ }_{22}^{4}$	14 52	${ }_{9}^{5}$	+19	6 29	$\frac{1}{7}$	1	5	4	2	1	1				2	1	1	
34.	575	4	12	20	106	14	50	144	23	30	97	25	7	27	2	2	9	1	i	2		2		1	
35.	1,030	4	18	15	110	14	65	279	46	63	215	61	15	72	8	5		2	3	6			1		
${ }_{3}^{36}$	1,207	4	4	10	63	${ }^{23}$	55	242	64	59	${ }_{312}$	94	27	145	26	6	52	6	1	3		5	5		
37.	1,270	8	6	5	49	16	36	164	49	45	311	130	27	250	44	6	71	18	4	17	3	7	2		1
38	${ }_{971}^{941}$	3	1	1	16	3	8	80	31	25	209	93	20	230	43	14	73	21	3	36	13	10	7	1	
39.	574	4			6	3	5	29	17	14	98	56	10	117	47	9	79	14	4	32	11	11	6	1	
40.	308	1	1		1		2	9	4	2	37	19	5	75	29	4	50	15		28	6	12	3	3	
41 and over	154	1			2	1	1	2	1	2	8	6	1	19	6	3	27	7		22	10	11	11	4	
Number measured	6,444	34	70	74	425	88	251	1,018	249	265	1,330	496	115	949	212	52	396	88	16	147	46	60	37	11	15
Total.	6,445																								
ence, cm................		36.21	34. 19	34.28	34.95	35. 39	35.27	35.67	36. 18	35. 81	36. 49	36. 87	36. 70	37.34	37.78	37.35	37.77	37.97	37. 06	38.67	38.63	38. 58	38, 46		.35
Breeches group designa-																									
tion............		1	2	3 s .	3 m .	31.	4 s .	4 m .	11.	5 s .	5 m .	51.	6 s.	6 m .	61.	7 s .	7 m .	71.	8 s .	8 m .	81.	9	10		11

Patella circumference: Mean, 36.52 centimeters; standard deviation, 1.99 ± 0.0175 centimeter.
Calf circumfercuce: Mean, 34.71 centimeters; standard deviation, 2.10 ± 0.0125 centimeter.
TABLE CXXIX．－Comparative frequency distribution of＂blouse＂groups，by Stutes of nativity，white troops（absolute numbers）．

릅 잉 잉	
$\frac{8}{5}$	
－${ }^{8}$	
$\stackrel{\rightharpoonup}{\mathrm{J}}-$	
$\frac{\text { 항 }}{\text { d }}$	
$\stackrel{\rightharpoonup}{\overrightarrow{1}}$	ールールーのニー
$\stackrel{5}{\Phi}-$	
$\stackrel{\substack{\infty \\ \hline \\ \infty \\ 0}}{ }$	
§ §	
$\begin{aligned} & \text { § } \\ & \text { §o } \\ & \hline \end{aligned}$	
$\begin{aligned} & 8 \\ & \infty \\ & 1 \\ & \infty \end{aligned}$	＂
${ }_{\infty}^{\infty}$	
$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	
$\begin{aligned} & \infty \\ & \underset{\infty}{\infty}, ~ \end{aligned}$	
$\begin{aligned} & 0.8 \\ & \lambda_{\infty} \\ & \hline \end{aligned}$	
$\begin{aligned} & \mathbf{L}_{6}^{\prime} \\ & \mathbf{N}_{\infty} \dot{n} \end{aligned}$	戸！
が	
क్య	
क义	a
今	$\therefore \vdots \boldsymbol{\infty}$
E．	
80	

- Includes 499 mixed races which were not previously counted, and includes 100 for whom there were no measurements: $6,954-599=6,255$.
Chest circumference (rest), in centimeters.
 Grand total........ $\overline{\text { a6, } 954}$

elawarc最
Illinois........
Indiana.....
owa..........
Kenturkky...
oulsiana...
id............

:
Oregon..............

outh Dakota.
:
irginia......

둘․․․

${\underset{3}{3}}_{\substack{1 \\ 3 \\ 2}}$	
$8{ }^{8}$	
:8	
$\bar{\delta}$	
od	
$\bar{S}_{\infty}^{\infty}$	ッ
$\frac{\infty}{\infty}$	
$\frac{1}{\infty}$	
$\frac{1}{\infty} \dot{\infty}$	
$\begin{aligned} & \infty \\ & 8 \\ & \hline \end{aligned}$	
$\frac{\mathscr{B}}{\frac{1}{8}} \dot{E}$	黄～以
$\frac{\tilde{8}}{1} \dot{8}$	
景	杪
令定	
宕め	
$\begin{aligned} & \text { iP } \\ & \underset{\sim}{N} \end{aligned}$	
$\begin{aligned} & \text { is } \\ & \text { N } \end{aligned}$	
is	
E－	
－	
馬	の
\％	
${ }^{3}$	
ड़゙	

	Eegie	
	号号	
	d8	：N：－：－：：：：－－－
	実	
	あ ${ }_{\text {守 }}$	
	空第	
	\＄．	
	家	₹
	家畐	
	変罧	
	戓氯	
	家式	\＄্রী－
	des	長－
	是奈	
	正	雨以
	起	
	员E	
	dicto	
	惑蔦	
	す！	
	瞢：	所
	莫总	
	盗䇝	
	宜	
	中9	
	\％	
	亗	

Table: CXXXIV.-Comparative frequency distribution of statures, by Q. M. C. distribution zones, demobilization.

SECTION A: ABSOLUTE NUMBERS.

Stature, in centimeters.	Total.	Zone 1.	Zone 2.	Zone 4.	Zone 5.	Zone 7.	Zone 8.	Zone 9.	Zone 10.	Zone 11.	Zone 12.	Zone 13.
148-149.	23	1	8		2	6	2	2	2			
150-151.	55	8	20	2	5	16	,	1		1		
152-153.	150	22	61	5	7	36	5	4	3	3	1	3
154-155	397	55	172	12	10	114	18	3	6	2		5
156-157.	760	92	326	29	29	204	17	23	10	6	5	19
158-159.	1,480	189	623	62	66	397	49	25	22	21	2	24
160-161.	2,785	306	1,083	89	177	787	119	66	43	39	8	68
162-163	4,381	366	1,562	138	339	1,296	266	130	96	46	20	122
164-165.	6,754	706	2,183	219	493	2,047	426	212	173	97	17	181
166-167	8,648	726	2,497	287	709	2,838	581	306	258	150	26	270
168-169	10,547	766	2,824	335	1,026	3,452	808	380	367	179	34	376
170-171.	12,318	884	2,922	408	1,367	4,061	1,052	473	461	231	28	431
172-173	12,207	746	2,724	422	1,461	3, 855	1,110	536	556	237	43	517
174-175.	11,467	647	2,345	377	1,430	3,772	1,056	530	519	258	56	477
176-177.	9,672	453	1,748	332	1,313	3,170	947	456	522	219	36	476
178-179.	7,580	315	1,296	246	1,179	2,353	815	338	449	172	34	383
180-181	5,081	225	782	162	831	1,529	575	255	340	127	14	241
182-183.	3,277	105	502	101	539	984	369	170	225	78	16	188
184-185.	2,016	52	255	71	362	615	234	89	159	55	8	116
186-187	1,205	41	163	30	215	344	148	75	79	42	9	59
188-189.	686	21	85	18	113	227	78	50	39	19		36
190-191.	287	4	37	8	64	77	27	22	18	12	1	17
192-193.	156	4	18	3	38	45	15	13	9	4	1	6
194-195.	58	1	9	1	9	19	6	6	3			4
196-197.	39	2	4	1	8	11	5	3	1	2		2
198-199.	20		2		4	6	4	1	1	2		
200-201.	5				1	4						
202-203.	1				1						
	1				1							
208-209.	4		2			2						
Number measured.	102,061	6,737	24,253	3,358	11,800	32, 267	8,734	4,169	4,361	2,002	359	4,021
Not measured..	272											
Total.	102, 333											
Mean stature.cm..	172.00	169.78	170.10	171.88	173.90	172.06	173.48	173.33	174.23	173.44	172.73	173. 51
Standard deviation	6.68	6.46	6.62	6.57	6.48	6.50	6. 36	6.57	6.30	6.61	6.69	6.41

SECTION B: PROPORTIONAL NUMBER OF THE V゙ARIOUS STATURES TO EACH 1,000 FOR A ZONE.

TABLE CXXXIV.-Comparative frequency distribution of statures, by Q. M. C. distribution zones, demobilization-Continued.

SECTION C: PROPORTIONAL NUMBER OF EACII 1,000 STATURES IN TIE: VARIOUS DISTIRIBUTION ZONES.

stature, in centimeters.	Zone 1.	Zone 2.	\%one 4.	\%one 5.	Zone 7.	Zone S.	Zone 9.	Zone 10.	Zone 11.	Zone 12.	Zone 13.	Total.
148-149	43. 48	347. 83		86. 96	260.87	80.96	88.96	86.90				1,000
150-1.51	145. 45	303.63	36. 36	90. 91	290.91	36. 36	18.18		18. 18			1,000
152-153.	146.67	408. 67	33.33	46. 67	240.00	33. 33	23.67	20.00	20.00	6.67	20.00	1,000)
154-15i	138, 54	433.25	30.23	25. 19	287.15	45. 34	7.56	15.11	5.04		12. 59	1,000
156-157	121.05	428, 95	38.16	3x. 16	268. 42	22. 37	30. 26	13. 16	7.89	6. 5.5	25.00	1,000
158-159.	127. 70	420.95	41. 89	44. 59	268.24	33. 11	16. 89	11.86	14.19	1.35	16. 22	1,000
160-161.	109. 87	388, 87	31.96	63. 55	282.59	42.73	23.70	15. 44	14.00	2.87	24.42	1,000
162-163.	83. 54	350. 54	31. 50	77.38	295.82	60.72	29.67	21.91	10. 50	4.57	27.85	1,000
164-16.5.	104. 33	323. 22	32. 43	72.99	303.08	63.07	31.39	25. 61	14.36	2.52	26.80	1,000
166-167.	83.95	28K. 73	33.19	81.93	328. 17	67.18	35. 3.8	29.83	17.34	3.01	31.22	1,000
108-169.	72. 63	267.75	31.76	97.29	327.30	76.62	36.03	34. N0	16.97	3.22	35.65	1,000
170-171.	71.77	237.22	33.13	110.98	329.68	85.40	3x. 41	37. 43	18.75	2.27	34. 99	1,000
172-173.	61.11	223.15	31.57	119.69	315. 80	90.94	43. 91	45. 55	19.42	3.52	42.35	1,000
174-175	56. 43	204.50	32. 88	124. 71	32x. 95	92.09	43. 23	45. 26	22, 50	4. 88	41.60	1,000
176-177	46. 84	180.73	34.33	135. 75	327.75	97.91	47.15	53.97	22.64	3.72	49. 21	1,000
178-179	+1. 56	170.97	32.45	15\%. 54	310. 42	107. 52	41.59	59.23	22.69	4. 49	50.53	1,000
180-181.	44.28	153.91	31.88	163.55	300.93	113.17	50. 19	66.91	24.99	2.76	47.43	1,000
182-153	32.04	153. 19	30.82	164.45	300. 27	112.60	51.87	68, 66	23.80	4.88	$5 \% .37$	1,000
181-185	25. 79	126. 49	3.5. 22	179. 56	305.06	116.07	44.15	78.87	27.28	3.97	57.54	1,000
186-187	34.02	135. 27	24.90	178. 42	285. 47	122.82	62.24	65. 56	34.85	7.47	48. 98	1,000
188-159	30.61	123.91	26.24	161. 72	330.90	113.70	72.89	56. 85	27.70		52.48	1,000
190-191	13.94	12k, 92	27.87	223.00	268. 29	91.07	76.65	62.72	41.81	3.48	59. 23	1,000
192-193	25.64	115.38	19.23	243. 59	288. 46	96.15	83.33	57.69	25.64	6.41	38. 46	1,000
194-195.	17.24	155. 17	17.24	155.17	327. 39	103.45	103.45	51.72			68.97	1,000
196-197.	51.28	102\% 56	25.64	205. 13	282.05	12K. 21	76. 92	25.64	$51.2 \times$		51.28	1,000
198-199		100.00		200.00	300.00	200.00	50.00	50.00	100.00			1,000
200-201				200.00	800.00							1,000
202-203.				1,000.00								1,000
204-205				1,000.00								1,000
206-207				1,000.00								1,000
208-209		500.00			500.00							1,000)
Average proportion for each zone......	66.01	237.63	32.90	115. 62	316.15	85.58	40.85	42. 73	19.62	3.52	39. 40	1,000

Table CX゙X゙V.-Comparative frequency distribution of weight, by States, white and colored troops, at demobilization.

Table (XXXV'I.-('omparatice frequency distribution of chest circumference (roxt), by (l. IV. C. distribution zoncs, white and colored troops, at demobilizution.

SECTION A: ABSOLETE: NUMBELS.

Chest clrcumference, in cenilmelers.	Tolal.	Kone 1.	\%one 2.	\%ome 4.	Zone 5.	Zone 7.	\%ones.	\%orn 9	\%one 10.	Zone 11.	Zolue 12.	\%otie 13.
6064	41	3	21	1	3	11	1			1		
$66^{6}-69$.	34	6	15		3	1.	3	2				i
70-74.	272	18	62	7	30	¢	31	11	12	2	1	10
75-79	2,048	165	553	101	271	592	197	72	56	19	6	16
N0 84.	17, 3 R	1,205	4,499	577	2,226	5,01.5	1,692	60 s	687	217	60	419
8589	39,796	2,556	9,549	1,241	4,422	12,209	3,712	1,684	1,723	616	127	1,405
10.94.	29, 821	1,909	6,749	993	3,291	9,723	2,268	1,291	1,339	723	123	1, +17
85-99.	10,190	641	2,241	314	${ }^{963}$	3,693	-628	, 378	1, 4.3	308	31	${ }^{1} 529$
100-101	1,831	130	437	62	121	70\%	110	55	74	46		82
Number measured. Not measured.	101, 478	6,693	21,126	3,336	11,740	32, 0s6	8,672	4,154	4,333	1,903	358	3,949
Total.	102,333											
Meon chest elrenmference...........	88. 62	88.41	88. 37	88.50	88.15	88.96	87.96	88, 66	88.90	89.97	88.78	49.65
Standard devialion	5. 12	5. 25	5.18	5. 18	4.92	5.20	4. 89	4. Ks	4.97	5. 06	4. 66	4.96

SFCTION 13: PROPORTIONAI NUMBER OF TMF VARIOR'S CHEST CIRCUMFERENCES (REST) TO EACH 1,000 FOR A ZONE.

60.61.	0.40	0.45	0.87	0.30	0.26	0.34	0.12			0.50		
$6{ }^{5}-69$. 53	. 90	. 62		. 43	. 5.36	. 3.1	0.18	0.92			0.25
70-74.	2.68	2. 69	2.57	2. 10	2.5B	2.74	3.57	2.63	2.77	1.00	2.81	2.31
$75-79$	20. 58	24.65	22.92	30.28	23.08	18.45	22. 72	17.33	1292	9.53	16. Ks	11.01
$80-84$.	171.32	189.01	186. 48	17296	189.60	157.24	195. 11	1:8. 40	153.93	123.93	16s. 54	112.56
85-89.	392. 16	381. 89	395. s0	383. 99	410.73	380.51	431.50	405.39	398.11	324. 13	3.56 .71	361.75
90-91.	293.88	255.22	279. 73	297. 66	280. 57	303.03	261.53	31078	309.02	36277	351.12	352. 72
95-99.	100. 42	95.77	92.89	9 9. 13	82.18	115.16	72. 42	90.99	10i. 24	10.5. 0.	95. 51	132.62
100-101.	18. 05	19.42	18.11	18.38	10.56	21.97	12.68	13.96	17.08	23.08	8. 43	20.56
Total.	1,000.001	,000.00	000.00	,000.00	,000.00	,000.00	,000.00	1,000.00	1,000 00	, 000000	,000.00)	$, 000.00$

SFCT1ON (: IROPORTIONAI, NUMBER OF EACH 1,000 CHEST CIRCUMFERENCES (REST) 1N T11E VAlloUS DISTIIBET1ON ZONES.

Chest clrcimference, in centimelers.	Zone 1.	$\begin{gathered} \text { Zone } \\ 2 . \end{gathered}$	Zone 4.	\%one 5.	$\begin{gathered} \text { Zone } \\ 7 . \end{gathered}$	Zone 8.	$\begin{gathered} \text { Zone } \\ 9 . \end{gathered}$	$\begin{gathered} \text { Zone } \\ 10 . \end{gathered}$	$\begin{aligned} & \text { Zone } \\ & 11 . \end{aligned}$	$\begin{aligned} & \text { Zone } \\ & 12 . \end{aligned}$	\%one 13.	Total
60. 64.	73.17	512.20	24.39	73.17	268. 29	24.39			21.39			1,000
$65-69$.	111.11	277.78		92.59	333. 33	55.56	37.04	74.07			18. 52	1,000
70-74.	66. 18	227.94	25. 74	110.29	323.53	113.97	40.44	44.12	7.35	3.65	36. 76	1,090
75-79	79. 02	264. 85	48.37	129. 79	2N3. 52	94.35	34. 48	26. 82	9.10	2.87	26. 82	1,000
80.81.	72. 76	258.79	33. 19	12s. 04	290.19	97.33	37.85	38.37	14.21	3.45	25.83	1,000
85-89	61.23	239.95	32.19	121.17	306. 79	94.03	42. 32	43.35	16.23	3.19	36. 56	1,000
90-94.	64.02	226. 32	33.30	110.46	326. 05	76.05	43. 29	44.90	24.24	4.19	47.18	1,000
9.5-90.	62.90	219.92	30.81	94.70	36261	61.63	37.10	44.75	30. 32	3.34	51.91	1,000
100-10t.	71.00	238. 67	33. 86	67.72	385. 04	60.08	31.68	40.42	25. 12	1.64	44.78	1,000
A verage chest for mach zone.	65.96	237. 75	32.87	115.69	316.19	85.46	40.91	42. 70	19.61	3.51	39.31	1,000

Table CXXXVII-Comparative frequency distribution of waist circumference, by Q. M. C. distribution zones, white and colored troops, at demobilization.

SFCTION A: ABSOLUTE NUMBERS.

Waist circumference, in contimeters.	Total.	Zone 1.	$\begin{aligned} & \text { Zone } \\ & 2 . \end{aligned}$	Zone 4.	Zone 5.	Zone 7.	Zone 8.	Zone 9.	Zone 10.	Zone 11.	Zone 12.	$\begin{aligned} & \text { Zone } \\ & 13 . \end{aligned}$
60-64.	350	30	108	12	23	116	28	3	9	7	3	11
65-69	4,373	404	1,192	163	345	1,541	348	63	121	53	8	135
70-74.	24,42	1,895	6,372	765	2,496	7,985	2,072	674	898	387	77	821
75-79.	36,986	2,464	8,758	1,242	4,355	11,441	3,180	1,565	1,715	705	122	1,439
80-84	22,916	1,237	5,042	784	2,915	7,153	1,988	1,166	1,069	538	101	923
85-89	8,971	446	1,880	264	1,200	2,744	796	512	391	229	29	480
90-94.	2,412	144	520	82	277	788	185	125	95	51	9	136
95-99.	806	44	205	28	97	252	63	3.5	27	16		39
100-104.	240	23	64	13	24	71	10	11	11	2		8
105-109.	74	2	22	4	10	14	7	2	7	2	1	3
110.	C		1		1	2	1					
Number measured.	101, 576	6,689	24,164	3,357	11, 743	32,107	8,678	4,157	4,343	1,990	353	3,995
Not measured.	757											
Tota	102, 333											
Meanwaist circumference.	77.92	77.05	77.53	77.94	78.48	77.79	77.94	79.37	78.35	78.81	78.49	78.73
Standard deviation	5.96	5. 94	6.00	6.04	5. 80	5. 99	5. 83	5. 64	5. 69	5. 83	6.03	6. 12

SECTION B: COMPARATIVE NUMBER OF THE VARIOUS WAIST CIRCUMFERENCES TO EACH 1,000 FOR A ZONE.

60-64	3. 45	4. 49	4.47	3.57	1. 96	3.61	3.23	. 72	2.07	3.52	8. 50	2.75
65-69	43.06	60.40	49.33	48.56	29.38	48. 01	40.10	15. 15	27.86	26.63	22.66	33. 79
70-74	240.64	283.30	263.70	227.88	212. 55	248.71	238.76	162.12	206.77	194.49	218.13	205.51
75-79.	364.13	368.37	362.43	369.97	370.85	356. 34	366. 44	376.47	394.89	354.27	345.61	360.20
$80-84$	225. 60	184.93	208. 66	233.54	248. 23	222.79	229.08	280.48	246.14	270.34	256.12	231.04
85-89.	88.32	66.68	77.80	78.64	102.19	85. 48	91.72	123.16	90.03	115.07	82.15	120.15
90-94.	23.75	21.53	21.52	24.43	23.59	24. 55	21.32	30.07	21.87	25.62	25. 50	34.04
95-99.	7.94	6.58	8.48	8.3.4	8.26	7.85	7.26	8.42	6.22	8.04		9.76
100-10	2. 36	3.44	2.65	3.87	2.04	2.21	1.15	2.65	2.53	1.00	8. 50	2.00
105-109	. 73	. 30	. 91	1.19	. 85	. 44	. 81	. 48	1.61	1.00	2.83	. 75
110.	. 06		. 04		. 09	. 06	. 12	. 24				
Total	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00	1,000.00

SECTION C: PROPORTIONAL NUMBER OF EACH 1,000 WAIST CIRCUMFERENCES IN THE VARIOUS DISTRIBUTION ZONES.

Waist circumference, in centimeters.	Zone 1.	$\begin{gathered} \text { Zone } \\ 2 . \end{gathered}$	Zone 4.	Zone 5	Zone	Zone	Zone	$\begin{gathered} \text { Zone } \\ 10 . \end{gathered}$	$\begin{gathered} \text { Zone } \\ \text { 11. } \end{gathered}$	$\begin{aligned} & \text { Zone } \\ & 12 . \end{aligned}$	$\begin{aligned} & \text { Zone } \\ & 13 . \end{aligned}$	Total.
60-64.	85.71	308.57	34. 29	65. 71	331. 43	80.00	8.57	25. 71	20.00	8.57	31. 43	1,000
65-69.	92.39	272.58	37.27	78. 89	352.39	79. 58	14. 41	27.67	12.12	1.83	30.87	1,000
70-74	77.53	260. 70	31.30	102. 12	326.69	84.77	27.58	36.74	15. 83	3.15	33. 59	1,000
75-79.	66.62	236.79	33.58	117.75	309.33	85. 98	42.31	46.37	19.06	3.30	38.91	1,000
$80-84$	53.98	220.02	34. 21	127.20	312.14	86. 75	50.88	46. 65	23.48	4.41	40.28	1,000
$85-89$	49. 72	209.56	29.43	133. 76	305. 87	88. 73	57.07	43.58	25.53	3.23	53.51	1,000
90-94.	59. 70	215.59	34. 00	114.84	326. 70	76.70	51.82	39.39	21.14	3.73	56. 38	1,000
95-99	54.59	254.34	34. 74	120.35	312.66	78.16	43. 42	33. 50	19.85		48.39	1,000
100-104	95.83	266.67	54.17	100. 00	295. 83	41.67	45.83	45. 83	8.33	12.50	33. 33	1,000
105-109	27.03	297.30	54, 05	135.14	189. 19	94. 59	27.03	94.59	27.03	13.51	40.54	1,000
110.		166.67		166.67	333.33	166.67	166.67					1,000
A verage proportion for each zone....	65.85	237.89	33. 05	115.61	316.09	85. 43	40.93	42.76	19.59	3.48	39.33	1,000

Table CXXXVIII. - Comparatue frequency of eye color in the varinus States of nativity of demobilized men.

State.	Total.	Clear blue.	Blue with brown spots.	Light. brown.	Dark brown.	No color.
Alabama.	1,932	246	881	274	515	16
Alaska..	1,13	7	2	1	3	
Arizona...	130	43	32	24	30	i
Arkansas..	2,542	1,064	423	3×1	701	13
Colorado. .	483	189	108	84	97	5
Colorado....	227	93	46	47	41	
Delaware..	997 300	127	138	192	198	5
District of Columbia.	231	127	34	39	72 79	1
Florida.	1,024	97	443	146	323	10
-Georgia.	3, 403	330	1,433	460	1,138	12
idaho.	164	77	- 23	46	1, 17	1
Illinols. .	6,708	3,112	1,363	1,221	995	17
Indiana.	3,955	1,265	1,616	1, 450	598	26
Iowa...	1,610	-679	451	251	220	9
Kansas..	1,015	433	248	167	157	10
Kentucky	2,034	$56{ }^{5}$	1,510	280	545	34
Louisiana	2,079	362	315	387	1,006	9
Maine....	,694	365 387	90 222	162	${ }^{60}$	17
Massachusetts.	4,795	2,365	222	191 1,043	331 739	11
Michigan.	3,728	1, 821	626	1,723	538	15
Minnesota.	1,051	-969	485	280	211	6
Mississippi	2,102	582	435	375	694	16
Missourl.	2,847	651	1,420	266	471	39
Montana.	286	122	41	64	38	1
Nebraska.	823	353	218	124	126	2
Nerada...	18	2	5	7	4	
New Hampshire.	414	201	59	101	47	6
New Jersey......	3,158	1,374	477	665	653	19
New Mexico.	, 230	, 69	. 38	54	68	1
New Y ork. N North Carolina.	9,240	3, 845	1,247	1,716	2,384	48
North Carolina.	1,815	479	366	210	734	26
Ohio.......	358 7,094	3, 027	101	58	41	
Oklahoma	2,316	1,008	1,308	1,384	1,297	47
Oregon.	1,070	1,529	168	404	456	10
Pennsylvania.	10,901	4,381	1,795	2,409	190 2,257	3 59
Rhode Island.	${ }^{4} 403$	-186	$1{ }^{11}$	2, 89	2, 84	3
South Carolina.	829	128	296	128	257	20
South Dakota.	416	177	114	63	60	2
Tennessee.	2,815	426	1,463	442	462	22
Texas..	4,374	1,511	904	787	1,145	27
Utah..	105	51	18	24	-12	
Vermont.	447	229	49	99	41	29
Virginla.	1,930	614	339	243	723	11
Washington.	2,025	986	332	361	334	12
West Virginia	1,697	726	335	317	311	8
Wisconsin.	2,677	1,441	474	483	273	6
Wyoming.	80	31	15	20	13	1
Total.	102, 577	38,3.54	23,571	17,955	21, 824	793

Table CXXNIX.- 'omparative frequency of hair color in carious States of nativity of demobilized men.

State.	Total.	No color.	Flaxen.	1,ight brown.	Medium brown.	Dark brown.	Red.	Red and black.
Alabama.	1,932	19	16	257	722	76	20	32
Alaska...			1	5	7			
Arizona..	130	1	${ }^{2}$	25	20			10
Arkansas.	2, 542	12	131	490	471	1,1.6	31	301
California.	423	4	20	126	87	213	5	28
Colorado..	227		14	49	44	100	3	17
Connecticut.	997	4	60	160	187	518	16	52
Delaware.	300	2	3	55	54	168	2	16
Pistrict of Columbia.	231	1	8	40	23	143	1	15
Fiorida.......	1,024	7	8	152	351	477	17	12
Georgia.	3,403	39	29	449	1,183	1,619	43	41
Idaho...	164	1	11	45	25		2	2
Illinois.	6,708	20	329	2,000	1,649	2,238	109	363
Indiana.	3,955	20	237	995	1,241	1.343	49	70
Iowa..	1,610	4	122	422	376	622	15	49
Kansas	1,015	6	62	261	205	425	14	42
Kentueky	2,934	28	63	563	1,043	1,0s]	39	77
1,ouisiana.	2,079	10	29	270	237	1,360	13	160
Maine. .	694	17	38	118	147	-360	3	11
Maryland.	1,142	7	53	201	186	604	19	72
Massachusetts	4,795	126	281	804	849	2,498	67	170
Michigan.	3,728	8	280	1,190	646	1,484	40	S0
Minnesota	1,951	4	195	587	430	629	40	66
Mississippi	2,102	13	43	411	381	1,159	15	*0
Missouri..	2,847	24	97	646	1,003	962	34	\$1
Montana.	266	23	62	45	116	6	14	
Nel)raska.	823	3	51	219	162	330	11	27
Nevada.	18			6	1	11		
New IIampshire	414	7	20°	67	85	205	8	17
New Jersey...	3,188	17	152	723	431	1,667	50	148
New Mexico	230	3	11	28	31	144		13
New York.	9,210	39	347	1,765	1,224	5,212	138	515
North Carolina	1,815	25	38	228	278	1,207	14	25
North Dakota.	3358	2	25	102	78	134	6	11
Ohio......	7,094	30	472	2,183	1,176	3,007	67	159
Oklahoma	2,316	7	103	465	411	1,037	28	215
Oregon.......	1,070	63	302	234	414	, 21	32	4
lhode Island.	10,901	57	529 19	2,329	1,588	-, 703	136	559
South Carolina.	829	19	9	110	261	400	6 6	21
South Dakota.	416	6	40	107	92	1.54	4	13
Tennessee.	2,815	21	40	488	1,255	930	39	42
Texas.	4,371	19	310	742	712	2,044	6 s	479
Itah.	105		1.5	29	18	39	2	2
Vermont.	447	28	26	'90	73	214	3	11
Virginia.	1,930	13	67	309	275	1,143	20	103
Washington.	2,025	11	107	530	450	S11	33	63
West Virginia	1,697	6	88	3×2	244	871	23	$\times 3$
Wiseonsin...	2,677	8	1.77	880	686	799	20	127
W yoming.	80	1	5	22	19	23	2	8
Total.	$102,577$	7×7	i, 132	22,506	21,656	46,446	1,329	4,516

INDEX.

Page.
Admiral Islands, shoulder breadth of iulnabitants of 204
Africa, Central, average weight of adult males of tribes of 120
African Negroes:
relative arn length in 219
thoracic index for 207, 209
A frican tribes:
relative leg length of. 221
relative pubic height of 200
relatively small pelves of 215
smallest thigh circumference found in 227
Age:
and stature of Civil War volunteers 35
distribution of Civil War volunteers and World War troops 65
mean stature of each, 18 to 25 years, United States Army recruits 73
of recruits 64
Ages of soldiers (officers and men) serving in Civil and World Wars 64
Agricultural groups:
foreign and native white-
weight distribution of draft recruits of 133, 134
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of. 132
native white, South-
height distribution of 109, 110
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
weight distribution of draft recruits of 133, 134
Negroes, 45 per cent plus-
height distribution of 109,110
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of. 132
weight distribution of draft recruits of 133, 134
North, native white over 73 per cent-height distribution of .109, 110
mean chest circumference of draft recruits of 150
mean weight of draft recruits of. 132
weight distribution of draft recruits of 133, 134
of sections-
mixed foreign and white, index of build for draft recruits of 173
native, North, index of build of draft recruits of 173
Negro, index of draft recruits of 173
Negro, relative chest circumference of draft recrunts of 150
northern, native white, relative chest circumference of draft recruits of 150
relative chest circumference of draft recruits of 150
southern, native white, index of build for draft recruits of 173
sonthern white, relative chest circumference of 150
Ainos, relative pubic height of 200
sitting height of 190
Alabama
absolute and relative numbers of veterans from-
with blue eyes with brown spote, demobilization, 1919 282
with clear blne eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medimm brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
Alabama-Continued Page.
average weight of draft recruits from, at mobilization,1917-1918, and demobilization, 1919 122 124
comparative view of mean height and mean weight of men from
comparative view of mean height and mean weight of men from
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of build for, demobilization, 1919 167
index of build for recruits from, mobilization, 1917-1918 166
mean chest circumference (expiration), of drait recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919. 76
relative chest circumference of recruits from 144
Alaska:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
average weight of draft recruits from, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of build for, demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-1918 166
nean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
American Indians, relative leg length of 221
A norchism, cryptorchidism, hypospadia, and monorchism:
chest circumference of drafted men with. 382
correlation between height and chest circumference (expiration), in recruits with. 381
correlation between height and weight in recruits with 380
robustness of drafted men with 382
stature of drafted men with. 379
weight of drafted men with 382
Anthropoids (see also Apes, anthropoid):
transverse diameter of pelvis in. 215
Anthropological work in connection with the Army, 1917-1919, history of the 49
Anthropologists:
Army, daily reports from 55
list of, who supervised taking measurements in camps 56
Anthropology, importance of, in the Army. 34
Anthropometric work in connection with draft recruits. 49
Anthropometry, importance of, in the Army 45
Apparatus used in taking measurements. 57
Apes, anthropoid, shoulder breadth of 204
Arizona:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290)
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919. 76
index of build for, at demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-191,8. 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from. 75
mean stature of soldiers from, at demobilization, 1919. 76
relative chest circumference of recruits from 144
Arkansas:
absolute and relative numbers of veterans from- Page.
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits from, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for, at demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 96
relative chest circumference of recruits from 144
Arm and forearm:
correlation of, in white troops 42
length of, correlation between, colored troops, demobilization 531
length of, correlation between, white troops, demobilization 516
Arm length:
and forearm, correlation between, Negro troops 267
and forearm, correlation between, white troops 262
average, in color races, demobilization, 1919 235
comparison of, in white and Negro troops. 40, 233
general discussion 219
mean, in white troops. 219
relative, in African Negroes. 219
in Bavarians 219
in French 219
in Mawambu pygmies 219
in Ba-Binga (African race) 220
in Bugu (African race) 220
in Lobi (Arrican race) 220
standard deviation of 220
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
total, and blouse groups, association between, colored troops, demobilization. 547
total, and blouse groups, association between, white troops, demobilization 539
Armenians, relative leg length of 221
Army, history of antlıropological work in connection with, 1917-1919. 49
Asiatic peoples, ratio of pubic height to total stature of 199
Asthma:
and chest circumference 43
chest circumference of drafted men with 357
correlation between height and chest circumference (expiration), in draft recruits with 359
correlation between height and weight in recruits with 358
Pignet's index of build for drafted men with. 360
robustness in drafted men with 360
stature of drafted men with 356
weight of drafted men with 356
Astigmatism, chest circumference in drafted men with 322
correlation between height and chest circumference in recruits with 322
correlation between height and weight in recruits with 321
in draited men 319
Pignet's index of build in drafted men with 322
robustness of drafted men with 322
stature of drafted men with 319
weight of drafted men with 320
Athletes, weights of 118, 119
Australians, calf circumference of 230
Austria, standards of stature in. 45
Austrian and German groups: Page.
height distribution of 109, 110
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
of sections, relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133,134
Ba-Binga (African race):
relative arm length of 220
relative thigh circumference for 227
I3a-Tua tribe (.lfrican):
pelvic diameter of. 215
thigh circumference in 227
Bavarians:
approximate average stature of 47
chest circumference of 139
relative arm length of 219
relative forearm length of 220
relative shoulder breadth of 204
transverse diameter of pelvis of 215
Upper, average weight of adult male. 120
Belgians:
approximate average stature of 47
average weight of adult male 120
ratio of pubic height to total stature of 199
relative chest circumference of 139
relative shoulder breadth of 204
sitting height of 190
Belgium, standards of stature in 45
Bertillon's proportions, identification by, belongs to anthropology 34
Black (one-quarter) race, comparative frequency distribution of measurements of, demobili- zation 236-240
Blouse groups 271
and antero-posterior diameter of chest, association between, colored troops, demobiliza- tion. 544
and chest diameter, antero-posterior, association between, white troops, demobilization. 536
and chest transverse diameter, association between, white troops, demobilization. 535
and neck circumference, association between, colored troops, demobilization. 546
and neck circumference, association between, white troops, demobilization 538
and shoulder width, association between, colored troops, demobilization 542
and shoulder width, association between, white troops, demobilization 534
and suprapatella circumference, association between, colored troops, demobilization. 559
and total arm length, association between, colored troops, demobilization 547
and total arm length, association between, white troops, demobilization. 539
and transverse diameter of chest, colored troops, demobilization 543
and transverse pelvic diameter, association between, colored troops, demobilization 545
and transverse pelvic diameter, association between, white troops, demobilization 537
and weight, association between, colored troops, demobilization 541
and weight, association between, white troops, demobilization 533
comparative frequency distribution of, by States of nativity, colored troops 563
comparative frequency distribution of, by States of nativity, white troops. 562
dimensions associated with, Negro troops, demobilization. 273
dimensions associated with, white troops, demobilization 273
13louses, measurements for. 271
Body, size and proportions of, essential to proper cutting of uniforms 34
Bosnian-Herzegovinians (soldiers), average stature of 68
Breeches groups:
and calf circumference, association between, white troops, demobilization 554
and circumference at patella, association between, colored troops, demobilization 560
and circumference of calf, association between, colored troops, demobilization 561
and knee height, association between, colored troops, demobilization 557
and knee height, association between, white troops, demobilization 550
and patella circumference, association between, white troops, demobilization 553
and suprapatella, association between, white troops, demobilization 552
and thigh circumference, association between, colored troops, demobilization 558
and thigh circumference, association between, white troops, demobilization. 551
and transverse diameter of pelvis, association between, colored troops, demohilization. 556
and transverse pelvic diameter, association between, white troops, demobilization 549
comparative frequency distribution of, by States of nativity, colored troops 565
comparative frequency distribution of, by States of nativity, white troops. 564
Breerhes groups-Continued. Page.
dimensions associated with, Negro troops, demohilization 275
dimensions astociated with, white troops, demobilization 274
Breeches, measurements for 274
British army, minimum stature in 45
British, inhahitants of United Kinglons of Great Britain and Ireland, average stature of 68
Bugu (African race):
relative arm length of 220
thoracic index for 207, 209
Build (sce also Robustness) 37
average index for men at demohilization, 1919 164
average index of, for recruits, World War 164
comparison of index of, in recruits of 1917-1918 and in veterans of 1919 and 1864-1865. 38, 168
distribution index of, hy States 165
importance of the index of 162
index of 37
and Pignet'sindex of rohustness of recruits found with specified diseases and defects. 408
at mobilization, by States, 1917-1918 166
average, in color races, demobilization, 1919. 235
by groups of sections, 1917-1918 173
by sections. 170, 172
by States, demobilization, 1919 167
calculated by three methods, first million draft recruits. 164
comparison of, of men at demohilization in 1865 and 1919 170
for mean stature and weight 164
in eight European races, demobilization, 1919 243, 244
increase in, at demobilization, 1919, over mobilization, 1917-1918 168
mean, of color races 174
mean, of eight European races of men at demobilization 173
of Civil War veterans (white troops) and World War veterans (white and Negro troops) 164,165
of recruits, by sections, 1917-1918 172
Pignet's, for men of various heights with average chest and weight for certain per cents of men of each height. 188
method of determining 163
variability of, by States 37
Bulgarians:
chest circumference of 139
of western Bulgaria, average stature of. 68
Bushmen:
pelvic diameter of 215
relative pubic height of. 200
Calf circumference 39
alsolute and relative, in eight European races, demobilization, 1919 231
and breeches groups, association between, colored troops, demohilization 561
and breeches groups, association between, white troops, demobilization. 554
average, in color races, demobilization, 1919 235
comparative frequency distribution of, in eight European races, demolrilization 231
comparison of, in cight European races 230, 231
general discussion of 230
in eight European races at demolilization, 1919 243
in European groups 230
in Malay groups. 230
in Mongoloid groups 230
in Negro troops 230
in white troops 230
maximum, directions for measuring 59
standard deviation of 230
sumnary of, of approximately 6,000 colored troops, demobilization. 234
summary of, of approximately 100,000 white troops, demobilization. 234
California:
alisolute and relative numbers of veterans from-
with blue eyes with brown spots, demohilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919. 291
with flaxen hair, demobilization, 1919. 288
with light brown eyes, demobilization, 1919 $28: 3$
with light brown hair, (lemobilization, 1919. 290
with merlium brown hair, demobilization, 1919 290
with red hair, demohilization, 1919 289
California-Continued. Page.
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919. 122
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918. 166
mean chest circumference (expiration), of draft recruite from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demoblization, 1919 76
relative chest circumference of recruits from 144
Calipers, wooden sliding, used in taking measurements 57
Camps, number of men measured at 56
Army anthropology an aid in detecting 34
Cardiac disorders (see also, Heart).
Cardiae hypertrophy:
chest circumference in drafted men with 334
correlation between height and chest circumference in recruits with 333
correlation between height and weight in recruits with 332
in drafted men. 331
Pignet's index of build in drafted men with 334
robustness in drafted men with 334
stature of drafted men with 331
weight of draited men with 331
Cards, statistical perforated 63
Cavalry, stature of, in Great Britain 45
Characteristics, racial, and classification of troops 34
Centimeters, table for converting into inches 410
Chest:
antero-posterior diameter of -
and thoracic index 208
and blouse groups, association between, colored troops, demobilization. 544
average, in color races, demobilization, 1919 235
directions for measuring. 58
in eight European races, demobilization, 1919 243
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization. 234
comparative frequency distribution of antero-posterior diameter of, in each of eight European races, demobilization, 1919 212
comparative frequency distribution of transverse diameter of, in each of eight European races, demobilization, 1919 211
Chest circumierence (see also, Chest girth) 37
and asthma. 43
and diseases of the heart 43
and neck circumference, Negro troops, correlation between 266
and neck circumference, correlation between, white troops 260
and sitting height, Negro troops, correlation between 266
and sitting height, correlation between, in white troops 42
and sitting height, correlation between, white troops, demobilization. 532, 533
and stature, correlation between 256
and stature, correlation between, Civil War recruits. 256
and stature, correlation between, recruits, 1917-1918 256
and transverse diameter of pelvis, Negro troops, correlation between 267
and transverse diameter of pelvis between cristre, correlation between, white troops 258
and transverse pelvic diameter, correlation between, white troops 261
and tuberculosis 43
and varicose veins. 43
and weight, correlation between 258
and weight, Negro troops, correlation between 265
and weight, correlation between, white troops 42, 260
and weight, relative, of draft recruits found with special diseases or defects 410
at demobilization 139, 140
average, in color races, demobilization, 1919. 235
comparison of World War with Civil War data 138
comparison with other countries 139
distribution of frequencies of various classes of 140
frequency and proportional distribution of, mobilization, 1917-1918, and demobiliza- tion, 1919 139
frequency distribution of, by States. $140,142,144$
general discussion 136
height and weight of recruits in relation to various diseases and defects. 296
Chest circumference-Continued. Page
important in relation to general si\%e 137
in drafted men-
mean, by gronps of sections $150,151,152$
with asthma 357
with astigmatism 322
with cardiac hypertrophy 334
with cryptorchidism, hypospadia, anorchism, and monorchism 382
with defective physical development 375
with defective and deficient teeth 363
with enlarged inguinal rings. 369
with exophthalmic goiter. 309
with flat-foot 370
with hernia 364
with hyperopia 318
with hypertrophic tonsillitis 326
with mitral insufficiency 338
with mitral stenosis. 339
with myopia 315
with overweight and obesity 379
with pulmonary tuberculosis 301
with simple goiter 305
with simple tachycardia 330
with underweight. 376
with valvular diseases of the heart 342
with varicocele 347
with varicose veins 347
in eight European races at demobilization, 1919 $152,154,155,243$
in relation to blouse groups 271
in relation to stature 48
increase in mean, of veterans. 37
level of nipples, directions for measuring 58
mean, at expiration 138
mean, by groups of sections $149,150,151,15$
mean, by sections $144,145,146,147$
mean, of first million draft recruits 37
medico-military importance of 136
methods of measurement 137
nccupational significance of 137
of men of color races 156
of recrnits comparison of, with other countries. 139
racial significance of 137
relative, by States, first million draft recruits 144
requirements of Army Regulations regarding. 298
standard deviation of, by sections 147, 148
variability according to race 37
Chest circumference (expiration): and height classes 158
and height, correlation between-
first million draft recruits 420,421
group 1, agricultural, North, native white, 73 per cent plus 443
group 2, agricultural, mixed foreign and native white, North, first million draft recruits 446
group 3, agricultural, native white, South, first million draft recruits 449
group 4, agricultural. Negro, 45 per cent plus, first million draft recruits 452
group 5, eastern manufacturing, first million draft recruits 455
group 6, commuter, first million draft recruits 458
group 7, mining, first million draft recruits 461
group 8 , sparsely settled, first million draft recruits. 464
group 9, desert first million draft recruits 467
group 10, maritime, first million draft recruits 470
group 11, mountain, first million draft recruits 473
group 12, mountain whites, first million draft recruits 476
group 13, Indian, first million draft recruits. 479
group 14, Mexican, first million draft recruits. 482
group 15, native whites of Scotch origin, first million draft recruits 485
group 16, Russian, first inillion draft recruits. 489
group 17, Scandinavian, first million draft recruits 491
group 18, Finu, first million draft recruits 494
group 19, French-Canadian, first million draft recruits. 497
group 20, German and Scandinavian, first million draft recruits 500
Chest circumference-Continued. and height, correlation between-Continued. Page.
group 21, Gernan and Austrian, first million draft recruits. 503
group 22, German and Austrian. first million draft recmits 506
and weight classes, first million draft recruits 162
and weight, correlation between-
first million draft recruits 422, 423
group 1, agricultural, North, native white, first million draft recruits 4.44
group 2, agricultural, mixed foreign and white, North, first million draft recruits 447
group 3, agricultural, native white, South, first million draft recruits. 450
group 4, agricultural, Negro, 45 per cent plus, first million draft recruits 453
group 5 , eastern manufacturing, first million draft recruits. 456
group 6 , commuter, first million draft recruits 459
group 7, mining, first million draft recruits 462
group 8 , sparsely settled, first million draft recruits 465
group 9 , desert, first million draft recruits 468
group 10, maritime, first million draft recruits. 471
group 11, mountain, first million draft recruits 474
group 12, mountain whites, first million draft recruits. 477
group 13, Indian, first million drait recruits 480
group 14, Mexican, sparsely settled, first million draft recruits 483
group 15, native whites of Scotch origin, first million draft recruits. 486
group 16, Russian, first million draft recruits 489
group 17, Scandinavian, first million draft recruits. 492
group 18, Finn, first million draft recruits 495
group 19, French-Canadian, first million draft recruits. 498
group 20, German and Scandinavian, first million draft recruits. 501
group 21, German and Austrian, first million draft recruits. 504
group 22, German and Austrian, first million draft recruits. 507
distribution, by groups of sections 153
distribution by height. first million draft recruits 161
distribution by special diseases or defects. 392, 393, 402, 403
heights, and weights, various, shown for United States, first million draft recruits. 157
mean, by sections, first million draft recruits 145
mean, by States, first million draft recruits. 142
of native American white draft recruits of Civil War 142
standard deviation of, by sections, first million draft recruits. 148
weight, and height, measurements showing proportionate measurements of two of then to the total of the third, first million draft recruits. 177
Chest circumfercence (rest):
absolute and relative, in eight European races, demobilization, 1919 154
and neck circumference, correlation between, colored troops, demobilization 527
and neck circumference, correlation between, white troops, demobilization 512
and sitting height, association between, colored troops. 540
and transverse pelvis, correlation between, colored troops, demobilization. 528
and transverse pelvic diameter, correlation between, white troops, demobilization 513
and weight, correlation between, white troops, demobilization 511
comparative frequency distribution of, in eight European races, demobilization. 155
comparative frequency distribution of, by Quartermaster Corps distribution zones, white and colored troops, at demobilization 571
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately $100 ; 000$ white troops, demobilization 234
Chest diameter 39
absolute and relative, demobilization, 1919 210
antero-posterior-
and blouse groups, association between, white troops, demobilization 536
and transverse, correlation between, colored troops, demobilization 529
and transverse, correlation between, white troops 261
and transverse, correlation between, white troops, demobilization 514
and transverse, of Negro troops, correlation between 266
comparison of, in eight European races. 209
mean 209
standard deviation of 209
mean transverse 208
transverse (see also, Thoracic index) -
and antero-posterior, in white troops 42
and blouse groups, association between, colored troops, demobilization. 543
and blouse groups, association between, white troops, demohilization 535
at level of nipples, directions for measuring. 58
average, in color races, demobilization, 1919 235
comparison of, in eight European races. 208, 210
Cherst dianeter-C'ontinued.
Page.
general discussion 207
in cight European races at demobilization, 1919 243
in Navajo Indians 207
of the English 208
of the l'rench. 208
of Germans 208
of IIelrews 208
of Irish 208
of Italians 208
of Poles 208
of Scotch 208
standard deviation of 208
summary of, of approximately 6,000 colored troops, demobilization 234
sumnnary of, of approx:mately 100,000 white troops, demobilization 234
('hest girth (see also, Chest circumference):
and neck girth, correlation of, in white troops. 42
and pelvic diameter, correlation of, in white troops 42
mean, by groups and component sections, first million draft recruits 436
measurement of 186
Chest measurement (expiration), by special diseases 396
'himpanzee:
shoulder breadth of 204
transverse diameter of pelvis of 215
(hinese:
absolute and relative height of pubic arch in, demobilization, 1919 202
absolute and relative height of sternal notch in, demobilization, 1919 199
absolute and relative leg length in, at demobilization, 1919 224
alsolute and relative shoulder breadth in, demobilization, 1919 207
absolute and relative sitting heights in, demolilization, 1919 193
absolute and relative transverse diameter of pelvis in, at demobilization, 1919 219
chest circumference of 139
comparative frequency distribution of measurements in, at demobilization 236, 240
general comparison of, with other color races 241
index of build for 174
mean absolute and relative spans, demobilization, 1919 196
northern, ratio of pelvic diameter to stature of 215
mean stature of, at demobilization, 1919 117
mean weight in, with standard deviation for white and Negro troops, demobilization, 1919. 136
relative shoulder breadth of 204
sitting height of 190
South, ratio of pelvic diameter to stature of 215
Civil War:
and World War-
comparative measurements at demobilization 242
recruits, comparison of frequency distribution of statures of 72
recruits, comparison of stature of
recruits, comparison of stature of 79
troops from different States, comparative view of mean height and mean weight of 124
draft recruits, native American white, chest circumference (expiration) of 142
recruits, American born, distribution of stature and weight of 74
recruits, correlation between chest circumference and stature of. 256
veterans, index of build for, for each inch of stature. 164
veterans (white troops) and World War veterans (white and Negro troops), index of build for. 165
volunteers and World War troops, age distribution of 65
Clothing:
of army, diversity of race size in relation to 47
patterns, measurement card for, demobilization, 1919 61
Cochin Chinese, approximate average stature of 47
('olor races:
chest circumferences of men of the. 156
comparison of -
height of pubic arch in 202
height of sternal notch in 199
leg length in 224
neck circumference in 203
shoulder brealth of. 207
transverse pelvic diameter of 219
Color races-Continued. Page.
reueral comparisou of measurements of 241
mean index of build of 174
mean span of 196
Colorado:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, at demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, at demobilization, 1919 291
with flaxen hair, at demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with mediun brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919. 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
iucrease in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for recruits from, at mobilization, 1917-1918. 166,167
mean chest circumference (expiration), of draft recruits from 142
nean stature of draft recruits from 75
nean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Colored and white troops, demobilization:
comparative frequency distribution-
of chest circumference (rest), by Quartermaster Corps distribution zones 571
of height, by States of nativity 566, 567, 570, 571
of waist circumference, by Quartermaster Corps distribution zones 572
of weight, by States of nativity. 570
correlation between stature and waist circumference 509
correlation between stature and weight in 508
Colored troops:
comparative frequency distribution-
of blouse groups, by States of nativity 563
of breeches group, by States of nativity 565
demobilization, association between blouse groups -
and antero-posterior diameter of chest 544
and neck circumference. 546
and shoulder width 542
and suprapatella circumference 559
and total arm length 547
and transverse chest diameter 543
and transverse pelvic diameter 545
and weight. 541
demobilization, association between breeches groups-
and calf circumference 561
and knee height 557
and thigh circumference 558
and transverse diameter of pelvis 556
and circumference at patella 560
demobilization, correlation between-
arm length and forearm 531
waist circumference and leg length 555
chest circumference (rest) and neck circumference 527
chest circumference (rest) and sitting height 540
chest circumference (rest) and transverse pelvis 528
chest, transverse and antero-posterior 529
height and knee height 525
leg length and knee height 526
stature and height of pubic arch 524
stature and height of sternal notch 523
stature and sitting height 521
stature and span 522
waist circumference and transverse diameter of pelvis 530
Commuter groups:
height distribution of 109, 110
mean chest circumference of draft recruits of 150
mean height of 108
Commuter groups-Coutinued. Page.
nean weight of draft recruits of 132
relative chest circunifereuce of draft recruits of 150
weight distribution of draft recruits of. 133, 134
Commuters, index of build for, by groups of sections 173
Connecticut:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, denobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of inen from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of build for recruits from, at mobilization, 1917-1918 166, 167
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919. 76
relative chest circunference of recruits from. 144
Constitution, criterion of 186
('orrelation:
between arm length and forearm, white troops 262
between chest circumference and neck circumference, white troops. 260
between chest circumference and transverse diameter of pelvis between cristie, white troops 258
between chest circumference and transverse pelvic diameter, white troops 261
between chest circumference and weight, white troops 260
between leg length and knee height, white troops. 263
between leg length and waist circumference, white troops 264
Correlations 42
Correlations, tables of. See. Table of Contents.
('orsicans, average stature of 68
Cossacks, ratio of pubic height to total stature of 199
('riterion of constitution 186
('ryptorchidism, hypospadia, anorchism, and monorchism: chest circumference in drafted men with 382
correlation between height and chest circumference (expiration), in recruits with 381
correlation between height and weight in drafted men with 380
Pignet's index of build for 382
robustness in drafted men with 382
stature of drafted men with 379
weight of drafted men with 382
Danes:
approximate average stature of 47
a verage stature of 68
Defects and diseases:
height, weight and chest circumference of recruits in relation to various 296
specific, dimensions of drafted men with 299
Defects and physique, relation between 43
Delaware:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demolsilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, $1917-1918$, and demolilization, 1919 122
Drlaware-Continued. Page.
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for, at demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Demobilization, increase in weight at, over mobilization 122,123
Dental caries, correlation between height and chest circumference (expiration) in recruits with deficient and defective teeth and 362
correlation of height and weight in recruits with 361
Desert groups:
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
of sections, index of build for draft recruits of 173
of sections, relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Development, defective physical:
chest circumference in drafted men with 375
correlation between height and chest circumference in recruits with 374
correlation between height and weight in drafted men. 373
robustness in drafted men with. 375
stature of drafted men with 372
weight of drafted men with 372
Dimensions:
absolute, in eight European races, demobilization, 1919 243
associated with blouse groups, demobilization 273
associated with breeches groups, demobilization 274, 275
average, eight European races, demobilization, 1919 246, 247, 248, 249
average, in color races, demobilization, 1919 235
bodily, in relation to diseases, summary of. 387
of drafted men with specific defects and diseases. 299
of manikins 276
of white and negro troops, comparison of 232, 233
physical, and hemorrhoids. 43
physical, in relation to disease 43
physical, their variability in relation to population. 44
relative, in color races, demobilization, 1919 235
relative, in eight European races, demobilization, 1919 $245,250,251,252$
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
Disease, physical dimensions in relation to 43
Diseases and defects:
lieiglit, weight, and chest circumference of recruits in relation to various. 296
specific, dimensions of drafted men with 299
Distribution zones, Quartermaster Corps, sizes and proportions of men in. 276
District of Columbia:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown liair, demobilization, 1919. 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of ınean height and mean weight of men from 124
increase in stature of soldiers at demobilization over recruits, 1917-1919. 76
index of build for, at demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919. 76
relative chest circumference of recruits from 144
Draft recruits (sce also, Drafted men): Prace
antlropometric work in connection with 49
chest circumference (expiration) by height 161
distribution of chest circuniference of, by groups of sections 151, 152
distribution of stature and weight of 74
measurements of 51
Pignet's index, men of various heights, percentage distribution of each height 189
rclative chest circumference of, by groups of sections. 150
Draft recruits, first and second million:
chest circumfercuce (expiration) distribution by special diseases or defects. 402, 403
height distribution by special diséases or defects.
height distribution by special diséases or defects. 398, 3!99 398, 3!99
relative weight and relative chest circumference of, with special discases and defects 410
variability of stature, associated with various defects and diseases. 409
variability of weight, associated with various diseases and defects among. 409
weight distribution by special diseases or defects. $400), 401$
1 raft recruits, first million:
average weight of, by States, at mobilization, 1917-1918, and demohilization, 1919 122
correlation between height and clest circumference (expiration). 420,421
group 1, agricultural, North, native white 44:3
group 2, agricultural, mixed forcign and native white, North 446
group 3, agricultural, native white, South 449
group 4, agricultural, Negro, 45 per cent plus 452
group 5 , eastern manufacturing. 455
group 6 , commuter 458
group 7, mining. 461
group 8 , sparsely settled 464
group 9, desert 467
group 10 , maritime 470
group 11, mountain 473
group 12, mountain, whites 476
group 13, Indian. 479
group 14, Mexican. 482
group 15, native white of Scotel origin 485
group 16, Russian 488
group 17, Scandinavian 491
group 18, Finn 494
group 19, Frencl-Canadian 497
group 20, Gcrman and Scandinavian 500
group 21, German and Austrian, 20 per cent plus 503
group 22, German and Austrian, 15 per cent plus 506
correlation between height and weight. 417, 418, 419
group 1, agricultural, North, native white 442
group 2, agricultural, mixed foreign and native white, North 445 445
group 3, agricultural, native white, South 448
group 4, agricultural, Negro, 45 per cent plus 451
group 5, eastern manufacturing 454
group 6 , commuter 457
group 7, mining 460
group 8, sparsely settled 463
group 9 , desert 466
group 10 , maritime 469
group 11, mountain 472
group 12, mountain whites 475
group 13, Indian 478
group 14, Mexican 481
group 15, native white of Scotch origin 484
group 16, Russian 487
group 17, Scandinavian 490
group 18, Finn 493
group 19, French-Canadian 496
group 20, German and Scandinavian 499
group 21, German and Austrian, 20 per cent plus. 502, 506
group 22, Geruan and Austrian, 15 per cent plus 505
correlation between weight and chest circumference (expiration) 422, 423
group 1, agricultural, North, native white 444
group 2, agricultural, mixed forcign and native white, North 447
group 3, agricultural, native white, South 450
group 4, agricultural, Negro, 45 per cent plus. 45.3
group 5 , eastern manufacturing. 456
group 6 , commuter. 459
Draft recruits-Continued
orrelation between weight and chest circumference-Continued.
Page.
group 7, mining
group 7, mining
group 8 , sparsely settled 462 462
group 9 , desert 468
group 10, maritime 471
group 11, mountain 474
group 12, mountain whites 477
group 13, Indian. 480
group 14, Mexican 483
group 15, native whites of Scotch origin 486
group 16, Russian 489
group 17, Scandinavian 492
group 18, Finn 495
group 19, French-('anadian 498
group 20, German and Scandinavian 501
group 21, German and Austrian, 20 per cent plus 504
group 22, German and Austrian, 15 per cent plus 507
distribution of, by groups of sections 130, 131
height and chest circumference (expiration) classes 158
height and weight classes 158
height distribution shown by groups of sections 109, 110
height, weight, and chest circumference (expiration) measurements showing propor- tionate measurements of two of them to the total of the third 177
index of build, calculated by three methods. 164
mean chest circumference (expiration) of, by groups of sections 150
mean chest circumference (expiration) of, by sections 145
mean chest circumference (expiration) of, by States 142
mean chest girth of, by groups and component sections 436-441
mean height of 101
mean height of, by groups and component sections 424-429
mean height of, by groups of sections 108
mean stature of, by States 75
mean weight of. 125
mean weight of, by groups and component sections. 430-435
mean weight of, by groups of sections 132
relative chest circumference of, by States 144
standard deviation of chest circumference (expiration) of, by sections 148
total and proportionate measurements-
by each section 182, 183
by groups of sections 181
by States 178, 179, 180
various heights, weights, and chest circumferences (expiration), shown for United
States157
weight and chest circumference (expiration) classes 162
weight distribution by height 159
weight distribution shown by groups of sections 133, 134
Drafted men (see also Draft recruits):
dimensions of, with specific defects and diseases 299
standards of measurements of 296
with asthma-
chest circumference of 357
robustness in 360 360
stature of 356
weight of 356
with astigmatism-
chest circumference of 322
robustness in 322
stature of 319
weight of 320
with cardiac hypertrophy-
chest circumference of 334
robustness in 334
stature of 331
weight of 331
with cryptorchidism, anorchism, monorchism, and hypospadia- chest circumference of 382
robustness in 382
stature of 379
weight of 382
I)rafted men-Continued
with defective and deficient teeth- Page.
chest circumference of 363
robustness in 363
stature of 360
weight of. 360
with defective physical development- chest circumference of 375
robustness in 375
stature of 372
weight of 372
with enlarged inguinal rings
chest circumference of 369
robustness in 369
stature of 369
weight of 369
with exoph thalmic goiter. 308
chest circumference in 309
robustness in 309
stature of 308
weight of. 308
with flat-foot-
chest circumference of 370
robustness in 370
stature of 370
weight of. 370
with hemorrhoids-
chest circumference of 356
robustness in 356
stature of 353
weight of. 353
with hernia
chest circumference of 364
robustness in 369
stature of 363
weight of. 364
with hyperopia-
318
318
chest circumference of
chest circumference of
319
319
robustnes
stature of 315
weight of 318
with hypertrophic tonsillitis-
chest circumference of 326
robustness in. 327
stature of 323
weight of. 323
with mitral insufficiency-
338
338
chest circumference of
chest circumference of
338
338
robustness in
robustness in
335
335 335
stature of
stature of
with mitral stenosis-
chest circumference of 339
robustness in 339
stature of 338
weight of 339
with myopia-
chest circumference of 315
robustness in. 315
stature of 314
weight of 314
with overweight and obesity-
chest circumference of 379
robustness in 379
stature of 379
weight of. 379
with pulmonary tuberculosis-
chest circumference of 301
robustness in. 301
stature of 299
weight of. 300
Drafted men-Continued. with simple goiter- Page.
chest circumference of 305
rol)ustness in. 305
stature of 304
with simple tachycardia-
chest circumference of 330
robustness in 331
stature of 327
weight in 330
with underweight -
chest circumference of 376
robustness in 376
stature of 375
weight of 376
with valvular diseases of the heart (unclassified)- chest circumference of 342
robustness in 345
stature of 342
weight of 342
with varicocele -
chest circumference of 347
robustness in 348
stature of 345
weight of. 346
with varicose veins-
chest circumference of 347
robustness in. 348
stature of 345
weight of 346
Dravida, calf circumference of 230
Dutch:
from Holland, approximate average stature of 47
in general, average stature of 68
of the Province of Zeeland (conscripts), a verage stature of 68
English
absolute and relative calf circumference in, at demobilization, 1919 231
absolute and relative chest circumference (rest) of, demobilization, 1919. 154
absolute and relative height of pubic arch in, demobilization, 1919. 200
absolute and relative height of sternal notch in. demobilization, 1919 197
absolute and relative knee height of, at demobilization, 1919 225
absolute and relative leg length of, at demobilization, 1919 222
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting heights of, and standard deviations, demobilization, 1919 19;
absolute and relative span, with standard deviation, demobilization, 1919 194
absolute and relative thigh circumference of, at demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic diameter in, demobilization, 1919 217
absolute and relative waist circumference of, demobilization, 1919 199
approximate number measured, demobilization, 1919 243
chest circumference of 139
comparative frequency distribution-
of calf circumference, at demobilization, 1919 231
of antero-posterior diameter in, demobilization, 1919 212
of chest circumference (rest), demobilization, 1919 155
of span, demobilization, 1919 195
of eye color in, demobilization, 1919 284
of hair color in, demobilization, 1919 292
of height of pubic arch in, demobilization, 1919 201
of height of, demobilization, 1919. 116
of height of sternal notch in, demobilization, 1919 198
of knee height in, at demobilization, 1919 226
of length of, at demobilization, 1919 223
of shoulder breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919 192
of thigh circumference of, at demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919. 211
of transverse pelvic diameter, demobilization, 1919 218
of waist circumference in, demobilization, 1919 214
of weight of, demobilization, 1919 135
INDEX.591
English-Continued. Page.
index of build of 173
demobilization, 1919 244
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
middle class, approximate average stature of 47
ratio of pubic height to total stature of 199
shoulder breadth of. 205
sitting height of 190
transverse chest diameter of. 208
Egyptians, calf circumference of 230
Eskimos, shoulder breadth in relation to total stature of 204
Esthonians, a verage stature of 68
European groups, calf circumference in 230
Eye color
and hair color, distribution of, demobilization. 1919 295
an index of race. 42
comparative frequency distribution of -
by Quartermaster Corps distribution zones, based on nativity of demobilized troops. 287
in eight European races. demobilization 284
in various States of nativity of demobilized men 573
directions for recording
59
59
distribution of. 42,280
in eight European races 284
Eye. refractive errors of:
and chest circumference 43
and stature 43
and weight 43
Fyes:
blue with brown spote-
absolute and relative numbers of veterans with, by States of nativity, demobiliza-tion, 1919282
comparative frequency distribution of, by Quartermaster Corps distribution zones 287
proportions of, by States 282
brown, proportions of, by States 282, 283
clear blue-
absolute and relative numbers of veterans with, by States of nativity, demobiliza-tion, 1919281
comparative frequency distribution of, by Quartermaster ('orps distribution zones. 287
in eight European races at demobilization, 1919. 243
proportions of, by States 280,281
color of, comparison of Civil War and World War data concerning 285
colored, proportional numbere for different States, 1865. 255
dark brown- tion, 1919 283
comparative frequency distribution of, by Quartermaster distribution zones. 287
light brown-
absolute and relative numbers of veterans with, by states of nativity, demobiliza- tion, 1919 283
comparative frequency distribution of, by Quartermaster ('orps distribution \%ones. 287
Features, facial, proportions of, essential to gas-mask manufacture 34
Feet, flat. See Flat-foot.
Finger prints:
identification by, belongs to army anthropology 34
importance of, in raising and maintaining an army 48
Finn groups:
height distribution of 109, 110
index of build for draft recruits of 173
inean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Finns:
approximate average stature of 47
a verage stature of. 68
Fint tribe (African), pelvic diameter of 215
$38636^{\circ}-21-38$
Flat-foot: Page.
and weight 43 43
chest circumference in drafted men with 370
correlation between height and weight in recruits with 371 371
robustness in drafted men with. 370
stature of drafted men with 370
weight of drafted men with. 370
Florida:
absolute and relative numbers of veterans from-
with blue eves with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark-brown eyes, demobilization, 1919 283
with dark-brown hair, demobilization, 1919 291
with flaxel hair, demobilization, 1919 288
with light-brown eyes, demobilization, 1919 283
with light-brown hair, demobilization, 1919 290
with medium-brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of build for, at demobilization, 1919 167
index of build for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Forearm:
average, in color races, demobilization, 1919 235
comparative length of, of white and Negro troops 40
comparison of, in white and Negro troops. 233
length of 220
relative, of Bavarians 220
relative, of Germans 220
relative, of Jews 220
relative, of Parisians 220
summary of, of approximately 6,000 colored troops, demobilization 234
suminary of, of approximately 100,000 white troops, demobilization 234
Forearin and arm length
correlation between, colored troops 267
correlation between, colored troops, demobilization. 531
correlation between, white troops 42,262
correlation between, white troons, demobilization. 516
Food ration, size in relation to. 34
Foreign and native white groups, height distribution of 109, 110
Formula, Pignet's 186
French:
absolute and relative calf circumference of, at demobilization, 1919 231
absolute and relative chest circumference of, demobilization, 1919 154
absolute and relative height of pubic arch of, demobilization, 1919 200
absolute and relative height of sternal notch of, demobilization, 1919 197
absolute and relative knee height of, at demobilization, 1919 225
absolute and relative length of, at demobilization, 1919. 222
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting height of, and standard deviations, demobilization, 1919 191
absolute and relative span, with standard deviation, demobilization, 1919 194
absolute and relative thigh circumference of, at demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic dianeter of, demobilization, 1919. 217
absolute and relative waist circumference of, demobilization, 1919 214
approximate average stature of 47
approximate number measured, demobilization, 1919 243
average weight of adult male 120
chest circumference of 139
comparative frequency distribution-
of antero-posterior chest diameter in, demobilization, 1919 212
of calf circumference in, at demobilization, 1919 231
of chest circumference (rest), demobilization 155
of eye color in. 284593
French-Continued
comparative frequency distribution-Continued. Page.
of hair color in, demobilization, 1919 292
of height of. 116
of height of pubic arch in, demobilization, 1919 201
of knee height in, at demobilization, 1919 226
of teg length of, at demobilization, 1919 293
of shoukler breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919 192
of sternal notch in, demobilization, 1919 198
of span in, demobilization, 1919. 195
of thigh circumference of, at demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter of 218
of waist circumference in, temobilization, 1919 214
of weight of 135
index of build of, 173, 244
in general, ratio of pelvic diameter to stature of 215
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
minimum shoulder breadth found in. 205
ratio of pubic height to total stature of 199
relative arm length in 219
relative chest circumference of 139
relative shoulder breadth of 204
sitting height of 190
thoracic index of 209
transverse chest diameter of. 207, 208
French army, minimum stature in 45
French conscripts, average stature of. 68
French-Canadian groups:
height distribution of 109, 110
relative chest circumference of draft recruits of 150
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
weight distribution of draft recruits of 133, 134
French-Canadians. index of build by groups of sections. 173
Frequency curves, Laplace-Charlier, stature of army conscripts and recruits, in inches, as determined by 70
Frequency distribution 71
Friesians, East, average weight of adult male 120
Gas mask, proportions of facial features essential to manufacture of 34
Georgia:
absolute and relative number of veterans from-
with red hair, demobilization, 1919 289
with flaxen hair, demobilization, 1919 288
with clear blue eyes, demobilization, 1919. 281
with dark brown hair. demobilization, 1919 291
with medium brown hair, demolilization, 1919 290
with light brown hair, demobilization, 1919 290
with dark brown eyes, demobilization, 1919 283
with light brown eyes, demobilization, 1919 283
with blue eyes with brown spots, demobilization, 1919 282
a verage weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of luild for recruits from-
at demohilization, 1919 167
at mobilization, 1917-18 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demohilization, 1919 76
relative chest circumference of recruits from 144
German and Austrian groups:
height distribution of 109,110
index of build of recruits of 173
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
German and Anstrian groups-Continued. Page
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
German and Scandinavian groups:
109,110
109,110
height distribution of
height distribution of
173
173
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Germans:
absolute and relative calf circumference of. demobilization, 1919 231
absolute and relative chest circumference of. demobilization, 1919 154
absolute and relative height of pubic arch of, demobilization, 1919 200
absolute and relative height of sternal notch of. demobilization, 1919 197
absolute and relative knee height of, at demobilization, 1919 225
absolute and relative length of, at demobilization, 1919 222
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting heights of, and standard deviations, demobilization, 1919 191
absolute and relative span of. with standard deviation, demobilization. 1919 194
absolute and relative thigh circumference of, at demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic diameter of. demobilization, 1919 217
absolute and relative waist circumference of, demobilization, 1919 199
approximate number measured, demobilization, 1919 243
comparative frequency distribution- at demobilization. 1919 231
of antero-posterior diameter of chest of, demobilization. 1919 212
of chest circumference (rest), demobilization. 1919 155
of eye color in, demobilization, 1919 284
of hair color in, demobilization, 1919 292
of height of pubic arch in, demobilization. 1919 201
of height of, demobilization, 1919 116
of height of sternal notch in, demobilization. 1919 198
of knee height in. at demobilization, 1919 226
of leg length of, at demobilization, 1919 223
of shoulder breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919 192
of span of, demobilization, 1919 195
of thigh circumference of, at demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter of, demobilization, 1919 218
of waist circumference of, demobilization, 1919 214
of weight of. demobilization, 1919 135
index of build of 173.244
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
of Bavaria, shoulder breadth of 204
ratio of pelvic diameter to stature of 215
relative forearm length of 220
shoulder breadth of 205
transverse chest diameter of. 208
Goiter:
43
43
and stature
and stature 43
exophthalmic-
chest circumference of drafted men, with 309
correlation between height and cliest circumference in recruits, with 311
correlation between height and weight in recruits, with 310
in drafted men, with 308
Pignet's index of build of drafted men, with 309
robustness of drafted men, with 309
weight of drafted men, with 308
simple
chest circumference of drafted men, with. 305
correlation between leight and weight in recruits, with. 306
in drafted men with 304
Guiter-Continued.
simple-Continued. Page
Pignet's index of build of men, with 305
robustuess of drafted men, with 305
weight of drafted men, with 305
Gorilla, transverse diameter of pelvis, in 215
Great Britain, standards of stature in 45
Greeks, average stature of 68
Groups of sertions:
frequency distribution of statures in the $111,114,115$
index of build by 173
mean chest circumference by 149
mean weight for the different. $127,130,131,132$
Hair:
clear red- comparative frequency distribution of, by Quartermaster Corps distribution zonew 294 in eight European races at demobilization, 1919 243
dark brown-
absolute and relative number of veterans with, by States of nativity, demobiliza- tion, 1919 291
comparative frequency distribution of, by Quartermaster Corps distribntion zones 294
distribution of. 289
flaxen-
absolute and relative number of veterans with, by States of nativity, demohiliza- tion, 1919 288
comparative frequency of, by Quartermaster Corps distribution zones 294
distribution of, by States. 288
in eight European races at demobilization, 1919 243
light brown-
absolute and relative number of veterans with, by States of nativity, demobiliza- tion, 1919 290
comparative frequency distribution of, by Quartermaster Corps distribution zones 294
in eight European races at demobilization, 1919 243
medium brown-
absolute and relative number of veterans with, by States of nativity, demohiliza- tion, 1919. 290
comparative frequency distribution of, by Quartermaster Corps distribution zones. 294
red-
absolute and relative number of veterans with, by States of nativity, demobiliza- tion, 1919. 289
distribution of. 289
smallest ratio of, found in troops of Italian origin 293
red and black, comparative frequency distribution of, by Quartermaster Corps dis- tribution zones 294
Hair, color:
and eye color, distribution of, demohilization, 1919 295
and locality 43
by States 43
comparative frequency distribution -
in eight races, demobilization, 1919 292, 293
of hair color by Quartermaster Corps distribution zones, based on nativity of de- mobilized troops 294
in various States of nativity of demobilized men 574
comparison of, in World War and Civil War recruits 291
directions for recording 59
distribution of,
43, 288
43, 288
distribution of by Quartermaster Corps distribution zones 293
Heart:
diseases of -
and cliest circumference 43
and weight. 43
valvular diseases (unclassified) of - chest circumference of draft recruits, with 342
in drafted men 342
correlation between leight and chest circumference (expiration), in recruits with. 344
correlation between height and weight in recruits, with 343
Pignet's index of build for drafted men, with 345
robustuess of drafterl men, with 345
stature of drafted men, with. 342
weight of draftel men, with 342
Hebrews (sce also, Jews): Page.
absolute and relative calf circumference of, at demobilization, 1919 231
absolute and relative chest circumference of, demobilization, 1919. 154
absolute and relative height of pubic arch of, demobilization, 1919 200
absolute and relative height of sternal notch of, demobilization, 1919 197
absolute and relative knee height of, at demobilization, 1919 225
absolute and relative length of at demobilization, 1919 222
absolute and relative pelvic diameter of, demobilization, 1919 217
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting heights of, and standard deviations, demobilization, 1919 191
absolute and relative span of, with standard deviation, demobilization, 1919 194
absolute and relative thigh circumference of, at demobilization, 1919. 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative waist circumference of, demobilization, 1919 199
approximate number measured, demobilization, 1919. 243
comparative frequency distribution-
of anteroposterior diameter in, demobilization, 1919. 212
of calf circumference in, demobilization, 1919. 231
of chest circumference (rest), demobilization, 1919 155
of eye color in, demobilization, 1919 284
of hair color in, demobilization, 1919 292
of height of, demobilization, 1919 116
of height of pubic arch of, demobilization, 1919 201
of height of sternal notch of, demobilization, 1919 198
of knee height of, at demobilization, 1919 226
of leg length of, at demobilization, 1919 223
of shoulder breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919 192
of span of, demobilization, 1919 195
of thigh circumference of, at demobilization, 1919 229
of transverse diameter of chest of, demobilization, 1919 211
of transverse pelvic diameter of, demobilization, 1919 218
of waist circumference, of demobilization, 1919 214
of weight of, demobilization, 1919 135
index of build of 173, 244
mean stature and standard deviation of 113
mean stature of. 243
mean weight and standard deviation of 135
shoulder breadth of 205
transverse chest diameter of 208
Height (see also Stature)
chest circumference (expiration) by, first million draft recruits 161
comparative frequency distribution of-
by States, white and colored troops, demobilization. 566, 567
in each of eight races, demobilization 116
distribution-
by groups of sections$109,110,114,115$
by special diseases or defects 386, 387, 388, 398, 399
in eight European races, demobilization, 1919 243
mean-
and weight, mean, comparative view of, of men from different States, World War and Civil War. 124
by groups and component sections, first million draft recruits 424-429
by groups of sections, first million draft recruits 108
by sections, first million draft recruits 101
measurement, special diseases, first and second million draft recruits 394
of publc arch 38
pubic, comparative of white and Negro troops 40
sitting (see also Sitting height) 38
comparative, of white and Negro troops 40
comparative, of color races 193
directions for measuring 57
weight, and chest circumference (expiration)-
measurements showing proportionate measurements of two of them to the total of the third, first million draft recruits. 177
of recruits in relation to various diseases and defects 296
various, shown for United States, first million draft recruits 157
weight distribution by, first million draft recruits $159,160,161$ $159,160,161$
Height and chest circumference (expiration): 1use.
classes of, first million draft recruits. 15.5 15.5
correlation between-
first million draft recruits 420,421
group 1, agricultural, North, native white, first million draft recruits 443
group 2, agricultural, mixed foreign and native white, North, first million draft re- cruits. 446
group 3, agricultural, native white, South, first million draft recruits 449
group 4, agricultural, Negro, 45 per cent plus, first million draft recruits. 452
group 5 , eastern manufacturing, first million draft recruits. 455
group 6, commuter, first million draft recruits 458
group 7, mining, first million draft recruits 461
group 8 , sparsely settled, first million draft recruits. 464
group 9 , desert, first million draft recruits 467
group 10 , maritime, first million draift recruits. 470
group 11, mountain, first million draft recruits 473
group 12, mountain whites, first million draft recruits 476
group) 13, Indian, first million draft recruits. 479
group 14, Mexican, first million draft recruits 482
group 15, native whites of Scotch origin, first million draft recruits. 485
group 16, Russian, first million draft recruits. 488
group 17, Scandinavian. first million draft recruits 491
group 18 , Finn, first million draft recruits 494
group 19, French-Canadian, first million draft recruits 497
group 20, German and Scandinavian, first million draft recruits 500
group 21, German and Austrian, 20 per cent plus, first million draft recruits 503
group 22, German and Austrian, 15 per cent plus, first million draft recruits
506
506
Height and knee height, correlation between, colored troops. demobilization 525
Height and weight:
classes, first million draft recruits. 158
correlation letween- 417
group 1, agricultural, North, native white, first million draft recruits. 442
group 2, agricultural. mixed foreign and native white, North, first million draft re- cruits. 445
group 3, agricultural, native white, South, first million draft recruits 448
group 4, agricultural, Negro, 45 per cent plus, first million draft recruits 451
group 5, eastern manufacturing, first million draft recruits 454
group 6, commuter, first million draft recruits 457
group 7, mining, first million draft recruits 460
group 8 , sparsely settled, first million draft recruits. 463
group 9 , desert, first million draft recruits 466
group 10, maritime, first million draft recruits 469
group 11, mountain, first million draft recruits 472
group 12, mountain whites, first million draft recruits 475
group 13, Indian, first million draft recruits. 478
group 14, Mexican, first million draft recruits 481
group 15, native whites of Scotch origin, first million draft recruits 484
group 16, Russian, first million draft recruits. 487
group 17, Scandinavian, first million draft recruits 490
group 18, Finn, first million draft recruits 493
group 19, French-Canadian, first million draft recruits 496
group 20, German and Scandinavian, first million draft recruits. 499
group 21, German and Austrian, 20 per cent plus, first million draft recruits 502
group) 22, German and Austrian. 15 per cent plus, first million draft recruits. 505
Hemorrhoids:
and physical dimensions 43
correlation between-
height and chest circumference in recruits with 355
height and weight in recruits with 354
Pignet's index of build for drafted men with 356
rohustness in drafted men with 356
stature of drafted men with 353
weight of drafted men with 353
Hernia:
chest circumference of drafted men with
chest circumference of drafted men with 364 364
correlation between-
height and chest circumference (expiration) in recruits with 365
height and weight in recruits with 366
Pignet's index of luild in drafted men with 369
Hernia-Continued. Paye.
robustness in drafted men with 369
stature of drafted men with 363
weight of drafted men with 364
Hova Indians, thoracic index for 207, 209
Hunan, relative arm length of Lolo in 219
Hungarians (conscripts) a verage stature of 68
Hylobates, shoulder breadth of 204
Hyperopia:
chest circumference of drafted men with 318
correlation between-
height and chest circumference in recruits with 317
height and weight in recruits with 316
in drafted men 315
Pignet's index of build of drafted men with 319
robustiness of drafted men with 319
stature of drafted men with. 315
weight of drafted men with 318
Hyposparlia, cryptorchidism, anorchisn, and monorchism:
chest circumference of draited men with 382
correlation between-
height and chest circumference (expiration) of (lrafted men with 381
height and weight of drafted men with 380
robust ness of drafted men with 382
stature of drafted men with 379
weight of drafted men with 382
Idaho:
absolute and relative numbers of veterans from-
with blue eyes, with brown spots, demobilization, 1919. 282
with clear blue eyes, demobilization, 1919 281
with dark brown eves, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair. demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits from, at mobilization, 1917-1918, and demobilization. 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for- at demolilization, 1919 167
at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from
75, 76
75, 76
relative chest circumference of recruits from 144
Illinois:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization. 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits. 1917-1919 76
index of build for recruits from, at mobilization, 1917-1918 166,167
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demohilization, 1919 76
relative chest circumference of recruits from 144
Page．
Inmigration，influence os，on stature 35， 79
Inches，tahle for converting into centimeters 411
Index of build isce Build，index of）．
Indian groups of sections：
relative chest circumference of draft recrutits of 150
sparsely settled，index of build for Iraft recruits of 173
sparsely settled－
mean chest circnmference of draft recruits of 150
mean height of draft recruits of 108
mean weight of draft recruits of 132
weight distribution of draft recruits of． 133． 134
Indian race：
mean stature of，at demobilization， 1919 117
mean weight of，with standard deviation for white and Negro troops，demohilization． 1919 136
Indiana：
absolute and relative numbers of veterans from－
with blue eyes with brown spots，demobilization， 1919 282
with clear blue eyes，demobilization． 1919 281
with dark brown eyes，demobilization， 1919 283
witl dark brown hair，demobilization． 1919 291
with flaxen hair，demohilization， 1919 288
with light brown eyes，demohilization， 1919 283
with light brown hair，demohilization， 1919 290
with medium brown hair．demohilization． 1919 290
with red hair．demohilization． 1919 289
average weight of draft recruits at mobilization，1917－1918，and demobilization． 1919 122
colored eyes，proportional numbers for． 1865 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from，at demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits，1917－1919 76
index of build－
at demobilization， 1919 167
for recruits from，at mohilization．1917－1918 166
mean clıest circumference（expiration），of draft recruits from 142
mean stature－
of draft recruits from 75
of soldiers from，at demohilization． 1919 76
relative chest circumference of recruits from 144
Indians：
absolute and relative height of pulic arch in．demobilization， 1919 202
ahsolute and relative height of sternal notch in．demobilization， 1919 199 199
absolute and relative leg length in．demobilization， 1919 224
absolute and relative sitting height in．demobilization， 1919 193
absolute and relative shoulder breadth in，demobilization， 1919 207
ahsolute and relative transverse diameter of pelvis in，demobilization， 1919 219
American－
approximate average stature of 47
relative leg length of 221
Colorado，shoulder breadth in relation to total stature of 204
comparative frequency distribution of measurements of，at demobilization 236－240
general comparison of，with other color races． 241
Hova，thoracic index for 207， 203
index of build for 174
Iroquois，maximum pelvic diameter found in 215
mean absolute and relative spans，demobilization． 1919 196
Navajo－
thoracic index of 208
transverse diameter of chest in 207
North American，sitting height of 190
sparsely settled，height distribution of 109， 110
Infautry，stature of，in Great Britain 45
Inguinal rings，enlarged：
clest circumference of drafted men with 369
correlation between height and chest circumierence（expiration），in recruits with 368
correlation between height and weight in recruits with 367
Pignet＇s index of huild in drafted men with 369
robustness in drafted men with 369
stature of drafted men with 369
weight of drafted men with 36：1
lıwa:
alsolute and relative numbers of veterans from- Page.
with blue epes with lrown spots, demobilization, 1919 282
with clear liue eves, demobilization. 1919. 281
with dark hrown eyes, demohilization. 1919 283
with dark lrown liair. demobilization, 1919 291
with flaxen hair. (lemobilization. 1919 288
with light brown eyes, demobiliaztion. 1919 283
with light hrown hair, demohilization. 1919 290
with medium brown lair. demobilization, 1919 290
with red hair, demobilization. 1919 289
average weight of draft recruits at molilization, 1917-1918, and demobilization, 1919. 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from. at molilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of sokliers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from. 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Irish:
abolute and relative calf circumference in. demohilization. 1919 231
alsolute and relative chest circumference of. rlemobilization, 1919 154
ahsolute and relative height of pubic arch in, demobilization. 1919 200
absolute and relative height of sternal notch in. demobilization, 1919 197
absolute and relative knee height of. demolilization, 1919 225
absolute and relative leg length of, demobilization, 1919 222
absolute and relative shoulder breadth of, demohilization, 1919 206
absolute and relative sitting heights of and standard deviations, demobilization. 1919. 191
absolute and relative span in, with standard deviation. demohilization, 1919. 194
absolute and relative thigh circumference of, demobilization. 1919 228
absolute and relative transverse chest diameter of, demobilization. 1919 210
absolute and relative transverse pelvic diameter in, demolilization. 1919 217
absolute and relative waist circumference of, demobilization. 1919 199
approximate number ineasured, demobilization, 1919 243
comparative frequency distribution in, demobilization. 1919 231
comparative frequency distribution-
of antero-posterior diameter in, demobilization, 1919 212
of chest circumference (rest) in, demobilization, 1919 155
of span in, demolilization, 1919 195
of eye color in, demobilization, 1919. 284
of hair color in, demobilization, 1919 292
of height of pubic arch in, demobilization, 1919 201
of height of, demobilization, 1919 116
of height of sternal notch in, demobilization, 1919 198
of knee height in. demobilization, 1919 226
of shoulder breadth of, demobilization, 1919 206
of sitting leight oî, demolsilization, 1919 192
of thigh circumference of, demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter in, demobilization, 1919 218
of waist circumference in, demobilization, 1919 214
of weight of, demobilization, 1919 135
of leg length of, demobilization, 1919 223
inclex of build of 173,244
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
shoulder breadth of 205
transverse chest diameter of. 208
Iroquois Indians, maximum pelvic diameter found in 215
Italian army, minimum stature of 45
Italians:
absolute and relative calf circumference in, demobilization, 1919 231
absolute and relative chest circumference of, demobilization, 1919 154
absolute and relative height of pubic arch in, demobilization, 1919. 200
absolute and relative height of sternal notch in, demobilization, 1919. 197
Italians-Continued. Pare.
absolute and relative knee lieight of, demobilization, 1919 225
absolute and relative leg length of, at demolilization, 1919 222
absolute and relative shoukder lreadth of, demohilization, 1919 206
absolute and relative sitting heights of, and standard deviations, demobilization, 1919. 191
absolute and relative span of, with standard deviation, demobilization, 1919 194
absolute and relative thigh circumference of, demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic diameter in, demolilization, 1919 217
absolute and relative waist circumference of. demobilization, 1919 199
approximate number measured, demobilization, 1919 243
comparison of frequency distribution- at demobilization, 1919 195, 231
of antero-posterior diameter in, demobilization, 1919 212
of chest circumference (rest) in, demobilization 155
of eye color in, demobilization, 1919 284
of hair color in, demobilization, 1919 292
of height of pubic arch in, demobilization, 1919 201
of height of, demobilization, 1919 116
of height of sternal notch in, demobilization, 1919 198
of knee height. demobilization, 1919 226
of leg length of, demobilization, 1919 223
of shoulder breadth of, demobilization. 1919 206
of sitting height of, demobilization, 1919 192
of thigh circumference of, demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter in, demobilization, 1919 218
of waist circumference in. demobilization, 1919 214
of weight of, demobilization, 1919 135
index of build of 173, 244
in general, average stature of 68
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
shoulder breadth of 205
South, approximate average stature of 47
transverse chest diameter of 208
Japanese:
absolute and relative height of pubic arch in, demobilization, 1919 202
absolute and relative height of sternal notch in, demobilization, 1919 199
absolute and relative leg length in, demobilization, 1919 224
absolute and relative shoulder breadth in, demobilization, 1919 207
absolute and relative sitting height in, demobilization, 1919 193
absolute and relative transverse diameter of pelvis in, demobilization, 1919 219
average weight of adult male 120
approximate average stature of 47
comparative frequency distribution of measurements in, at demobilization 236-240
general comparison of, with other color races 241
index of build for 174
mean absolute and relative spans of, demobilization, 1919 196
mean stature of, at demobilization, 1919 117
mean weight of, with standard deviation for white and Negro troops, demobilization, 1919 136
ratio of pelvic diameter to stature of 215
relative shoulder breadth of 204
Jews (see also Hebrews):
Austrian, of Hungary, a verage stature of 68
from Russian Poland, average stature of 68
Polish- 47
approximate a verage stature of
120
120
average weight of adult male
204
204
shoulder breadth of 204
ratio of pelvic diameter to stature of 215
relative forearm length of 220
Russian, relative chest circumference of 139
South Russian -
approximate average stature of 47,68
average weight of adult male 120
Ukrainian, sitting height of 190
Kansas: absolute and relative numlers of veterans from- Page.
with blue eves with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demolilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 191i-1918, and demobiliza- tion, 1919. 123
increase in stature of soldiers at demobilization over recruits. 1917-1919. 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits frons 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from. 144
Kentucky:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919, 282
with clear blue eves, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919. 123
colored eyes, proportional numbers for, 1865. 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919. 170
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from. 144
Knee, circumference of, level of patella, directions for measuring 59
Knee height:
absolute and relative, in eight European races, demobilization, 1919 225
and breeches gromps, association between, colored troops, demobilization. 557
and breeches groups, correlation between, white troops, demobilization 550
and height, correlation between, colored troops, demobilization 525
and leg length, correlation between, colored troops, demobilization. 526
and leg length, correlation between, white troops, demobilization. 510
and leg length, correlation between, in white troops 42
and leg length, correlation bet ween, white troops 263
and leg length, Negro troops. 268
and stature, correlation between, in white troops 42
and stature, Negro troops, correlation between. 265
average, in color races, demobilization, 1919 235
comparative frequency distribution of, in eight European races, demobilization, 1919 226
comparison of, in white and Negro troops 40, 233
general discussion of 224
in eight European races at demobilization, 1919 243
mean, for Negro troops 224
mean, for white troops 224
standard deviation of. 22.5
summary of, of approximately 6,000 colored troops, demobilization. 234
summary of, of approximately 100,000 white troops, demobilization. 234
Knee joint, height of. directions for measuring 58
Knee patella: Page.
summary of, of approximately 6,000 colored troops, demobilization 234
sunmary of, of approxinately 100,000 white troops, demobilization. 234
circumference. 232
standard deviation of 232
Laplace-Charlier frequency curves, stature of Army conscripts and recruits in inches, as determined by 70
Laplanders:
average stature of 68
from Scandinavia, average stature of 68
ratio of pubic height to total stature of 199
Leg:
circumference of-
just above patella, directions for measuring 59
just below level of tuberosity of tibia, directions for measuring. 59
index of relation of upper to lower 224
inside length of, from gluteal fold to tip of internal malleolus of tibia, directions for measuring 59
Ley length 39
absolute and relative, in eight European races, demobilization, 1919 222
absolute and relative, in five color races, demobilization, 1919 224
average, in color races, demobilization, 1919 235
comparative frequency distribution of, in each of eight European races, demobiliza- tion, 1919 223
comparative, of white and negro troops 40
comparison of, in color races 224
comparison of, in white and negro troops 233
comparison of, in eight European races. 221, 222, 223
general discussion 220
in eight European races at demobilization, 1919. 243
in relation to marching capacity: 46
mean, of negro troops 221
mean, of white troops 221
correlated with stature. 46
required to make long marches 34
relative. 221
of African tribes. 221
of Armenians 221
of Tartars. 221
standard deviation of, for white troops 221
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
Leg length and knee height: correlation between-
in colored troops, demobilization 526
in white troops 42, 263
in negro troops 268
in white troops, demohilization 510
Leg length and waist circumference:
correlation between-
in colored troops, demokilization 555
white troops 42, 264
white troops, demolilization 548
Letts:
approximate average stature of 47
relative chest circumference of. 139
Lithuanians:
of Lithuania (conscripts), average stature of 68
of Russian Poland 68
Loli (African race), relative arm leugth of 220
Lolo in Hunan, relative arm leugth of 219
Locality:
and distribution of eye color 42
and hair color 43
variability-
in buth by 37
in stature by 35, 36
sin weight by 36
Louisiana:
absolute and selative numbers of veterans from- Page.
with blue eves with brown spots, demohilization, 1919 282
with clear blue eyes, demobilization, 1919. 283
with dark nrown eyes, demobilization, 1919 283
witl dark brown hatir, demohilization, 1919 291
witl flaxen hair, demobilization, 1919. 288
with light brown eves, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with mediam brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-18, and demobiliza- tion, 1919 12:3
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Magyars from West Hungary (conscripts), average stature of 68
Maine:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red laiar, demobilization, 1919 289
average weight of draftrecruits from, at mobilization, 1917-1918, and demobilization, 1919. 12 ?
colored eyes, proportional numbers for, 1865 28.
comparative view of mean height and mean weight of men, from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers from, at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Malay groups, calf circumference in 230
Manikins, dimensions of 276
Manufacturing area, eastern, index of build for draft recrilits from 173
Manufacturing groups, eastern: height distribution of 109, 110
mean chest circumference of draft recruits of 150
mean height of draft recruits of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150 150
weight distribution of draft recruits of 133, 134
Marches, long, length of leg required to make 34 34
Maritime groups:
height distribution of 109, 110
mean chest circumference of draft recruits of 150
mean height of draft recruits of 108
mean weight of draft recruits of 132
weight distribution of draft recruits of 133, 134
index of build for draft recruits of 173
relative chest circumference of draft recruits of 150
Maryland
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 283
Maryland-Continued. absolute and relative numbers of veterans from-Continued. Pag.
with dark brown hair, demobilization, 1919. 291with flaxen hair, demobilization, 191928
with light brown еуеs, demobilization, 1919
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
a verage weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demolilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
recruits from, at mobilization, 1917-1918. 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from. 75
mean stature of soldiers from, at demobilization (1919) 76
relative chest circumference of recruits from 144
Masai of South Africa, sitting height of 190
Massachusetts:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 28.3
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilizatlon, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization, in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build -
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization (1919) 76
relative chest circumference of recruits from 144
Mawambu pygmies, relative arm length in 219
Means:
of white and Negro troops, comparison of 232
summary of $40-4,405,406,407$
Measurement card for clothing patterns, demobilization, 1919 61
Measurements:
apparatus used in taking. 57
comparative, at demobilization, Civil and World wars 242
comparative frequency distribution of, in color races at demobilization 236
correlations between, for white and Negro troops. 253
correlation between, for white troops, demolilization 258-264
detailed directions for 54
directions for taking and recording 57
for blouses. 271
for breeches 274
general comparison of in color races. 241
height, weight, and chest circumference (expiration), distribution by States of nativity. 184
height, weight, and chest circumference (expiration), showing proportionate measure- ments of two of them to the total of the third, first million draft recruits 177
instructions issued by Surgeon General relative to 55
list of anthropologists who supervised taking, in camps 56
N egro troops, correlation between. 264
of drafted men, standards of 296
of draft recruits. 51
omission of. 60
physical 45
results of standard Army physical. 64-18?
special anthropological 190
special, in Army, efforts of National Academy of Science tosecure, 53
Measurements-Continued. Page.
special uniform, orders issued relative to 53
specifications for arrangements required at camp for taking
specifications for arrangements required at camp for taking 59 59
statistical treatment of data obtained from 60
supervising personnel and camps where taken 56
systems used in statistical treatment of data obtained from 60
total and proportionate-
by each section, first million draft recruits 182, 183
by groups of sections, first million draft recruits
by groups of sections, first million draft recruits 181 181
by States, first million draft recruits $178,179,180$
special diseases. 397
Measuring rod, Seaver, nsed in taking measurements 57 57
Mediterranean races:
relative transverse chest diameter of 208
waist circumference of. 213
Men, demobilized:
comparative frequency-
of eye colorin, in various States of nativity 573
of hair color in, in various States of nativity 574
Men, drafted (see Drafted men; Recruits).
Men measured, approximate number of, in eight European races, demobilization, 1919 243
Mexican groups, sparsely settled:
height, distribution of 109, 110
index of build for draft recruits of 173
mean chest circumference of draft recruits of 150
mean licight of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Michigan:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919) 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with nedium brown hair, demolilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numibers for, 1865. 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization. 1919 76
relative chest circumference of recruits from 144
Mining groups
height distribution of 109, 110
index of build for draft recruits of 173
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Minnesota:
absolute and relative numbers of veterans from-
with blue eves with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
Minnesota-Continned. Page.
average weight of draft reeruits at mobilization, 1917-191s, and demohilization. 1919. 122
comparative view of mean leight and mean weight of men from 124
difference of weight of draft recruits from, at molilization, 1917-1918, and demohiliza- tion, 1919 123
iucrease in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demolilization, 1919 167
for recruits from, at inobilization, 1917-1918. 166
unean chest circumference (expiration), of draft recruits from 142
meau stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from. 144
Mississippi:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demohilization, 1919 252
with clear blue eves, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919. 288
with light brown eyes, demobilization, 1919 283
with light browu hair, demobilization, 1919. 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demo!iliza- tion, 1919. 123
increase in stature of soldiers at demobilization over reernits, 1917-1919. 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of drait recruits from 75
mean stature of soldiers from, at demohilization, 1919 76
relative chest circumference of recruits from 144
Missouri:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919. 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 28.3
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 28.5
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 191 -1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers fron, at demobilization, 1919 76
relative chest circumference of recruits from 144
Mitral insufficiency:
chest circumference of drafted men with 338
correlation between-
height and chest circumference in recruits with 337
height and weight in recruits with 336
in drafted men 335
Pignet's index of build in drafted men with 338
robustness in draftell men with. 338
stature of drafted men with 335
weight of drafted men with 335
Mitral stenosis: Page.
chest circumference in drafted men with 339
correlation between- height and chest circunference (expiration) in recruits with 341
height and weight in recruits with 340
in drafted men 338
Pignet's index of build for recruits with 339
robustness of drafted men with 339
stature of drafted men with 338
weight of drafted men with. 339 297, 298
Mobility, chest
Mobility, chest
Mobilization, increase in weight at demolilization over 122, 123
Mongolians, relative pubic height of 200
Mongoloid groups, calf circumference in. 230
Monkevs, lower, transverse diameter of pelvis in 215
Monorchism, cryptorchidism, anorchism, and hypospadia:
chest circumference in drafted men with 382
weight of drafted men with. 382
correlation between-
height and chest circumference (expiration), in recruits with 381
height and weight in drafted men with. 380 380
robustness in drafted men with 382
stature of drafted men with. 379
Montana:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization. 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demolilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919. 122
comparative view of mean height and mean weight of men from 124
difference in weight of draft recruits from, at mobilization 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits. 1917-1919 76
index of build-
demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of soldiers from, at demobilization. 1919 76
mean stature of draft recruits from 75
relative chest circumference of recruits from 144
Mountain groups:
height distribution of 109, 110
index of build for draft recruits of 173
mean chest circumference of draft recruits of 150
mean height of. 108
mean weight of draft recruits of 132
weight distribution of draft recruits of 133, 134
relative chest circumference of draft recruits of 150
white, height distribution of 109, 110
mean chest circumference of draft recruits of. 150
mean height of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Mulattoes:
absolute and relative height of pubic arch in Negroes and, demobilization, 1919 202
absolute and relative leg length in Negroes and, demobilization, 1919 224
absolute and relative neck circumference of Negroes and, demobilization, 1919 203
absolute and relative shoulder breadth in Negroes and, demobilization, 1919 207
absolute and relative transverse diameter of pelvis in Negroes and, demobilization, 1919. 219
American, average weight of adult male 120
Myopia: Page.
chest circumference of drafted men with 315
correlation between-
height and weight in recruits with 312
height and chest circumference in recruits with 313
in drafted men. 314
Pignet's index of build of drafted men with. 315
robustness of drafted men with 315
stature of drafted men with 314
weight of drafted men with 314
National Academy of Science, efforts of, to secure authorization for sperial measurements in Army 53
Nationality, rules for determining. 60
Native white groups:
of Scotch origin- mean height of 108
mean weight of draft recruits of 132
Navajo Indians:
thoracic index of 209
transverse diameter of chest in 207
Nebraska
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
witl dark brown hair, demohilization, 1919 291
with flaxen hair, demobilization, 1919 283
with light brown eyes, demobilization, 1919. 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demolilization, 1919. 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from. 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demolilization over recruits, 1917-1919 76
index of build-
at demobilization 167
for recruits from, at mobilization, 1917-1918 166
mean clest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Neck circumference 38
absolute and relative, of white and Negro troops, demobilization, 1919 203
and blouse groups, association between, colored troops, demobilization 546
and blouse groups, association between, white troops, demobilization. 538
and chest circumference, correlation between, white troops. 260
and chest circumference, Negro troops, correlation between 266
and chest circumference (rest), correlation between- colored troops, demobilization 527
white troops, demobilization. 512
average, in color races, demobilization, 1919 235
comparison of in color races. 203
comparison of, in eight European races. 203
general discussion of 202
mean. 202
level of laryngeal prominence, directions for measuring. 58
standard deviation of 203
summary of, of approximately 6,000 colored troops, demobilization. 234
summary of, of approximately 100,000 white troops, demobilization 234
Neck girth and chest girth, correlation of, in white troops. 42
Negro and mulatto troops, absolute and relative neck circumference of, demobilization, 1919 203
Negro and white troops:
comparison of dimensions of 232, 233
correlations between measurements for 253
mean and relative chest circumference (rest) of, demobilization, 1919. 156
Negro race: Page.
mean stature of, at demobilization, 1919 117
mean weight in, with standard deviation for, demobilization, 1919 136
Negro troops:
230
230
calf circumference in
calf circumference in
273
273
dimensions associated with blouse groups of, demobilization
dimensions associated with blouse groups of, demobilization
275
275
dimensions associate
mean kuee height of 224
mean leg length of. 221
measurements of, correlation between 264
mean transverse diameter of pelvis of 216
relative arm length of. 219
standard deviation- of arm length of 220
of leg length of. 221
of pubic height of 202 202
of transverse pelvic diameter of 216
suprapatella circumference of 232
thigh circumference of 227
Negro-mulattoes, index of build for 174
Negroes: absolute and relative height of sternal notch in, demolilization, 1919 199
absolute and relative sitting heights in, demolilization, 1919 193
African-
relative arm length in 219
thoracic index for 207, 209
Bugu, thoracic index for 207, 209
general comparison of, with other color races 241
inean absolute and relative spans, demobilization, 1919 196
pelvic diameter of 215
of various origins, approximate average stature of. 47
Negroes and mulattoes:
a bsolute and relative height of pubic arch in, demobilization, 1919 202
absolute and relative leg length of, at demotilization, 1919. 224
absolute and relative sloulder breadth in, demobilization, 1919 207
absolute and relative transverse diameter of pelvis in, at demobilization, 1919 219
Negroes and whites, comparison of correlation between 268 268
Nevada:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demolilization, 1919 282
with clear blue eyes, demolilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization, over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from. 144
New Hampshire:
absolute and relative numbers of veterans from- with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919. 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demolilization, 1919 290
with red lair, demobilization, 1919 289
New Hampshire-Continued. Page.
average weight of draft recruits, at moliilization, 1917-1818, and demohilization, 1919 122
colored eyes, proportional numbers for, $186{ }^{\circ}$ 285
comparative siew of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in $186 \overline{5}$ and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-191.9 76
index of build-
at demolilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean clest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
New Jersey:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demohilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demohilization, 1919 283
with dark brown hair, demohilization, 1919 291
with flaxen hair, demolvilization, 191 ? 288
with light brown eyes, demobilization, 1919 28.3
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers at demolilization over recruits, 1917-1919 76
index of build-
at demolilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demolilization, 1919 76
relative chest circumference of recruits from 144
New Mexico:
absolute and relative numbers of veterans from-
282
282
with clear blue eyes, demohilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demolilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demolilization, 1919 290
with medium brown hair, demohilization, 1919 290
average weight of draft recruits, at mobilization, 1917-1918, and demohilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mohilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
meall stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
New York:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demohilization, 1919. 282
with clear blue eyes, demobilization, 1919 281
with dark hrown eyes, demobilization, 1919 253
with dark brown hair, demolilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair. demolilization, 1919 290
with medium brown hair, demobilization, 1919 290 290
with red hair, demohilization, 1919 289
averaye weight of draft recruits at mobilization, 1917-1918, ant demobilization, 1919. 122
New York-Continued. Page.
colored eyes, proportional numbers for, 1865 285 285
comparative riew of mean height and mean weight of men from 124 124
comparison of index of build of men from, at demohilization in 1865 and 1919 170
increase in statute of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
Nordic races:
chest circumierence of 154
chest index of 210
relative chest girth of 154
relative sitting height oi 191
relative transverse chest diameter of 208
relatively long legs of 200
shoulder breadth of 205
thigh circumference of 228
waist circumference of 213
North Carolina:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919. 122
comparative riew of mean height and mean weight of men, from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from. 144
North Dakota:
absolute and relative numbers of teterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
comparative view of mean height and mean weight of men from 124
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
Norwegians:
approximate average stature of 47, 68
average weight of adult male 120
Obesity and overweight: Page.
chest circumference in draited men with 379
robustress in drafted men with 379
stature of drafted men with
379
379
weight of drafted men with 379
Ohio:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown liair, demobilization, 1919. 291
with flaxen hair, demolilization, 1919. 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919. 290
with medium brown hair, demobilization, 1919 290
with red hair, denobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of men from. 124
comparison of index of build of men from, at denobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build- 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Oklahoma:
absolute and relative numbers of veterans fron-
with blue eyes with brown spots, demobilization. 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and denobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruite from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization (1919) 76
relative chest circumference of recruits from 144
Orang outang, shoulder breadth of 204
Oregon:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 $\because 83$
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289 289
average weight of draft recruits, at mobilization, 1917-1918 and demobilization, 1919 122
increase in stature of soldiers at demobilization over recruits, 1917-1919
increase in stature of soldiers at demobilization over recruits, 1917-1919 76 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean stature of soldiers from, at demobilization 76
mean stature of draft recruits from io
Oregon-Continued. Page.
comparative view of mean heignt and mean weight of men from 124
mean chest circumference (expiration), of draft recruits from 142
relative chest circumference of recruits from. 144
Overweight and obesity:
chest circunference in drafted men with 379
robustuess of drafted men with 379
stature of drafted men with 379
weight of drafted men with 379
Parisians:
ratio of pelvic dianseter to stature of 215
relative forearm length of
relative forearm length of 220 220
shoulder breadth of 204
Patella, a verage dimensions of in color races, demobilization, 1919 235
Patella, circuniference, and breeches groups:
association between-
colored troops, demobilization 560
white troops, demobilization 553
Patterns for uniforms 271
Pelvis, diameter of:
absolute and relative transverse, in eight European races, demobilization, 1919 217
in five color races, demobilization, 1919 219
absolute transverse, by sections, demobilization, 1919 216
and chest girth, correlation of, in white troops 42
and waist girth, correlation of, in white troops. 42
average, in color races, demobilization, 1919 235
comparative frequency distribution of transverse, in each of eight European races, demobilization, 1919 218
in eight European races at demobilization, 1919 243
mean 216
maximum of, found in Iroquois Indians 215
of men from different parts of the country, at demobilization, 1919 216
ratio of, to stature 215
transverse 39, 215
and blouse groups, association between, colored troops, demobilization 545
and blouse groups, association between, white troops, demobilization. 537
and breeches groups, association between, colored troops, demobilization. 556
and breeches groups, association between, white troops, denobilization. 549
and chest circumference (rest), correlation between 261,513
and chest circumference, Negro troops, correlation between 26،
and chest circumference (rest), correlation between, colored troops, demobilization. 528 528
and waist circumference, correlation between, colored troops, demobilization 530
and waist circumference, Negro troops, correlation between. 267
and waist circumference, correlation between, white troops, demobilization 262, 515
at level of crests of ilium, directions for measuring 58
between cristæ, and chest circumference, correlation between, white troops. 258
comparison of, in eight European races. 216, 217
comparison of, in five color races 219
general discussion of 215
in anthropoids. 215
in Bavarians 215
in chimpanzee. 215
in gorilla. 215
standard deviation of 216
summary of, of approximately 6,000 colored troops, demobilization. 234
summary of, of approximately 100,000 white troops, denobilization 234
Pennsylvania:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue cyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919. 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919. 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919. 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919. 122
colored eyes, proportional numbers for, 1865. 285
Pennsylvania-Continued Pake.
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 186.5 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, mobilization, 1917-1918 160
mean chest circumference (expiration), of draft recruits from. 142
inean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
Perimeter, chest 186
Personnel for anthropological work in Army 56
Physical-examination standards. 297
Physique and defects, relation between 43
Pignet's formula. 186
Piguet's index of build:
comparison of, for inen of va 188, 189
for draft recruits- with asthma. 360
with astigmatism 322
with cardiac hypertrophy 334
with cryptorchidism, hypospadia, anorchism, and monorchism 382
with defective and deficient teeth 363
with enlarged inguinal rings. 369
with exophthalmic goiter 309
with hemorrhoids 356
with hernia 369
with hyperopia 319
with hypertrophic tonsillitis. 327
with initral insufficiency 33 S
with mitral stenosis. 339
with inyopia 315
with simple goiter 305
with simple tach ycardia 331
with valyular diseases of the heart (unclassified) 345
with varicocele. 348
with varicose veins 348
with underweight. 376
Pignet's index of robustness. 186
and index of build of recruits found with specified diseases and defects. 40 S
for men with pulmonary tuberculosis 301
Plumb line and sinker used to measure sternal notch 57
Poles:
absolute and relative calf circumference in, demobilization, 1919 231
absolute and relative chest circumference of, demobilization, 1919 154
absolute and relative height of pubic arch in, demobilization, 1919 200
absolute and relative height of sternal notch in, demobilization, 1919 197
absolute and relative knee height of, dennobilization, 1919 225
absolute and relative leg length of, deinobilization, 1919 222
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting heights of, and standard deviations, demobilization, 1919 191
absolute and relative span of, with standard deviation, demobilization, 1919 194
absolute and relative thigh circunference of, at demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic diameter in, demobilization, 1919 217
absolute and relative waist circumference of, demobilization, 1919 199
approximate number measured, demobilization, 1919 243
comparative frequency distribution-
of antero-posterior diameter of chest, demobilization, 1919 212
of calf circumference in, demobilization, 1919 231
of chest circumference (rest), demobilization 155
of span in, denobilization, 1919 195
of eye color in, demobilization, 1919 25
of hair color in, demobilization, 1919 292
of height of, demobilization, 1919 116
of height of pubic arch in, demobilization, 1919. 201
of height of sternal notch in, denobilization, 1919 198
of knee heicht in, at demobilization, 1919 226
of leg length of, at demobilization, 1919 223
Poles-Continued.
comparative frequency distribution-Continued. Page.
of shoulder breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919
of sitting height of, demobilization, 1919 192 192
of thigh circumference of, demolilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter in, demobilization, 1919. 218
of waist circumference in, demobilization, 1919. 214
of weight of, demobilization, 1919 135
from Galicia, approximate average stature of 47
in general, average stature of 68
index of build-
demobilization, 1919 173, 244
maximun shoulder breadth found in 205
mean stature and standard deviation of 113
mean stature of. 243
mean weight and standard deviation of 135
ratio of pelvic diameter to stature of 215
ratio of pubic height to total stature of 199
transverse chest diameter 208
Population:
characteristics of, by sections 80-87
consolidation of similar sections of; the series and their constituent groups. 98
of the various sections of the United States, characteristics and composition of 80-87
variability of physical dimensions in relation to 44
Portuguese, average stature of. 68
Primates, relative leg length of 200
Proportions and sizes of men in distribution zones, Quartermaster ('orps 276
Proportions, somatic, comparison of, in eight European races 242
Prussia, standards of stature in 45
Pubic arch:
absolute and relative height of-
in eight European races, demobilization, 1919 200
in five color races, demobilization, 1919 202
and stature, correlation of, in white troops 42
comparative frequency distribution of height of, in eight European races, demobiliza- tion, 1919 201
comparison of height of, in color races 202
height of 38
and stature, correlation between, colored troops, demobilization 524
and stature, correlation between, white troops, demobilization 520
and stature, correlation of, white troops 259
and stature, Negro troops, correlation between. 265
general discussion 199
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
standard deviation of height of 200
Pubic height:
average, in color races, demobilization, 1919 235
comparison of, in white and Negro troops 40, 233
in eight European races at demobilization, 1919 243
mean. 200
ratio of, to total stature 199
standard deviation of, for Negro troops. 202
Pubis, height of, directions for measuring 58
Pygmies, Mawambu, relative arm length in 219
Race:
eye color an index of 42
in relation to regiment formation 47
variability of chest circumference according to 37
variability of stature in 36
variation in size of body according to 46, 47
Race size, diversity of, in relation to clothing of army 47
Races, color:
average dimensions in, demobilization, 1919 235
chest circumference of men of 156
comparative frequency distribution of measurements in, at demobilization 236
comparative sitting heights of 193
comparison of height of pubic arch in 202
comparison of height of sternal notch in 199
Races, color-Continued. Page.
comparison of leg length in 224
comparison of neck circumference in 203
comparison of shoulder breadth of 207
comparison of transverse pelvic diameter of 219
comparison of weight of 136
general comparison of measurements of 241
mean index of build of 174
mean span of 196
mean stature in, demobilization, 1919 117
relative dimensions in, denobilization, 1919 235
Races, eight European
absolute and relative calf circumference in, demobilization, 1919 231
absolute and relative height of sternal notch in, demobilization, 1919 197
absolute and relative knee height in, demobilization, 1919 225
absolute and relative leg length in, demobilization, 1919 222
absolute and relative shoulder height in, demohilization, 1919 206
absolute and relative span with standard deviation in, demobilization, 1919 194
absolute and relative thigh circumference in, denobilization, 1919 228
absolute and relative transverse pelvic diameter in, demobilization, 1919 217
absolute and relative waist circumference in, demobilization, 1919 214
absolute dimensions in, demobilization, 1919 243
approximate number of men measured in, demobilization, 1919 243
average dimensions of, demohilization, 1919 $246,247,248,249,250,251,252$
comparative frequency distribution-
of antero-posterior dianeter of chest in each of, demobilization, 1919 212
of calf circumference in, demobilization, 1919 231
of chest circumference (rest) in, demobilization, 1919 155
of hair color in, demohilization, 1919 292
of height of pulic arch in, denobilization, 1919 201
of height of sternal notch in each of, demohilization, 1919 198
of knee height in, demohilization, 1919 226
of leg length in each of, demobilization, 1919 223
of shoulder breadth in, demobilization, 1919 206
of span in each of, demobilization, 1919 195
of thigh circumference in, demobilization, 1919 229
of transverse diameter of chest in each of, demobilization, 1919 211
of transverse pelvic diameter in each of, demobilization; 1919 218
of waist circumference in, demobilization, 1919 214
comparison of antero-posterior chest diameter in 209
comparison of calf circuinference in. 230, 231
comparison of chest circumference in. 213, 214
comparison of leg length of 221, 222, 223
comparison of neck circumference in 203
comparison of shoulder breadth in 205, 206
comparison of sitting height in 191, 192
comparison of somatic proportions of. 242
comparison of thigh circumference of 227, 228, 229
comparison of transverse chest diameter in. 208, 210
comparison of transverse pelvic diameter in 216, 217, 218
comparison of weight in, demobilization 135
comparison of span in 193, 194
eye color in 284
hair color in 293
index of build in, demobilization, 1919 244
mean chest circumference in, demobilization, 1919 $152,154,155$
mean stature and standard deviation of each of 113
relative dimensions, demobilization, 1919 $245,250,251,252$
Races, Mediterranean:
relative transverse chest diameter of 208
thigh circumference of 228
waist circumference of 213
Races, Nordic:
relative transverse chest diameter of 208
shoulder breadth of. 205
thigh circumference of 228
waist circumference of 213
Races, principle, approximate average stature of 47
Races, white and color, comparison of stature of 117
Ration, standard, variation with size of body 40 40
Recruits (sce also, 1)raft recruits; Drafted men): Page.
age of. 64 64
and veterans, comparison of stature of, by States 77
average stature of, from different rections 97, 98, 99, 100, 101, 102, 103
Briti:h, weight of 119
build of.
119
Civil War, weight of
comparison of hair color in World War and Civil War 291
comparison of stature of, from various States, 1863-1864, and 1917-1918 78
distribution of frequencies of different classes of chest circumference for 140
draft, anthropometric work in connection with 49
draft, mea urements of 51
found with specified diseases and defects, index of build and Pignet's index of rohust- ness of 408
frequency distribution of, by States 140
frequency distribution of weight of. 120
height, weight, and chest circumference of, in relation to various diseases and defects. 296
index of build of, by sections, 1917-18 172
mean chest circumference of 37
mean stature of 34
mean stature of, at each age, 18 to 25 years, 1906-1815 73
mean stature of, from different States 74
mean weight of 36
mean weight of, from the different sections 124, 125, 126, 127
of 1917-1918 and veterans of 1919 and 1864-1865; comparison of index of build in 168
standard deviation of weight of. 121
stature of, index of ability to carry weight 46
with asthma-
correlation between height and chest circumference (expiration) in 359
height and weight in 358 358
with astigmatism-
correlation between height and chest circumference in. 322
correlation between height and weight in 321
with cardiac hypertrophy-
correlation between height and chest circumference in. 333
correlation between height and weight in 332
with cryptorchidism, hypospadia, anorchism and monorchism-
correlation between height and chest circumference (expiration) in 381
correlation between height and weight in 380 380
with defective and deficient teeth and dental caries-
correlation between height and chest circumference (expiration) in 362
correlation between height and weight in 361
with defective physical development-
correlation between height and chest circumference (expiration) in 374
correlation between height and weight in 373
with enlarged inguinal rings-
correlation between height and chest circumference (expiration) in. 368
correlation between height and weight in. 367
with exophthalmic goiter-
correlation between height and chest circumference in 311
correlation between height and weight in. 310
with flat-foot-
correlation between height and weight in 371
with hemorrhoido-
correlation between height and chest circumference (expiration) in 355
correlation between height and weight in 354
with hernia-
correlation between height and chest circumference (expiration) in 365
correlation between height and weight in 366
with hyperopia-
correlation between height and chest circumference in 317
correlation between height and weight in. 316
with hypertrophic tonsillitis-
correlation between height and chest circumference in 325
correlation between height and weight of 324
with mitral insufficiency-
correlation between height and chest circumference in 337
correlation between height and weight in 336
with mitral stenosts-
correlation between height and chest circumference (expiration) in. 341
correlation between height and weight in. 340
Recruits-Continued.
with myopia- Pace.
correlation between height and chest circt:mfrence in 313
correlation between height and weight in 312
with pulmonary tuberculosis -
correlation bet ween height and chest circumference in 303
correlation between height and weight in 302
with simple goiter-
correlation between height and chest circumference in. 307
correlation between height and weight in 306
with simple tachycardia-
correlation between height and chest circumfercuce in. 329
correlation bet ween height and weight in 328
with specified diseases and defects, mean stature and weight in 408
with underweight-
correlation between height and chest circumference (expiration) :n. 378
correlation between height and weight in. 377
with valvular diseases of the heart (unclassified)-
correlation between height and chest circumference (expiration) in 344
correlation between height and weight in 343
with varicocele-
correlation between height and chest circumference (expiration) in 352
correlation between height and weight in 351
with varicose veins-
correlation between height and chest circumference (expirat:(1n) in 350
correlation between height and weight in 349
World War-
and Civil War, comparison of stature of 79
average index of buld for. 164
correlation between stature and chest circumference of. 256
Refraction, errors of (see Eye, refractive errors of).
Regiment formation, relation of race to. 47
Regular Army, minimum stature in, in Civil War 45
Rhode Island:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, denobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build- 167 166
for recruits from, at mobilization, 1917-1918
for recruits from, at mobilization, 1917-1918
mean chest circumference (expiration), of draft recruits fiom. 142
mean stature of draft recruits from. 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Robustness in drafted men (see also, Build):
with underweight 376
with asthma 360
with cardiac hypertrophy 334
with cryptorchidism, hypospadia, anorchism, and monor hism 382
with defective and deficient teeth 363
with defective physical development 375
with enlarged inguinal rings 369
with flat-foot 370
with hemorrhoids. 356
with hernia. 369
with hyperopia 319
with mitral insufficiency 338
with overweight and obesity 379
with astigmatism. 322
Robustness in drafted men-('ontinued. Page.
with exophthalmic goiter 309
with hypertrophic tonsillitis. 327
with mitral stenosis 339
with myopia. 315
with puhmonary tuherculowis. 301
with simple goiter 305
with simple tachycardia 331
with valvular diseases of the heart (unclassified) 345
with varicocele 348
with varicose veins 348
Pignet's index of 186
for men with pulmonary tuberculosis 301
Rumanians:
approximate average stature of 47
average weight of adult male. 120
conscripts, a verage stature of. 68
from Hungary -
approximate average stature of 47
a verage stature of 68
ratio of pelvic diameter to stature of 215
Russian groups:
height distribution of 109, 110
index of build of recruits of 173
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of. 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Russians:
chest circumference of 139
Great, approximate average stature of 47
in general, ratio of pelvic diameter to stature of 215
Little, approximate average stature of. 47
white, approximate average stature of 47, 68
Ruthenians, approximate average stature of 147
Samoyedes Peninsula of Siberia, relative pubic height of inhabitants of 200
Scales, graduated paper metric, used in taking measurements. 57
Scandinavian and German groups:
height distribution of 109,110
mean chest circumference of draft recruits of 150
mean height of 108
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Scandinavian groups:
height distribution of 109,110
index of build of recruits of 173
mean chest circumference of draft recruits of 150
mean weight of draft recruits of 132
relative chest circumference of draft recruits of. 150
weight distribution of draft recruits of 133, 134
Scandinavians, sitting height of 190
Scotch:
absolute and relative calf circumference in, demobilization, 1919 231
absolute and relative chest circumference in, demobilization, 1919. 154
absolute and relative height of pubic arch in, demobilization, 1919 200
absolute and relative height of sternal notch in, demobilization, 1919. 197
absolute and relative knee height of, demobilization, 1919 225
absolute and relative leg length of, demobilization, 1919 222
absolute and relative shoulder breadth of, demobilization, 1919 206
absolute and relative sitting height of, and standard deviations, demobilization, 1919 191
absolute and relative span of, with standard deviation, demobilization, 1919 194
absolute and relative thigh circumference of, demobilization, 1919 228
absolute and relative transverse chest diameter of, demobilization, 1919 210
absolute and relative transverse pelvic diameter in, demobilization, 1919. 217
absolute and relative waist circumference of, demobilization, 1919 199
agriculturists of Galway, average stature of 68
approximate average stature of 47
approximate number measured, demobilization, 1919 243
Scotch-Continued. Page.
comparative frequency distribution-
of antero-posterior diameter of chest in, demobilization, 1919 212
of calf circumference of, demolsilization, 1919 231
of chest circumference (rest), demobilization, 1919 155
of eye color in, demobilization, 1919 284
of hair color in, demobilization, 1919 292
of height of, demobilization, 1919 116
of height of pubic arch in, demobilization, 1919. 201
of height of sternal notch in, demobilization, 1919 198
of knee height in, at demobilization, 1919 226
of leg length of, at demobilization, 1919 223
of shoulder breadth of, demobilization, 1919 206
of sitting height of, demobilization, 1919 192
of span of, demobilization, 1919 195
of thigh circumference of, demobilization, 1919 229
of transverse diameter of chest in, demobilization, 1919 211
of transverse pelvic diameter in, demobilization, 1919 218
of waist circumference in, demobilization, 1919 214
of weight of, demobilization, 1919 135
in general, average stature of 68
index of build of 173, 244
mean stature and standard deviation of 113
mean stature of 243
mean weight and standard deviation of 135
of the north, Ayrshire, etc., average stature of 68
shoulder breadth of 205
transverse chest diameter of 208
Seaver measuring rod, used in taking measurements 57
Sections:
average stature of recruits from different 100
composition of 88-96
frequency distribution of statures in groups of $111,114,115$
Serbs:
approximate average stature of 47
chest circumference of 139
conscripts, average stature of 68
Shape, main differences between white and Negro troops 40, 41
Shoulder breadth 38
absolute and relative, in eight European races, demobilization, 1919 206
average, in color races, demobilization, 1919 235
comparative frequency distribution of, in eight European races, demobilization, 1919 206
comparison of, in color races. 207 207
comparison of, in eight European races 205,206, 243
general discussion of 203
in relation to total stature 204
maximum, found in Poles 205
mean 204
minimum found in French 205
of anthropoid apes 204
of chimpanzee 204
of English 205
of Germans 205
of Germans of Bavaria 204
of Hebrews 205
of hylobates. 204
of inhabitants of Admiral Islands 204
of Irish 205
of I talians. 205
of Nordic races 20.5
of orang outang 204
of Parisians 204
of Polish Jews. 204
of Scotch 205
relative-
of Bavarians 204
of Belgians 204
of Chinese 204
of French. 204
of Japanese 204
of Polish Jews 204
Shoulder breadth-Continued. Page.
standard deviation of 204
summary of, of approximately 6,000 colored troops, demobilization 234
summary of. of approximately 100,000 white troops, demolilǐation 234
Shoulder width and blouse groups:association between-
colored troops, demobilization 542
white troops, demobilization. 53
Shoulders, transverse diameter of, at level of humeri, directions for measuring 58
Siberia, Samoyedes Peninsula of, relative pubic height of inhabitants of 200
Sitting height 38
absolute and relative, and standard deviations with coefficient of variations in eight
European races, demobilization, 1919 191
average, in color races, demolilization, 1919 235
and chest circumference-
correlation between, in Negro troops 266,540
correlation between, white troops $266,532,533,537$
and stature-
correlation between, in Negro troops 264
correlation between, in white troops 259, 517
comparative frequency distribution of, in each of eight European races, demobilization,1919192, 243
comparative, of white and Negro troops 40
comparison of, in white and Negro troops. 233
general discussion 190
mean 148
standard deviation of 191
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
Size of body
in relation-
to standard ration 34, 46
to standards for uniforms 46
variation according to race. 46, 47
Sizes and proportions of men in distribution zones, Quartermaster Corps 276
Somatic proportions, comparison of, in eight European races 242
South Carolina:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over stature of recruits. 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
South J)akota:
absolute and relative numbers of veterans from-with dark brown eyes, demobilization, 1919.283
with dark brown hair, demobilization, 1919. 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
with blue eyes, with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
South Dakota-Continued Pape.
difference of weight of draft recruits from, at mobilization, 1917-1918, and demohiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
Span 38
absolute. 193, 194
absolute and relative, with standard deviation in eight European races, demobilization 1919. 194
averago in color races, demobilization, 1919 235
comparative frequency distribution in each of eight European races, demobilization, 1919 195
comparative, of white and Negro troops 39, 232
comparison of, in cight European races. $193,194,243$
directions for measuring. 57
general discussion 193
mean 193
of color races 196
relative 193, 194
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
Span and stature:
correlation between-
colored troops, demobilization 522
white troops. 42. 260. 518. 519. 523
Negro troops 265
Spaniards, a verage stature of 68
Sparsely settled groups:
height distribution of 109, 110
index of build of recruits of 173
mean chest circumference of draft recruits of 150
mean weight of draft recruits of 132
relative chest circumference of draft recruits of 150
weight distribution of draft recruits of 133, 134
Standards:of height, weight, chest circumference, and mobility of chest, adopted for draft recruits.United States Army, 1917297
of measurements of drafted men 296
physical examination 297
States, measurements by (see under names of States).Statistical perforated cards.63
Stature (see also, Height). 34
age of volunteers and 35
approximate of principal races in United States 47
average-
235
235
in color races, demobilization, 1919
in color races, demobilization, 1919
69
69
of Civil War and World War compared 34
of recruits from different sections 97, 98, 99, 100, 101, 102, 103
calculated frequency distribution of, of men of United States Civil War period, France, Belgium, and Italy 71
chest circumference in relation to 48
comparative frequency distribution of, by Quartermaster Corps distribution zones, demobilization 568, 569
comparison of frequency distribution of, of Civil War and World War recruits 72
comparison of-in eight European races at demobilization$113,243,244$
in white and color races. 117
of native and foreign born white and colored draft recruits, 1917-1918, and white recruits, Civil War. 79
of recruits and veterans, by States 77
correlated with length of leg 46
directions for measuring 57, 67
$38636^{\circ}-21-40$
Stature-Continued. Page.
frequency distribution of. 71
by classes at mobilization and demobilization 70
gain in 34
general discussion of 66
high and low standard deviations in, in different sections 105
in drafted men-
with flat-foot 370
with underweight 375
increase in, of soldiers at demobilization over stature of recruits, 1917-1918 76
index of build of Civil and World War veterans for each inch of 164
importance of weight in relation to 48
influence of immigration on 79
its mean, standard deviation, and coefficient of variation, for certain especially studied groups 69
limitations of, in U. S. Army in World War 46
mean 4. 76
and standard deviation of each of eight European races 113
at demobilization 75
at each age, 18 to 25 years, United States Army recruits 73
by groups of similar sections. 105
by States, first million draft recruits 75
by States, of soldiers at demobilization, 1919 76
comparison of, in various countries 68
comparison of, with Civil War records 67
from different States 74.75
in five color races, demobilization, 1919 117
of first million recruits. 34
of recruits 74
of troops at demobilization 34
mean weight in relation to 118
medico-military importance of 66
minimum in British Army 45
in Civil War 45
in French Army 45
in Italian Army 45
of Army conscripts and recruits, in inches, as determined by Laplace-Charlier frequency curves 70
of drafted men 296
with asthma 356
with astigmatism 319
with cardiac hypertrophy 331
with cryptorchidism, hypospadia, anorchism, and monorchism 379
with defective and deficient teeth 360
with defective physical development 372
with enlarged inguinal rings. 369
with exophthalmic goiter 308
with hemorrhoids 353
with hernia 363
with hyperopia 315
with hypetrophic tonsillitis 323
with mitral insufficiency 335
with mitral stenosis. 338
with myopia. 314
with overweight and obesity 379
with pulmonary tuberculosis. 299
with simple goiter 304
with simple tachycardia 327
with valvular diseases of the heart (unclassified) 342
with varicocele 345
with varicose veins. 345
of recruits
comparison of, from various States, 1863-1864 and 1917-1918 78
index of ability to carry weight 46
of volunteer troops in Civil War 45
ratio of pelvic diameter to
215
215
standard deviation of 73 73
standards of -
45
45
in Austria
in Austria
45
45
in Belgium. 45

INDEX.

Stature-Continued.
Page.
in Prussia. 45
in Switzerland 45
in the United States 45
sumniary of, of approximately 6,000 colored troops, demobilization 234
sumnary of, of approximately 100,000 wnite troops, demobilization. 234
total-
ratio of pubic height to 199
shoulder breadth in relation to. 204
associated wish various defects and diseases, first and second million draft recruits. 409
hy States 35, 36
in races. 36
and cardiac disorders. 43
Stature and chest circumference: correlation between-
Civil War recruits 256
recruits, 1917-1918 256
Stature and defective teeth 43
Stature and goiter. 43
Stature and height of pubic arch: correlation between- colored troops, demobilization. 524
white troops 259, 520
Stature and height of sternal notch: correlation between-- colored troops, demobilization. 523
Negro troops 265
white troops 259, 518. 519
Stature and knee height:
correlation of-
Negro troops 265
white troops 42
Stature and other measurements, comparative, white and colored soldiers. 41
Stature and pubic arch:
correlation of -
Necro troops 265
white troops 42
Stature and pulmonary tuberculosis. 43
Stature and refractive errors 43
Stature and sitting height:
correlation between-
colored troops, demohilization 521
Negro troops 264
white troops 42. 259, 517
Stature and span:
correlation between- colored troops, demobilization 522
Negro troops 26.
white troops. 42. 260.518,519
Stature and sternal notch, correlation of, in white troops 42
Stature and varicorele. 43
Stature and varicose veins 43
Stature and waist circumference:
correlation hetween 258
white and colored troops, demobilization 509
Stature and weight: correlations between 254
in white and colored troops, demobilization 508
distribution of -
American-born Civil War recruits 74
draft recruits, 1917-1918 74
mean, index of build for 164
mean, of recruits with specified diseases and defects. 408
etandards of 297
Statures:
frequency distribution of, in the groups of sections. 111. 114, 115
weights associated with, in various classes of American males. 118
Sternal notch
Page.
absolute and relative height of-
in eight European races, demobilization, 1919 197
in five color races, demobilization, 1919 199
average in color races, demobilization, 1919 235
comparative frequency distribution of height of, in each of eight European races, de- mobilization, 1919 198
comparative, of white and Negro troops 40
comparison of height of - 199
in eiglit European races. 197
in white and Negro troops. 233
general discussion of 196
height of 196
and stature, correlation between, colored ،roops, demobilization 523
and stature, correlation between, white troops $42,259,518,519$
directions for ineasuring 58
Negro troops. 265
summary of, of approximately 6,000 colored troops, demolilization. 234
suminary of, of approximately 100,000 white troops, demobilization 234
in eight European races at demobilization, 1919 243
mean height of 197
method of measuring height of 196
plumb line and sinker used to measure 57
Suprapatella:
and breeches groups, association between, white troops, demobilization 552
average, in color races, demobilization, 1919 235
circumferences-
and hlouse groups, association between, colored troops, demohilization. 559
general discussion. 232
mean 232
standard deviation of 232
summary of, of approximately 6,000 colored troops, demobilization 234
summary of, of approximately 100,000 white troops, demobilization 234
Swedes:
approximate average stature of 47
in general (soldiers), average stature of 68
of Kalmar (conscripts), average stature of 68
Switzerland
standards of stature in 45
French, conscripts of, average stature of 68
Tachycardia, simple:
chest circumference in drafted men with 330
correlation between- 329
height and chest circumference in
height and weight in recruits with 328
in draited men. 327
Pignet's index of build in drafted men with 331
robustness in drafted men with 331
stature of drafted men with 327
weight in drafted men with 330
Tape, cloth, metrically graduated, used in taking measurements 57
Tartars, relative leg length of 221
Teeth, defective and deficient:
and dental caries-
correlation between height and clest circumference (expiration) in recruits with 362
correlation of height and weight in recruits with 361
chest circumference in drafted men with. 363
Pignet's index of build for drafted men with 363
robustness in drafted men with 363
stature of drafted men with 360
weight of drafted men with 360
Teeth, defective, and stature 43
Tennessec:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
Tenuessec-Continued.
absolute and relative numbers of veterans from-Continued. Pare. 291
with dark brown hair, demobilization, 1919
with dark brown hair, demobilization, 1919
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medlum brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
difference of weight of draft reeruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919. 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mohilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of solcliers from, at demobilization 76
relative ehest cireumference of reeruits from 144
Texas:
absolute and relative numbers of veterans from-
with blue eyes, with brown spots, demobilization, 1919 282
with elear blue eyes, demohilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demohilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919. 289
average weight of draft recruits at mohilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124 124
difference of weight of draft reeruits from, at mohilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build for, at demobilization, 1919 167 167
index of huild for reeruits from: at mobilization, 1917-1918. 166
mean chest circumference (expiration), of draft recruits from 142 142
mean stature of draft reeruits from 75
mean stature of soldiers from, at demobilization, 1919 76 76
relative chest cireumference of recruits from 144 144
Thigh circumference 39
228
ahsolute and relative, in eight European races, demobilization, 1919
558
558
association between, colored troops, demohilization
association between, colored troops, demohilization 551
association between, white troops, demobilization
235
235
average in color races, demobilization. 1919
average in color races, demobilization. 1919 229 227
general discussion
general discussion
in eight European races, 227. 228, 229, 243
maximum, directions for measuring 59
mean
mean 227
standard deviation of 227 227
summary of, of approximately 100,000 white troops, demobilization
summary of, of approximately 100,000 white troops, demobilization 234 234
summary of, of approximately 6,000 colored troops, demobilization
summary of, of approximately 6,000 colored troops, demobilization 234 234
Thoracie deviation, standard 266 266
Thoracie index (sce also, Chest Diameter, Transverse):
antero-posterior diameter of ehest, and 208
for Λ frican Negroes. 207, 209
for Bugu Negroes 207, 209 209 209
for French
for French
for Hova Indians 207, 209
for Navajo Indians 209
for various races. 209 209
Thuringians of Saxony (conscripts) 68
Thyroid disease, Army anthropology an aid in detecting. 3
Tonsillitis, hypertrophic: Page.
and weight. 43
chest circumference of drafted men with 326
correlation between-
height and chest circumference of recruits with 325
height and weight of recruits with 324
in drafted men. 323
Pignet's index of build for draited men with 327
robustness of drafted men with 327
stature of drafted men with 323
weight of drafted men with. 323
Troops, white and Negro, the general comparative picture of 39, 41
Tuberculosis, pulmonary
and chest circumference 43
and stature 43
and weight 43
Army anthropology an aid in detecting 34
chest circumference of drafted men with 301
correlation between height and chest circumference in recruits with 303
correlation between height and weight in recruits with 302
in drafted men. 299
Pignet's index of robustness for men with 301
robustness of drafted men with 301
stature of drafted men with 299
Turks from Balkans, average stature of. 68
Ukrainians, average stature of 68
Underweight:
chest circumference of drafted men with 379
correlation between-
height and chest circumference in recruits with 376
height and weight in recruits with 377
Pignet's index of build for drafted men with. 376
robustness in drafted men with 376
stature in drafted men with 375
weight of drafted men with 376
Uniforms:
patterns for 271
size and proportions of body essential to proper cutting of 34
United States:
difference of weight of draft recruits of, at mobilization, 1917-1918, and demobilization, 1919. 123
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
mean stature, by States, of soldiers at demobilization, 1919 76
standards of stature in 45
Utah:
absolute and relative proportion of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men, from. 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
increase in stature of soldiers, at demobilization over recruits, 1917-1919 76
index of build- at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Page.
Variation in two sides of boly, correlation of 42
Varicocele:
chest circumference of drafted men with 347
correlation between-
height and chest circumference (expiration) of recruits with
height and chest circumference (expiration) of recruits with 352 352
height and weight of recruits with. 351
Pignet's index of build for drafted men with 348
robustness of drafted men with 348
stature and 43
stature of drafted men with. 345
weight of drafted men with 346
Varicose veins:
chest circumference of drafted men with. 347
correlation between-
height and chest circumference (expiration) in recruits with 350
height and weight in recruits with 349
in drafted men 345
Pignet's index of build for drafted men with 348
robustness of drafted men with. 348
stature of drafted men with 345
weight of drafted men with. 346
Veins, varicose (see Varicose veins).
Venctians, average stature of 68
Vermont:
absolute and relative proportion of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919. 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits at mobilization, 1917-1918, and demobilization, 1919. 122
colored eyes, proportional numbers for, 1865. 285
comparative view of mean height and mean weight of men from 124
comparison of index of build of men from, at demobilization in 1865 and 1919 170
increase in stature of soldiers, at demobilization over recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from. 144
Vertebra-ulna measurement, directions for taking. 58
Veterans:
and recruits, comparison of stature of, by States 77
build of. 37
Civil and World Wars, index of build of 164, 168
Civil War, build of recruits compared with 38
distribution frequencies of different classes of chest circumference for 140
increase in mean chest circumference 37
Virginia:absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demolilization, 1919 283
with light brown hair, demohilization, 1919 290
with medium brown hair, demolilization, 1919 290
with red hair, demobilization, 1919 259
average weight of draft recruits at mobilization, 1917-1918, and demohilization, 1919. 122
comparative view of mean height and mean weight of men from. 124 124
difference of weight of draft recruits from, at mobilization, 1917-1918, and demobiliza- tion, 1919 123
Virginia-Continued. Page.
increase in stature of soldiers at demohilization over recruits, 1917-1919 76
index of build-
demohilization, 1919 167
for recruits from, at mobilization, 1917-1918. 166
mean clest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Volunteers, age of, and stature 35
Volunteer troops, stature of, in Civil War 45
Waist circumference 39
absolute and relative, in eight European races, demobilization, 1919 214
and leg length, correlation between, colored troops, demobilization, 1919 555
and leg length-
correlation between, white troops, demobilization 548
correlation between, white troops 42
and pelvic diameter, correlation of, in white troops 42
and stature-
258
258
correlation between
correlation between 509
and transverse diameter of pelvis -
correlation hetween, colored troops, demohilization 530
correlation hetween, Negro troops 267
correlation between, white troops. 262, 515
average, in color races, demohilization, 1919 235
comparative frequency distribution of-
by Quartermaster Corps distribution zones, white and colored troops, demobilization. 572
in eight European races, demobilization, 1919. 214
comparison of, in eight European races 213, 214
general discussion of 213
in eight European races, demobilization, 1919 243
mean. 213
level of umbilicus, directions for measuring 58
standard deviation 213
summary of, of approximately 6,000 colored troops, demobilization. 234
summary of, of approximately 100,000 white troops, demobilization. 234
Washington:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919 122
comparative view of mean height and mean weight of men from 124
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
mean chest circumference (expiration) of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization 76
relative chest circumference of recruits from 144
Weddas, calf circumference of 230
Weight 36
at mobilization, 1917-1918, and demobilization, 1919, States arranged in order of differ- ence of. 123
average-
by States, at mobilization, 1917-1918, and demobilization, 1919, first million draft recruits 122
in color races, demobilization, 1919 235
comparative frequency distribution of-
by States of nativity, white and colored troops, demobilization. 570
in eight European races, demobilization. 135
Weight-Continued. Page.
comparative, of men of different statures among white soldiers of 1865 at demobilization and white and colored soldiers at demobilization, 1919 254
comparison of, in the color races 136
comparison of, in eight European races. 135,244
distribution of
by height$159,160,161$
by special diseases or defects
,
,
by groups of sections, first million draft recruits. 130, 131, 133, 134
frequency distribution of 120
of various classes of weight at mobilization, 1917-1918, and demobilization, 1919 121
general discussion of 117
height, and chest circumference (expiration) measurements showing proportionate measurements of two of them to the total of the third, first million draft recruits. 177
height and chest circumference of recruits in relation to various diseases and deferts 296
importance of-
in diagnosis 48
in relation to stature 48
in drafted men with exophthalmic goiter 308
in drafted men-with flat-foot 370
with simple tachycardia 330
in eight European races, demobilization, 1919 243
in relation to blouse groups. 272
increase in, at demohilization over mobilization. 122, 123
maximum, allowed by Army regulations. 297
mean. 119
and height, mean, comparative view of, of men from different States, World War and Civil War 124
and standard deviation in each of eight European races 135
by groups and component sections, first million draft recruits 430-435
by groups of sections, first million draft recruits 132
by groups of sections 132
by sections, first million draft recruits. 125
for different groups. 127
for the different States 121
in five color races, with standard deviation for white and Negro troops, demobili- zation, 1919 136
relation to stature. 118
of first million recruits 36
of recruits from the different sections 124. 125, 126, 127
ineasurement by special diseases 395
medico-military importance of. 118
method for measuring 118
minimun, allowed by The Adjutant General
297
297
of drafted men 296
with asthma 356
with astigmatism 320
with cardiac hypertrophy 331
with cryptorchidism, anorchism, monorchism, and hypospadia 382
with defective and deficient teeth 360
with defective physical development 372
with enlarged inguinal rings 369
with hemorrhoids 353
with hernia 364
with hyperopia 318
with hypertrophic tonsillitis 323
with mitral insufficiency 335
with mitral stenosis 339
with myopia 314
with overweight and obesity 379
with pulmonary tuberculosis. 300
with simple goiter $30 \overline{3}$
with underweight 376
with valyular diseases of the heart (unclassified) 342
with varicocele 346
with varicose veins. 346
of men at demobilization. 119,120
reduced variability at demobilization. 36
standard deviation of recruits 121
summary of, of approximately 6,000 colored troops, demobilization 234
Weight-Continued. Page.
summary of, of approximately 100,000 white troops, demobilization 234
variability in-
and conditions of life 37
associated with various diseases and defects among first and second million draft recruits. 409
by races 37
by States 36
Weight and hlouse groups
association between- colored troops, demobilization 541
white troops, demohilization 533
Weight and chest circumference:
correlation between. 258
in white troops. 42, 260
W'eight and chest circumference (expiration)
classes, first million draft recruits 162
correlation between-
first million draft recruits 422, 423
group 1, agricultural, Nortl, native white, first million draft recruits 444
group 2, agricultural, mixed foreign and white, North, first million draft recruits 447
group 3, agricultural, native white, South, first million draft recruits 450
group 4, agricultural, Negro, 45 per cent plus, first million draft recruits 453
group 5, eastern manufacturing, first million draft recruits 456
group 6, commuter, first million draft recruits 459
group 7, mining, first million draft recruits 462
group 8 , sparsely settled, first million draft recruits 465
group 9 , desert, first million draft recruits 468
group 10, maritime, first million draft recruits 471
group 11, mountain, first million draft recruits 47
group 12, mountain whites, first million draft recruits 477
group 13, Indian, first million draft recruits. 480
group 14, Mexican, first million draft recruits 483
group 15, native whites of Scotch origin, first million draft recruits 486
group 16, Russian, first million draft recruits. 489
group 17, Scandinavian, first million draft recruits 492
group 18, Finn, first million draft recruits 495
group 19, French-Canadian, first million draft recruits 498
group 20, German and Scandinavian, first million draft recruits. 501
group 21, German and Austrian, first million draft recruits 504
group 22, German and Austrian, first million draft recruits 507
Negro troops 265
relative, for men found with special diseases or defects in first and second million draft recruits. 410
Weight and chest circumference (rest), correlation between, white troops, demobilization 511
Weight and diseases of the heart 43
Weight and flat-foot 43
Weight and goiter 43
Weight and height:
classes, first million draft recruits 158
correlation between-
for first million draft recruits $417,418,419$
group 1, agricultural, North, native white, first million draft recruits 442
group 2, agricultural, mixed foreign and native white, North, first million draft recruits 445
group 3, agricultural, native white, South, first million draft recruits 448
group 4, agricultural, Negro, 45 per cent plus, first million draft recruits 451
group 5, eastern manufacturing, first million draft recruits 454
group 6, commuter, first million draft recruits 457
group 7, mining, first million draft recruits 460
group 8, sparsely settled, first million draft recruits 463
group 9, desert, first million draft recruits 466
group 10, maritime, first million draft recruits 469
group 11, mountain, first million draft recruits 472
group 12, mountain whites, first million draft recruits. 475
group 13, Indian, first million draft recruits. 478
group 14, Mexican, first million draft recruits 481
group 15, native whites of Scotch origin, first million draft recruits. 484
group 16, Russian, first million draft recruits 487
group 17, Scandinavian, first million draft recruits 490
Weight and height-Continued.
correlation between-Continued. Page.
group 18, Finn, first million draft recruits. 493
group 19, French-Canadian, first million draft recruits 496
group 20, Gernan and Scandinavian, first nillion draft recruits 499
group 21, German and Austrian, 20 per cent plus, first million draft recruits. 502
group 22, German and Austrian, 15 per cent plus, first million draft recruits. 505
Weight and liypertrophic tonsillitis
43
43
Weight and refractive errors 43
Weight and stature:
correlations between 254
in white and colored troops, demolilization 508
distribution of -
American-born Civil War recruits 74
draft recruits, 1917-1918 74
mean-
index of build for 164
of recruits with specified diseases and defects 408
standards of. 297
Weight and tuberculosis. 43
Weight and varicose veins 43
Weights:
associated with statures, in various classes of American males 118
associated with statures with standard deviations, and coefficient of variation for each, in various classes of American males 118
average, of adult males of various nationalities 120
heights, and chest circumferences (expiration), various, shown for United States, first million draft recruits. 157
Welsh, average stature of. 68
West Virginia:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 281
with dark brown eyes, demolilization, 1919 283
with dark brown hair, demobilization, 1919 291 291
with flaxen hair, demobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization. 1919 290
with red hair,' demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-18, and demobilization, 1919 122
colored eyes, proportional numbers for, 1865 285
comparative view of mean height and mean weight of men from 124
difference of weight of draft recruits from, at mohilization, 1917-18 and demohiliza- tion, 1919 123
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of huild-
demobilization, 1919. 167
for recruits from, at mohilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature-
of draft recruits from 75
of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
White and colored troops, demobilization:
comparative frequency distribution-
of chest circumference (rest), by Quartermaster Corps distribution zones 571
of height, by States of nativity 566, 567
of waist circumference, by Quartermaster Corps distribution zones 572
of weight of, by States of nativity 570
stature and waist circumference. 509
stature and weight in 508
White and Negro troops:
comparison of dimensions of 232. 233
correlations between measurements for. 253
mean and relative chest circumference (rest). demobilization. 1919 156
White race:
mean stature of, at demobilization, 1919 117
mean weight in, with standard deviation for, demobilization. 1919. 136
White troops: Page.
absolute and relative neck circumference of, demolilization, 1919. 203
association between blouse groups-
and antero-posterior chest diameter, demobilization 536
and neck circumference, demolilization 538
and shoulder width, demobilization. 534
and total arm length, demobilization 539
and transverse chest diameter, demobilization. 535
and transverse pelvic diameter, demobilization 537
and weight, demobilization 533
association between breeches groups-
and calf circumference. demobilization 554
and knee height, demobilization. 550
and patella circumference demobilization 553
and suprapatella, demobilization. 552
and thigh circumference, demobilization 551
and transverse pelvic diameter, demobilization 549
calf circumference in. 230
comparative frequency distribution-
of blouse groups, hy States of nativity 562
of breeches groups, by States of nativity 564
correlation between chest circumference-
and sitting height, demobilization 532, 534
correlation between chest circumference (rest)-
and neck circumference, demobilization 512
and transverse pelvic diameter, demobilization 513
and weight, demobilization 511
leg length and knee height, demobilization. 510
length of arm and forearm in, demobilization 516
measurements for, demobilization 258-264
stature and height of pubic arch, demolilization 520
stature and height of sternal notch. demobilization. 518, 519
stature and sitting height, demohilization 517
stature and span, demobilization 518, 519
transverse and antero-posterior chest, demobilization 514
waist circumference and leg length, demobilization 548
waist circumference and transverse pelvic diameter, demobilization. 515
dimensions of, associated with breeches groups, demobilization 274, 275
mean knee height of 224
mean leg length of. 221
mean transverse diameter of pelvis of 216
relative arm length of 219
standard deviation-
of arm length of. 220
of leg length of 221
of transverse pelvic diameter of 216
suprapatella, circumference of 232
thigh circumference of 227
Whites:
absolute and relative height of pubic arch in, demobilization, 1919 202
absolute and relative height of sternal notch in, demobilization, 1919. 199
absolute and relative leg length of, demobilization, 1919 224
absolute and relative shoulder breadth in, demobilization, 1919 207
absolute and relative sitting heights in, demobilization, 1919 193
absolute and relative transverse diameter of pelvis in, demobilization, 1919 219
and Negroes, comparison of correlation between. 268
index of build for. 174
mean absolute and relative spans of, demobilization, 1919 196
mountain, index of build for 173
native, of Scotch origin $109,110,133,134,150,173$
Wisconsin:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919 251
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, demobilization, 1919. 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
Wisconsin-Continued. Pape.
average weight of draft recruits at mobilization, 1917-1918, and demobilization. 1919 122
colored eqees, proportional numbers for, 1865 285
comparative view of mean height and mean weight of nen from 124
comparison of index of build of men from, demobilization in 1865 and 1919 170
increase in stature of soldiers at demobilization over recruits, 1917-1919 76
index of build-
demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
niean stature of draft recruits irom 75
mean stature of soldiers from, demobilization, 1919 76
relative chest circumference of recruits from 144
World War aud Civil War:
comparative measurements at demobilization 242
recruits, comparison of frequency distribution of stature of 72, 79
comparative view of mean height and mean weight of troops from different States. 124
volunteers, age distribution of. 65
World War veterans, index of build for, for each inch of stature 164, 165
Wyoming:
absolute and relative numbers of veterans from-
with blue eyes with brown spots, demobilization, 1919 282
with clear blue eyes, demobilization, 1919. 281
with dark brown eyes, demobilization, 1919 283
with dark brown hair, demobilization, 1919 291
with flaxen hair, denobilization, 1919 288
with light brown eyes, demobilization, 1919 283
with light brown hair, demobilization, 1919 290
with medium brown hair, demobilization, 1919 290
with red hair, demobilization, 1919 289
average weight of draft recruits, at mobilization, 1917-1918, and demobilization, 1919. 122
comparative view of mean height and mean weight of men from 124
increase in stature of soldiers at demobilization over stature of recruits, 1917-1919 76
index of build-
at demobilization, 1919 167
for recruits from, at mobilization, 1917-1918 166
mean chest circumference (expiration), of draft recruits from 142
mean stature of draft recruits from 75
mean stature of soldiers from, at demobilization, 1919 76
relative chest circumference of recruits from 144
Zones, distribution, Quartermaster Corps, sizes and proportions of men in 276

[^26]

[^0]: * The highest rank held during the World War has been used in the case of each officer.

[^1]: ${ }^{a}$ The carlier form used was Form 14 P. M. G. O.
 D in the tables and ilfustratlons throughout this publication the "first million draft recruits" are designated by the symbol P_{1} and the "second million draft recruits" by the symbol P_{2}.

[^2]: c See pp. 56 and 57 for the $11 s t$ of the names of the supervising anthropologists and anatomists, and of the camps where the measurements were taken.

[^3]: Note.-Superior figures refer to literature and other documents cited, p. 417.

[^4]: * The figures cited are for draft substitutes and late volunteers, as well as for draft recruits per se.

[^5]: a Major Delafeld went overseas at his own request in March, 1918 , to assist iu iustalling a Hollerith punch-card system in the office of the Cbief Surgeon, A. F. F., par. 14, S. O. No. 54, W. D., 191 S.

[^6]: A verage age, Civil War, Gould's figures, 25.54, volunteer officers and enlisted men.
 A verage age, Civil War, Baxter's figures, 27.307 (Baxter, p. 51), drafted recruits, substitutes, and late volunteers.
 A verage age, World War, 21.89 for all officers and enlisted men. Other data in this study for draft, enlisted men only.
 a Gould, 1869, pp. $3!$ and 57
 b Estimated from ages furnished by $3,683,134$ applicants for War Risk Insurance.

[^7]: a In Danish conseripts the mode is 67 inches, found in 160 per 1,000 men. For conseripts from Wirttemberg the modal stature is fifinches, found in 168 per 1,000 men. For Japmese conseripts the inode is 62 luches, found in 173 per $1,0(0)$ men. (Sree Table i.)

[^8]: a The "Draft reeruits," considered by Baxter here, as well as elsewhere, include also draft substitutes and late volunteers, all raised during the "Draft" period.
 b However, the present statisties deal only with men of ages 21 to 30 , inelusive. The younger and older men included in the age compilatlon (see Table 2, Gould, ${ }^{2}$ pp. 69, 34, and 57) were volunteers, offeers, and enlisted men.

[^9]: 1 Austrian．
 ＊Indian．
 Russian．
 －Japanese．

[^10]: a Subject first elaborated by Quetelet in 1835. See Baxter, ${ }^{1}$ Vol. 1, p. 52.

[^11]: a Pignet's reasoning which led him to suggest the formula given above ls as follows:
 Chez l'indivldu normal, le perimètre égale au moins la moitée de la taille, il augmente dans avec elle; de même de poids, dans les organismes normaux, doit s'accrôitre en meme temps que la taille. Ces trois quantités, ayant une marche parallèle, devalent, nous semblait-il, conservir entre elles une ditrérence constante chez les individus normaux, quelle que fut leur taille. Nous eumes alors l'idée d'additioner le perimètre et les poids et de soustraire de la taille, la somme ainsl obtenue. Soit un homme normal de 1 m 54 (154 centimeters) dont le perimètre thoracle est 78 centimeters et le poids 54 kilos. Nous faisons la somme de ce perimère et de ce polds: $78+54=132$. Cette somme est ensuits soustraite de la taille; $154-132=22$.

[^12]: a There are numbers of obvious errors in recording the height of sternal notch. These are shown by certain irregularitles at the extremes of the table. The table as obtained by the tabulators is printed unchanged. It is believed that the few errors will not greatly modify the resuits.

[^13]: Table 76.-Absolute and relative height of sternal noth in five color races, demobilization, 1919.

[^14]: 35. Breadth between the acromia.-To be taken with the anthropometer or "Stangelzirkel" (rod calipers). Care must be taken that the subject stretches the shoulders; that is, does not droop forward, making the measurement too small. One feels the points with the index fingers laid at the apices of the arms of the calipers, direct measurement. Horizontal distance between the two tubercula majora of the humeri; inexact measurement, since the tubercula can rarely be felt through the deltoid muscles. Maximum shoulder breadth (Grosste Schulterbreite) (diamétre bideltoid ou bihumerale), horizontal distance between the two largest projections of the deltoid muscle. Rod caliper, the instrument is not to be firmly pressed in. A very inexact measurement.
[^15]: PLATE XXII.

[^16]: a The common type of very young men found in the Oivil War statistics.

[^17]: * Not ineluding Kentucky and Tennessee and Slave States west of the Mississlppi.

[^18]: $35636^{\circ}-21-19$

[^19]: A registrant who appears not to be able to expand the chest $2 \frac{1}{2}$ to 3 inches, respectively, as per table, should be examined especially to ascertain if the failure of adequate chest expansion is due

[^20]: P_{1} and P_{2} - cases: 7,085 .
 Height: Mean, 67.94 inches; standard deviation, 2.55 ± 0.01 Chest circumference (expiration): Mean, 33.11 inches; standard deviation, 1.95 ± 0.01 inches.
 Correlation: 0.2616 ± 0.0075.

[^21]: a It will be noted that in what follows, the averages of height, weight, and chest at expiration are those taken only from men showing the various defects and diseases referred to in Table 18\%. For the average of height, weight, and chest cireumference of the whole population, reference has to be made to Tables 1, 1I, and 111 .

[^22]: Number of cases: 99,465 . Weight: Mean, 131.58 pounds; standard deviation, 16.64 ± 0.04 pound. Chest circumference (expiration): Mean, 33.19 inches; standard deviation, 1.92 ± 0.0041

[^23]:

[^24]:

[^25]: Patella circumference: Mean, 36.21 centimeters; standard deviation, 1.98 eentimeters.

[^26]: ADDITIONAL COPIES
 of this publication may be procured from
 THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OPFICE

 WASIIINGTON, D.c
 AT
 \$1.75 PER COPY

